版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2026屆廣西防城崗市防城區(qū)中考數(shù)學(xué)模擬預(yù)測題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,在等邊三角形ABC中,點P是BC邊上一動點(不與點B、C重合),連接AP,作射線PD,使∠APD=60°,PD交AC于點D,已知AB=a,設(shè)CD=y,BP=x,則y與x函數(shù)關(guān)系的大致圖象是()A. B. C. D.2.如圖,數(shù)軸上有三個點A、B、C,若點A、B表示的數(shù)互為相反數(shù),則圖中點C對應(yīng)的數(shù)是()A.﹣2 B.0 C.1 D.43.下列說法:①平分弦的直徑垂直于弦;②在n次隨機實驗中,事件A出現(xiàn)m次,則事件A發(fā)生的頻率,就是事件A的概率;③各角相等的圓外切多邊形一定是正多邊形;④各角相等的圓內(nèi)接多邊形一定是正多邊形;⑤若一個事件可能發(fā)生的結(jié)果共有n種,則每一種結(jié)果發(fā)生的可能性是.其中正確的個數(shù)()A.1 B.2 C.3 D.44.如圖,菱形OABC的頂點C的坐標(biāo)為(3,4),頂點A在x軸的正半軸上.反比例函數(shù)(x>0)的圖象經(jīng)過頂點B,則k的值為A.12 B.20 C.24 D.325.如圖,已知四邊形ABCD,R,P分別是DC,BC上的點,E,F(xiàn)分別是AP,RP的中點,當(dāng)點P在BC上從點B向點C移動而點R不動時,那么下列結(jié)論成立的是().A.線段EF的長逐漸增大 B.線段EF的長逐漸減少C.線段EF的長不變 D.線段EF的長不能確定6.小宇媽媽上午在某水果超市買了16.5元錢的葡萄,晚上散步經(jīng)過該水果超市時,發(fā)現(xiàn)同一批葡萄的價格降低了25%,小宇媽媽又買了16.5元錢的葡萄,結(jié)果恰好比早上多了0.5千克.若設(shè)早上葡萄的價格是x元/千克,則可列方程()A. B.C. D.7.運用乘法公式計算(3﹣a)(a+3)的結(jié)果是()A.a(chǎn)2﹣6a+9 B.a(chǎn)2﹣9 C.9﹣a2 D.a(chǎn)2﹣3a+98.如圖,直線a∥b,一塊含60°角的直角三角板ABC(∠A=60°)按如圖所示放置.若∠1=55°,則∠2的度數(shù)為()A.105° B.110° C.115° D.120°9.下列運算正確的是()A.5ab﹣ab=4 B.a(chǎn)6÷a2=a4 C. D.(a2b)3=a5b310.若a與5互為倒數(shù),則a=()A. B.5 C.-5 D.11.如圖,A、B為⊙O上兩點,D為弧AB的中點,C在弧AD上,且∠ACB=120°,DE⊥BC于E,若AC=DE,則的值為()A.3 B. C. D.12.某機構(gòu)調(diào)查顯示,深圳市20萬初中生中,沉迷于手機上網(wǎng)的初中生約有16000人,則這部分沉迷于手機上網(wǎng)的初中生數(shù)量,用科學(xué)記數(shù)法可表示為()A.1.6×104人 B.1.6×105人 C.0.16×105人 D.16×103人二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,在扇形AOB中,∠AOB=90°,點C為OA的中點,CE⊥OA交于點E,以點O為圓心,OC的長為半徑作交OB于點D,若OA=2,則陰影部分的面積為.14.觀察圖形,根據(jù)圖形面積的關(guān)系,不需要連其他的線,便可以得到一個用來分解因式的公式,這個公式是________________15.分解因:=______________________.16.因式分解:2b2a2﹣a3b﹣ab3=_____.17.如圖,在平面直角坐標(biāo)系xOy中,點A,P分別在x軸、y軸上,∠APO=30°.先將線段PA沿y軸翻折得到線段PB,再將線段PA繞點P順時針旋轉(zhuǎn)30°得到線段PC,連接BC.若點A的坐標(biāo)為(﹣1,0),則線段BC的長為_____.18.下面是“利用直角三角形作矩形”尺規(guī)作圖的過程.已知:如圖1,在Rt△ABC中,∠ABC=90°.求作:矩形ABCD.小明的作法如下:如圖2,(1)分別以點A、C為圓心,大于AC同樣長為半徑作弧,兩弧交于點E、F;(2)作直線EF,直線EF交AC于點O;(3)作射線BO,在BO上截取OD,使得OD=OB;(4)連接AD,CD.∴四邊形ABCD就是所求作的矩形.老師說,“小明的作法正確.”請回答,小明作圖的依據(jù)是:__________________________________________________.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖,甲、乙兩座建筑物的水平距離為,從甲的頂部處測得乙的頂部處的俯角為,測得底部處的俯角為,求甲、乙建筑物的高度和(結(jié)果取整數(shù)).參考數(shù)據(jù):,.20.(6分)如圖,∠A=∠B=30°(1)尺規(guī)作圖:過點C作CD⊥AC交AB于點D;(只要求作出圖形,保留痕跡,不要求寫作法)(2)在(1)的條件下,求證:BC2=BD?AB.21.(6分)在□ABCD中,E為BC邊上一點,且AB=AE,求證:AC=DE。22.(8分)如圖,在平面直角坐標(biāo)系中,直線經(jīng)過點和,雙曲線經(jīng)過點B.(1)求直線和雙曲線的函數(shù)表達式;(2)點C從點A出發(fā),沿過點A與y軸平行的直線向下運動,速度為每秒1個單位長度,點C的運動時間為t(0<t<12),連接BC,作BD⊥BC交x軸于點D,連接CD,①當(dāng)點C在雙曲線上時,求t的值;②在0<t<6范圍內(nèi),∠BCD的大小如果發(fā)生變化,求tan∠BCD的變化范圍;如果不發(fā)生變化,求tan∠BCD的值;③當(dāng)時,請直接寫出t的值.23.(8分)解方程組24.(10分)如圖,有四張背面相同的卡片A、B、C、D,卡片的正面分別印有正三角形、平行四邊形、圓、正五邊形(這些卡片除圖案不同外,其余均相同).把這四張卡片背面向上洗勻后,進行下列操作:若任意抽取其中一張卡片,抽到的卡片既是中心對稱圖形又是軸對稱圖形的概率是;若任意抽出一張不放回,然后再從余下的抽出一張.請用樹狀圖或列表表示摸出的兩張卡片所有可能的結(jié)果,求抽出的兩張卡片的圖形是中心對稱圖形的概率.25.(10分)如圖,在△ABC中,∠ACB=90°,BC的垂直平分線DE交BC于D,交AB于E,F(xiàn)在DE上,且AF=CE=AE.(1)說明四邊形ACEF是平行四邊形;(2)當(dāng)∠B滿足什么條件時,四邊形ACEF是菱形,并說明理由.26.(12分)如圖,點C在線段AB上,AD∥EB,AC=BE,AD=BC,CF平分∠DCE.求證:CF⊥DE于點F.27.(12分)如圖,正方形ABCD的邊長為4,點E,F(xiàn)分別在邊AB,AD上,且∠ECF=45°,CF的延長線交BA的延長線于點G,CE的延長線交DA的延長線于點H,連接AC,EF.,GH.(1)填空:∠AHC∠ACG;(填“>”或“<”或“=”)(2)線段AC,AG,AH什么關(guān)系?請說明理由;(3)設(shè)AE=m,①△AGH的面積S有變化嗎?如果變化.請求出S與m的函數(shù)關(guān)系式;如果不變化,請求出定值.②請直接寫出使△CGH是等腰三角形的m值.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】
根據(jù)等邊三角形的性質(zhì)可得出∠B=∠C=60°,由等角的補角相等可得出∠BAP=∠CPD,進而即可證出△ABP∽△PCD,根據(jù)相似三角形的性質(zhì)即可得出y=-x2+x,對照四個選項即可得出.【詳解】∵△ABC為等邊三角形,
∴∠B=∠C=60°,BC=AB=a,PC=a-x.
∵∠APD=60°,∠B=60°,
∴∠BAP+∠APB=120°,∠APB+∠CPD=120°,
∴∠BAP=∠CPD,
∴△ABP∽△PCD,∴,即,∴y=-x2+x.故選C.【點睛】考查了動點問題的函數(shù)圖象、相似三角形的判定與性質(zhì),利用相似三角形的性質(zhì)找出y=-x2+x是解題的關(guān)鍵.2、C【解析】【分析】首先確定原點位置,進而可得C點對應(yīng)的數(shù).【詳解】∵點A、B表示的數(shù)互為相反數(shù),AB=6∴原點在線段AB的中點處,點B對應(yīng)的數(shù)為3,點A對應(yīng)的數(shù)為-3,又∵BC=2,點C在點B的左邊,∴點C對應(yīng)的數(shù)是1,故選C.【點睛】本題主要考查了數(shù)軸,關(guān)鍵是正確確定原點位置.3、A【解析】
根據(jù)垂徑定理、頻率估計概率、圓的內(nèi)接多邊形、外切多邊形的性質(zhì)與正多邊形的定義、概率的意義逐一判斷可得.【詳解】①平分弦(不是直徑)的直徑垂直于弦,故此結(jié)論錯誤;②在n次隨機實驗中,事件A出現(xiàn)m次,則事件A發(fā)生的頻率,試驗次數(shù)足夠大時可近似地看做事件A的概率,故此結(jié)論錯誤;③各角相等的圓外切多邊形是正多邊形,此結(jié)論正確;④各角相等的圓內(nèi)接多邊形不一定是正多邊形,如圓內(nèi)接矩形,各角相等,但不是正多邊形,故此結(jié)論錯誤;⑤若一個事件可能發(fā)生的結(jié)果共有n種,再每種結(jié)果發(fā)生的可能性相同是,每一種結(jié)果發(fā)生的可能性是.故此結(jié)論錯誤;故選:A.【點睛】本題主要考查命題的真假,解題的關(guān)鍵是掌握垂徑定理、頻率估計概率、圓的內(nèi)接多邊形、外切多邊形的性質(zhì)與正多邊形的定義、概率的意義.4、D【解析】
如圖,過點C作CD⊥x軸于點D,∵點C的坐標(biāo)為(3,4),∴OD=3,CD=4.∴根據(jù)勾股定理,得:OC=5.∵四邊形OABC是菱形,∴點B的坐標(biāo)為(8,4).∵點B在反比例函數(shù)(x>0)的圖象上,∴.故選D.5、C【解析】
因為R不動,所以AR不變.根據(jù)三角形中位線定理可得EF=AR,因此線段EF的長不變.【詳解】如圖,連接AR,∵E、F分別是AP、RP的中點,∴EF為△APR的中位線,∴EF=AR,為定值.∴線段EF的長不改變.故選:C.【點睛】本題考查了三角形的中位線定理,只要三角形的邊AR不變,則對應(yīng)的中位線的長度就不變.6、B【解析】分析:根據(jù)數(shù)量=,可知第一次買了千克,第二次買了,根據(jù)第二次恰好比第一次多買了0.5千克列方程即可.詳解:設(shè)早上葡萄的價格是x元/千克,由題意得,.故選B.點睛:本題考查了分式方程的實際應(yīng)用,解題的關(guān)鍵是讀懂題意,找出列方程所用到的等量關(guān)系.7、C【解析】
根據(jù)平方差公式計算可得.【詳解】解:(3﹣a)(a+3)=32﹣a2=9﹣a2,故選C.【點睛】本題主要考查平方差公式,解題的關(guān)鍵是應(yīng)用平方差公式計算時,應(yīng)注意以下幾個問題:①左邊是兩個二項式相乘,并且這兩個二項式中有一項完全相同,另一項互為相反數(shù);②右邊是相同項的平方減去相反項的平方.8、C【解析】
如圖,首先證明∠AMO=∠2,然后運用對頂角的性質(zhì)求出∠ANM=55°;借助三角形外角的性質(zhì)求出∠AMO即可解決問題.【詳解】如圖,對圖形進行點標(biāo)注.∵直線a∥b,∴∠AMO=∠2;∵∠ANM=∠1,而∠1=55°,∴∠ANM=55°,∴∠2=∠AMO=∠A+∠ANM=60°+55°=115°,故選C.【點睛】本題考查了平行線的性質(zhì),三角形外角的性質(zhì),熟練掌握和靈活運用相關(guān)知識是解題的關(guān)鍵.9、B【解析】
根據(jù)同底數(shù)冪的除法,合并同類項,積的乘方的運算法則進行逐一運算即可.【詳解】解:A、5ab﹣=4ab,此選項運算錯誤,B、a6÷a2=a4,此選項運算正確,C、,選項運算錯誤,D、(a2b)3=a6b3,此選項運算錯誤,故選B.【點睛】此題考查了同底數(shù)冪的除法,合并同類項,積的乘方,熟練掌握運算法則是解本題的關(guān)鍵.10、A【解析】分析:當(dāng)兩數(shù)的積為1時,則這兩個數(shù)互為倒數(shù),根據(jù)定義即可得出答案.詳解:根據(jù)題意可得:5a=1,解得:a=,故選A.點睛:本題主要考查的是倒數(shù)的定義,屬于基礎(chǔ)題型.理解倒數(shù)的定義是解題的關(guān)鍵.11、C【解析】
連接D為弧AB的中點,根據(jù)弧,弦的關(guān)系可知,AD=BD,根據(jù)圓周角定理可得:在BC上截取,連接DF,則≌,根據(jù)全等三角形的性質(zhì)可得:即根據(jù)等腰三角形的性質(zhì)可得:設(shè)則即可求出的值.【詳解】如圖:連接D為弧AB的中點,根據(jù)弧,弦的關(guān)系可知,AD=BD,根據(jù)圓周角定理可得:在BC上截取,連接DF,則≌,即根據(jù)等腰三角形的性質(zhì)可得:設(shè)則故選C.【點睛】考查弧,弦之間的關(guān)系,全等三角形的判定與性質(zhì),等腰三角形的性質(zhì),銳角三角函數(shù)等,綜合性比較強,關(guān)鍵是構(gòu)造全等三角形.12、A【解析】
科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當(dāng)原數(shù)絕對值>10時,n是正數(shù);當(dāng)原數(shù)的絕對值<1時,n是負數(shù).【詳解】用科學(xué)記數(shù)法表示16000,應(yīng)記作1.6×104,故選A.【點睛】此題考查科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關(guān)鍵要正確確定a的值以及n的值.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、.【解析】試題解析:連接OE、AE,∵點C為OA的中點,∴∠CEO=30°,∠EOC=60°,∴△AEO為等邊三角形,∴S扇形AOE=∴S陰影=S扇形AOB-S扇形COD-(S扇形AOE-S△COE)===.14、【解析】由圖形可得:15、(x-2y)(x-2y+1)【解析】
根據(jù)所給代數(shù)式第一、二、五項一組,第三、四項一組,分組分解后再提公因式即可分解.【詳解】=x2-4xy+4y2-2y+x=(x-2y)2+x-2y=(x-2y)(x-2y+1)16、﹣ab(a﹣b)2【解析】
首先確定公因式為ab,然后提取公因式整理即可.【詳解】2b2a2﹣a3b﹣ab3=ab(2ab-a2-b2)=﹣ab(a﹣b)2,所以答案為﹣ab(a﹣b)2.【點睛】本題考查了因式分解-提公因式法,解題的關(guān)鍵是掌握提公因式法的概念.17、22【解析】
只要證明△PBC是等腰直角三角形即可解決問題.【詳解】解:∵∠APO=∠BPO=30°,∴∠APB=60°,∵PA=PC=PB,∠APC=30°,∴∠BPC=90°,∴△PBC是等腰直角三角形,∵OA=1,∠APO=30°,∴PA=2OA=2,∴BC=2PC=22,故答案為22.【點睛】本題考查翻折變換、坐標(biāo)與圖形的變化、等腰直角三角形的判定和性質(zhì)等知識,解題的關(guān)鍵是證明△PBC是等腰直角三角形.18、到線段兩端點的距離相等的點在這條線段的垂直平分線上;對角線互相平分的四邊形為平行四邊形;有一個角為90°的平行四邊形為矩形【解析】
先利用作法判定OA=OC,OD=OB,則根據(jù)平行四邊形的判定方法判斷四邊形ABCD為平行四邊形,然后根據(jù)矩形的判定方法判斷四邊形ABCD為矩形.【詳解】解:由作法得EF垂直平分AC,則OA=OC,而OD=OB,所以四邊形ABCD為平行四邊形,而∠ABC=90°,所以四邊形ABCD為矩形.故答案為到線段兩段點的距離相等的點在這條線段的垂直平分線上;對角線互相平分的四邊形為平行四邊形;有一個內(nèi)角為90°的平行四邊形為矩形.【點睛】本題考查了作圖-復(fù)雜作圖:復(fù)雜作圖是在五種基本作圖的基礎(chǔ)上進行作圖,一般是結(jié)合了幾何圖形的性質(zhì)和基本作圖方法.解決此類題目的關(guān)鍵是熟悉基本幾何圖形的性質(zhì),結(jié)合幾何圖形的基本性質(zhì)把復(fù)雜作圖拆解成基本作圖,逐步操作.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、甲建筑物的高度約為,乙建筑物的高度約為.【解析】分析:首先分析圖形:根據(jù)題意構(gòu)造直角三角形;本題涉及兩個直角三角形,應(yīng)利用其公共邊構(gòu)造關(guān)系式,進而可求出答案.詳解:如圖,過點作,垂足為.則.由題意可知,,,,,.可得四邊形為矩形.∴,.在中,,∴.在中,,∴.∴.∴.答:甲建筑物的高度約為,乙建筑物的高度約為.點睛:本題考查解直角三角形的應(yīng)用--仰角俯角問題,首先構(gòu)造直角三角形,再借助角邊關(guān)系、三角函數(shù)的定義解題,難度一般.20、見解析【解析】
(1)利用過直線上一點作直線的垂線確定D點即可得;
(2)根據(jù)圓周角定理,由∠ACD=90°,根據(jù)三角形的內(nèi)角和和等腰三角形的性質(zhì)得到∠DCB=∠A=30°,推出△CDB∽△ACB,根據(jù)相似三角形的性質(zhì)即可得到結(jié)論.【詳解】(1)如圖所示,CD即為所求;(2)∵CD⊥AC,∴∠ACD=90°∵∠A=∠B=30°,∴∠ACB=120°∴∠DCB=∠A=30°,∵∠B=∠B,∴△CDB∽△ACB,∴,∴BC2=BD?AB.【點睛】考查了等腰三角形的性質(zhì)和相似三角形的判定和性質(zhì)和作圖:在五種基本作圖的基礎(chǔ)上進行作圖,一般是結(jié)合了幾何圖形的性質(zhì)和基本作圖方法.解決此類題目的關(guān)鍵是熟悉基本幾何圖形的性質(zhì),結(jié)合幾何圖形的基本性質(zhì)把復(fù)雜作圖拆解成基本作圖,逐步操作.21、見解析【解析】
在ABC和EAD中已經(jīng)有一條邊和一個角分別相等,根據(jù)平行的性質(zhì)和等邊對等角得出∠B=∠DAE證得ABC≌EAD,繼而證得AC=DE.【詳解】∵四邊形ABCD為平行四邊形,∴AD∥BC,AD=BC,∴∠DAE=∠AEB.∵AB=AE,∴∠AEB=∠B.∴∠B=∠DAE.∵在△ABC和△AED中,,∴△ABC≌△EAD(SAS),∴AC=DE.【點睛】本題主要考查了平行四邊形的基本性質(zhì)和全等三角形的判定及性質(zhì),判定兩個三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.22、(1)直線的表達式為,雙曲線的表達式為;(2)①;②當(dāng)時,的大小不發(fā)生變化,的值為;③t的值為或.【解析】
(1)由點利用待定系數(shù)法可求出直線的表達式;再由直線的表達式求出點B的坐標(biāo),然后利用待定系數(shù)法即可求出雙曲線的表達式;(2)①先求出點C的橫坐標(biāo),再將其代入雙曲線的表達式求出點C的縱坐標(biāo),從而即可得出t的值;②如圖1(見解析),設(shè)直線AB交y軸于M,則,取CD的中點K,連接AK、BK.利用直角三角形的性質(zhì)證明A、D、B、C四點共圓,再根據(jù)圓周角定理可得,從而得出,即可解決問題;③如圖2(見解析),過點B作于M,先求出點D與點M重合的臨界位置時t的值,據(jù)此分和兩種情況討論:根據(jù)三點坐標(biāo)求出的長,再利用三角形相似的判定定理與性質(zhì)求出DM的長,最后在中,利用勾股定理即可得出答案.【詳解】(1)∵直線經(jīng)過點和∴將點代入得解得故直線的表達式為將點代入直線的表達式得解得∵雙曲線經(jīng)過點,解得故雙曲線的表達式為;(2)①軸,點A的坐標(biāo)為∴點C的橫坐標(biāo)為12將其代入雙曲線的表達式得∴C的縱坐標(biāo)為,即由題意得,解得故當(dāng)點C在雙曲線上時,t的值為;②當(dāng)時,的大小不發(fā)生變化,求解過程如下:若點D與點A重合由題意知,點C坐標(biāo)為由兩點距離公式得:由勾股定理得,即解得因此,在范圍內(nèi),點D與點A不重合,且在點A左側(cè)如圖1,設(shè)直線AB交y軸于M,取CD的中點K,連接AK、BK由(1)知,直線AB的表達式為令得,則,即點K為CD的中點,(直角三角形中,斜邊上的中線等于斜邊的一半)同理可得:A、D、B、C四點共圓,點K為圓心(圓周角定理);③過點B作于M由題意和②可知,點D在點A左側(cè),與點M重合是一個臨界位置此時,四邊形ACBD是矩形,則,即因此,分以下2種情況討論:如圖2,當(dāng)時,過點C作于N又,即由勾股定理得即解得或(不符題設(shè),舍去)當(dāng)時,同理可得:解得或(不符題設(shè),舍去)綜上所述,t的值為或.【點睛】本題考查反比例函數(shù)綜合題、銳角三角函數(shù)、相似三角形的判定和性質(zhì)、四點共圓、勾股定理等知識點,解題的關(guān)鍵是學(xué)會添加常用輔助線,構(gòu)造相似三角形解決問題.23、【解析】
將②×3,再聯(lián)立①②消未知數(shù)即可計算.【詳解】解:②得:③①+③得:把代入③得∴方程組的解為【點睛】本題考查二元一次方程組解法,關(guān)鍵是掌握消元法.24、(1);(2).【解析】
(1)既是中心對稱圖形又是軸對稱圖形只有圓一個圖形,然后根據(jù)概率的意義解答即可;(2)畫出樹狀圖,然后根據(jù)概率公式列式計算即可得解.【詳解】(1)∵正三角形、平行四邊形、圓、正五邊形中只有圓既是中心對稱圖形又是軸對稱圖形,∴抽到的卡片既是中心對稱圖形又是軸對稱圖形的概率是;(2)根據(jù)題意畫出樹狀圖如下:一共有12種情況,抽出的兩張卡片的圖形是中心對稱圖形的是B、C共有2種情況,所以,P(抽出的兩張卡片的圖形是中心對稱圖形).【點睛】本題考查了列表法和樹狀圖法,用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.25、(1)說明見解析;(2)當(dāng)∠B=30°時,四邊形ACEF是菱形.理由見解析.【解析】試題分析:(1)證明△AEC≌△EAF,即可得到EF=CA,根據(jù)兩組對邊分別相等的四邊形是平行四邊形即可判斷;(2)當(dāng)∠B=30°時,四邊形ACEF是菱形.根據(jù)直角三角形的性質(zhì),即可證得AC=EC,根據(jù)菱形的定義即可判斷.(1)證明:由題意知∠FDC=∠DCA=90°,∴EF∥CA,∴∠FEA=∠CAE,∵AF=CE=AE,∴∠F=∠FEA=∠CAE=∠ECA.在△AEC和△EAF中,∵∴△EAF≌△AEC(AAS),∴EF=CA,∴四邊形ACEF是平行四邊形.(2)解:當(dāng)∠B=30°時,四邊形ACEF是菱形.理由如下:∵∠B=30°,∠ACB=90°,∴AC=AB,∵DE垂直平分BC,∴∠BDE=90°∴∠BDE=∠ACB∴ED∥AC又∵BD=DC∴DE是△ABC的中位線,∴E是AB的中點,∴BE=CE=AE,又∵AE=CE,∴AE=CE=AB,又∵AC=AB,∴AC=CE,∴四邊形ACEF是菱形.考點:菱形的判定;全等三角形的判定與性質(zhì);線段垂直平分線的性質(zhì);平行四邊形的判定.26、證明見解析.【解析】
根據(jù)平行線性質(zhì)得出∠A=∠B,根據(jù)SAS證△ACD≌△BEC,推出DC=CE,根據(jù)等腰三角形的三線合一定理推出即可.【詳解】∵AD∥BE,∴∠A=∠B.在△ACD和△BEC中∵,∴△ACD≌△BEC(SAS),∴DC=CE.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 數(shù)學(xué)對稱原理在酒店業(yè)Logo設(shè)計中的高端定位課題報告教學(xué)研究課題報告
- 2026屆安徽省宿州市五校高一數(shù)學(xué)第一學(xué)期期末經(jīng)典模擬試題含解析
- 2025年應(yīng)急救護與安全防范知識考察試題及答案解析
- 初中化學(xué)錯題智能化分類與實驗操作改進方案課題報告教學(xué)研究課題報告
- 初中生手機過度使用對視力影響的研究教學(xué)研究課題報告
- 2026年建筑科技3D打印建筑技術(shù)報告及工期縮短分析報告
- 高中地理教學(xué)中遙感技術(shù)在全球氣候變化監(jiān)測中的應(yīng)用課題報告教學(xué)研究課題報告
- 2026屆黑龍江省虎林市高級中學(xué)生物高三第一學(xué)期期末經(jīng)典試題含解析
- 員工崗位變更申請流程范文
- 2025-2030日用品制造業(yè)運行趨勢供需格局投資評估規(guī)劃分析研究報告
- 兩人工地合作協(xié)議書范文范本
- 英文繪本故事Brown.Bear.Brown.Bear.What.Do.You.See
- (高清版)JTGT 3371-01-2022 公路沉管隧道設(shè)計規(guī)范
- 日語假名的羅馬字打字法及其發(fā)音一覽
- 《如何給未來的自己寫一封信》小學(xué)四五年級語文習(xí)作
- NB-T 20619-2021 壓水堆核電廠放射性廢液處理系統(tǒng)設(shè)計準(zhǔn)則
- 2023年數(shù)學(xué)競賽AMC8試卷(含答案)
- 空調(diào)銅管規(guī)格尺寸及重量計算
- 移動電源規(guī)格書
- 七年級下冊數(shù)學(xué)期末考試試卷共十套
- 餐飲部物品清單
評論
0/150
提交評論