2026屆安徽省宿州市五校高一數(shù)學第一學期期末經(jīng)典模擬試題含解析_第1頁
2026屆安徽省宿州市五校高一數(shù)學第一學期期末經(jīng)典模擬試題含解析_第2頁
2026屆安徽省宿州市五校高一數(shù)學第一學期期末經(jīng)典模擬試題含解析_第3頁
2026屆安徽省宿州市五校高一數(shù)學第一學期期末經(jīng)典模擬試題含解析_第4頁
2026屆安徽省宿州市五校高一數(shù)學第一學期期末經(jīng)典模擬試題含解析_第5頁
已閱讀5頁,還剩8頁未讀, 繼續(xù)免費閱讀

付費下載

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2026屆安徽省宿州市五校高一數(shù)學第一學期期末經(jīng)典模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.某校早上6:30開始跑操,假設該校學生小張與小王在早上6:00~6:30之間到校,且每人在該時間段的任何時刻到校是等可能的,則小張與小王至少相差5分鐘到校的概率為()A. B.C. D.2.若函數(shù)的零點所在的區(qū)間為,則實數(shù)a的取值范圍是()A. B.C. D.3.下列函數(shù)中,是偶函數(shù)且值域為的是()A. B.C. D.4.若冪函數(shù)的圖象過點,則它的單調遞增區(qū)間是()A.(0,+∞) B.[0,+∞)C.(-∞,+∞) D.(-∞,0)5.“”是“”的A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件6.函數(shù),的圖象形狀大致是()A. B.C. D.7.已知,且點在線段的延長線上,,則點的坐標為()A. B.C. D.8.設a,b是兩條不同的直線,α,β是兩個不同的平面,則下列正確的是()A.若,,則 B.若,,則C.若,,則 D.若,,,則9.已知函數(shù),若方程f(x)=a有四個不同的解x1,x2,x3,x4,且x1<x2<x3<x4,則的取值范圍為()A.(﹣1,+∞) B.(﹣1,1]C.(﹣∞,1) D.[﹣1,1)10.已知,,則直線與直線的位置關系是()A.平行 B.相交或異面C.異面 D.平行或異面二、填空題:本大題共6小題,每小題5分,共30分。11.在直角中,三條邊恰好為三個連續(xù)的自然數(shù),以三個頂點為圓心的扇形的半徑為1,若在中隨機地選取個點,其中有個點正好在扇形里面,則用隨機模擬的方法得到的圓周率的近似值為__________.(答案用,表示)12.要在半徑cm的圓形金屬板上截取一塊扇形板,使弧AB的長為m,那么圓心角_________.(用弧度表示)13.函數(shù)的最大值為___________.14.直線l與平面α所成角為60°,l∩α=A,則m與l所成角的取值范圍是_______.15.函數(shù)的定義域是___________.16.函數(shù)(且)的圖象必經(jīng)過點___________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知的三個頂點(1)求邊上高所在直線的方程;(2)求的面積18.已知(1)求的值(2)求的值.(結果保留根號)19.(1)求式子lg25+lg2+的值(2)已知tan=2.求2sin2-3sincos+cos2的值.20.已知函數(shù),.(1)若函數(shù)在為增函數(shù),求實數(shù)的取值范圍;(2)若函數(shù)為偶函數(shù),且對于任意,,都有成立,求實數(shù)的取值范圍.21.已知函數(shù),(,且)(1)求函數(shù)的定義域;(2)當時,求關于的不等式的解集

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】設小張與小王的到校時間分別為6:00后第分鐘,第分鐘,由題意可畫出圖形,利用幾何概型中面積比即可求解.【詳解】設小張與小王的到校時間分別為6:00后第分鐘,第分鐘,可以看成平面中的點試驗的全部結果所構成的區(qū)域為是一個正方形區(qū)域,對應的面積,則小張與小王至少相差5分鐘到校事件(如陰影部分)則符合題意的區(qū)域,由幾何概型可知小張與小王至少相差5分鐘到校的概率為.故選:A【點睛】本題考查了幾何概率模型,解題的關鍵是畫出滿足條件的區(qū)域,屬于基礎題.2、C【解析】由函數(shù)的性質可得在上是增函數(shù),再由函數(shù)零點存在定理列不等式組,即可求解得a的取值范圍.【詳解】易知函數(shù)在上單調遞增,且函數(shù)零點所在的區(qū)間為,所以,解得故選:C3、D【解析】分別判斷每個選項函數(shù)的奇偶性和值域即可.【詳解】對A,,即值域為,故A錯誤;對B,的定義域為,定義域不關于原點對稱,不是偶函數(shù),故B錯誤;對C,的定義域為,定義域不關于原點對稱,不是偶函數(shù),故C錯誤;對D,的定義域為,,故是偶函數(shù),且,即值域為,故D正確.故選:D.4、D【解析】設冪函數(shù)為y=xa,把點(2,)代入,求出a的值,從而得到冪函數(shù)的方程,再判斷冪函數(shù)的單調遞增區(qū)間.【詳解】設y=xa,則=2a,解得a=-2,∴y=x-2其單調遞增區(qū)間為(-∞,0)故選D.【點睛】本題考查了通過待定系數(shù)法求冪函數(shù)的解析式,以及冪函數(shù)的主要性質.5、A【解析】利用或,結合充分條件與必要條件的定義可得結果.詳解】根據(jù)題意,由于或,因此可以推出,反之,不成立,因此“”是“”的充分而不必要條件,故選A.【點睛】判斷充分條件與必要條件應注意:首先弄清條件和結論分別是什么,然后直接依據(jù)定義、定理、性質嘗試.對于帶有否定性的命題或比較難判斷的命題,除借助集合思想化抽象為直觀外,還可利用原命題和逆否命題、逆命題和否命題的等價性,轉化為判斷它的等價命題;對于范圍問題也可以轉化為包含關系來處理.6、D【解析】先根據(jù)函數(shù)奇偶性排除AC,再結合特殊點的函數(shù)值排除B.【詳解】定義域,且,所以為奇函數(shù),排除AC;又,排除B選項.故選:D7、C【解析】設,根據(jù)題意得出,由建立方程組求解即可.【詳解】設,因為,所以即故選:C【點睛】本題主要考查了由向量共線求參數(shù),屬于基礎題.8、D【解析】由空間中直線、平面的位置關系逐一判斷即可得解.【詳解】解:由a,b是兩條不同的直線,α,β是兩個不同的平面,知:在A中,若,,則或,故A錯誤;在B中,若,,則,故B錯誤;在C中,若,,則或,故C錯誤;在D中,若,,,則由面面垂直的判定定理得,故D正確;故選:D【點睛】本題考查命題真假的判斷,考查空間中線線、線面、面面間的位置關系等基礎知識,考查運算求解能力,考查數(shù)形結合思想,屬中檔題9、B【解析】由方程f(x)=a,得到x1,x2關于x=﹣1對稱,且x3x4=1;化簡,利用數(shù)形結合進行求解即可【詳解】作函數(shù)f(x)的圖象如圖所示,∵方程f(x)=a有四個不同的解x1,x2,x3,x4,且x1<x2<x3<x4,∴x1,x2關于x=﹣1對稱,即x1+x2=﹣2,0<x3<1<x4,則|log2x3|=|log2x4|,即﹣log2x3=log2x4,則log2x3+log2x4=0,即log2x3x4=0,則x3x4=1;當|log2x|=1得x=2或,則1<x4≤2;≤x3<1;故;則函數(shù)y=﹣2x3+,在≤x3<1上為減函數(shù),則故當x3=取得y取最大值y=1,當x3=1時,函數(shù)值y=﹣1.即函數(shù)取值范圍(﹣1,1]故選B【點睛】本題考查分段函數(shù)的運用,主要考查函數(shù)的單調性的運用,運用數(shù)形結合的思想方法是解題的關鍵,屬于中檔題10、D【解析】由直線平面,直線在平面內,知,或與異面【詳解】解:直線平面,直線在平面內,,或與異面,故選:D【點睛】本題考查平面的基本性質及其推論,解題時要認真審題,仔細解答二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】由題意得的三邊分別為則由可得,所以,三角數(shù)三邊分別為,因為,所以三個半徑為的扇形面積之和為,由幾何體概型概率計算公式可知,故答案為.【方法點睛】本題題主要考查“面積型”的幾何概型,屬于中檔題.解決幾何概型問題常見類型有:長度型、角度型、面積型、體積型,求與面積有關的幾何概型問題關鍵是計算問題的總面積以及事件的面積;幾何概型問題還有以下幾點容易造成失分,在備考時要高度關注:(1)不能正確判斷事件是古典概型還是幾何概型導致錯誤;(2)基本事件對應的區(qū)域測度把握不準導致錯誤;(3)利用幾何概型的概率公式時,忽視驗證事件是否等可能性導致錯誤.12、【解析】由弧長公式變形可得:,代入計算即可.【詳解】解:由題意可知:(弧度).故答案為:.13、【解析】根據(jù)二次函數(shù)的性質,結合給定的區(qū)間求最大值即可.【詳解】由,則開口向上且對稱軸為,又,∴,,故函數(shù)最大值為.故答案為:.14、【解析】根據(jù)直線l與平面α所成角是直線l與平面α內所有直線成的角中最小的一個,直線l與平面α所成角的范圍,即可求出結果【詳解】由于直線l與平面α所成角為60°,直線l與平面α所成角是直線l與平面α內所有直線成的角中最小的一個,而異面直線所成角的范圍是(0,],直線m在平面α內,且與直線l異面,故m與l所成角的取值范圍是.故答案為【點睛】本題考查直線和平面所成的角的定義和范圍,判斷直線與平面所成角是直線與平面α內所有直線成的角中最小的一個,是解題的關鍵15、【解析】利用根式、分式的性質求函數(shù)定義域即可.【詳解】由解析式知:,則,可得,∴函數(shù)定義域為.故答案為:.16、【解析】令得,把代入函數(shù)的解析式得,即得解.【詳解】解:因為函數(shù),其中,,令得,把代入函數(shù)的解析式得,所以函數(shù)(且)的圖像必經(jīng)過點的坐標為.故答案為:三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);⑵8.【解析】(1)設BC邊的高所在直線為l,由斜率公式求出KBC,根據(jù)垂直關系得到直線l的斜率Kl,用點斜式求出直線l的方程,并化為一般式(2)由點到直線距離公式求出點A(﹣1,4)到BC的距離d,由兩點間的距離公式求出|BC|,代入△ABC的面積公式求出面積S的值試題解析:(1)設邊上高所在直線為,由于直線的斜率所以直線的斜率.又直線經(jīng)過點,所以直線的方程為,即⑵邊所在直線方程為:,即點到直線的距離,又.18、(1);(2).【解析】(1)利用二倍角公式化簡得,然后利用同角關系式即得;(2)利用兩角差的正弦公式即求.【小問1詳解】由,得,∵,,∴,∴,∴.【小問2詳解】由(1)知,∴.19、(1);(2).【解析】(1)利用的對數(shù)性質計算即可;(2)利用三角函數(shù)同角關系計算即可.【詳解】=;,在第一或第三象限,,,若在第一象限,則,若在第三象限,則,不論是在第一或第三象限,都有,原式;綜上,答案為:,.20、(1)(2)【解析】(1)利用定義法證明函數(shù)的單調性,依題意可得,即,參變分離可得對恒成立,再根據(jù)指數(shù)函數(shù)的性質計算可得;(2)由函數(shù)為偶函數(shù),得到,即可求出的值,從而得到的解析式,再利用基本不等式得到,依題意,可得對任意恒成立,即對任意恒成立,①由有意義,求得;②由,得,即可得到對任意恒成立,從而求出,從而求出參數(shù)的取值范圍;【小問1詳解】解:設,且,則∵函數(shù)在上為增函數(shù),∴恒成立又∵,∴,∴恒成立,即對恒成立當時,的取值范圍為,故,即實數(shù)取值范圍為.【小問2詳解】解:∵為偶函數(shù),∴對任意都

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論