版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
南通市重點中學(xué)2026屆中考數(shù)學(xué)考試模擬沖刺卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,點A為∠α邊上任意一點,作AC⊥BC于點C,CD⊥AB于點D,下列用線段比表示sinα的值,錯誤的是()A. B. C. D.2.到三角形三個頂點的距離相等的點是三角形()的交點.A.三個內(nèi)角平分線 B.三邊垂直平分線C.三條中線 D.三條高3.某車間需加工一批零件,車間20名工人每天加工零件數(shù)如表所示:每天加工零件數(shù)45678人數(shù)36542每天加工零件數(shù)的中位數(shù)和眾數(shù)為()A.6,5 B.6,6 C.5,5 D.5,64.不等式組的解集在數(shù)軸上表示為()A. B. C. D.5.不等式4-2x>0的解集在數(shù)軸上表示為()A. B. C. D.6.△ABC在網(wǎng)絡(luò)中的位置如圖所示,則cos∠ACB的值為()A. B. C. D.7.一元二次方程的根是()A. B.C. D.8.二次函數(shù)的圖象如圖所示,則反比例函數(shù)與一次函數(shù)在同一坐標(biāo)系中的大致圖象是()A. B. C. D.9.定義:若點P(a,b)在函數(shù)y=1x的圖象上,將以a為二次項系數(shù),b為一次項系數(shù)構(gòu)造的二次函數(shù)y=ax2+bx稱為函數(shù)y=1x的一個“派生函數(shù)”.例如:點(2,12)在函數(shù)y=1x的圖象上,則函數(shù)y=2x2+(1)存在函數(shù)y=1x(2)函數(shù)y=1xA.命題(1)與命題(2)都是真命題B.命題(1)與命題(2)都是假命題C.命題(1)是假命題,命題(2)是真命題D.命題(1)是真命題,命題(2)是假命題10.如圖所示的幾何體,它的左視圖是()A. B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.將一些形狀相同的小五角星如圖所示的規(guī)律擺放,據(jù)此規(guī)律,第10個圖形有_______個五角星.12.某廣場要做一個由若干盆花組成的形如正六邊形的花壇,每條邊(包括兩個頂點)有n(n>1)盆花,設(shè)這個花壇邊上的花盆的總數(shù)為S,請觀察圖中的規(guī)律:按上規(guī)律推斷,S與n的關(guān)系是________________________________.13.化簡:12+31314.圖,A,B是反比例函數(shù)y=圖象上的兩點,過點A作AC⊥y軸,垂足為C,AC交OB于點D.若D為OB的中點,△AOD的面積為3,則k的值為________.15.李明早上騎自行車上學(xué),中途因道路施工推車步行了一段路,到學(xué)校共用時15分鐘.如果他騎自行車的平均速度是每分鐘250米,推車步行的平均速度是每分鐘80米,他家離學(xué)校的路程是2900米,設(shè)他推車步行的時間為x分鐘,那么可列出的方程是_____________.16.如圖,在平面直角坐標(biāo)系中,菱形ABCD的頂點A的坐標(biāo)為(3,0),頂點B在y軸正半軸上,頂點D在x軸負半軸上.若拋物線y=-x2-5x+c經(jīng)過點B、C,則菱形ABCD的面積為_______.17.如圖,某數(shù)學(xué)興趣小組將邊長為5的正方形鐵絲框ABCD變形為以A為圓心,AB為半徑的扇形(忽略鐵絲的粗細),則所得的扇形ABD的面積為_____.三、解答題(共7小題,滿分69分)18.(10分)【發(fā)現(xiàn)證明】如圖1,點E,F(xiàn)分別在正方形ABCD的邊BC,CD上,∠EAF=45°,試判斷BE,EF,F(xiàn)D之間的數(shù)量關(guān)系.小聰把△ABE繞點A逆時針旋轉(zhuǎn)90°至△ADG,通過證明△AEF≌△AGF;從而發(fā)現(xiàn)并證明了EF=BE+FD.【類比引申】(1)如圖2,點E、F分別在正方形ABCD的邊CB、CD的延長線上,∠EAF=45°,連接EF,請根據(jù)小聰?shù)陌l(fā)現(xiàn)給你的啟示寫出EF、BE、DF之間的數(shù)量關(guān)系,并證明;【聯(lián)想拓展】(2)如圖3,如圖,∠BAC=90°,AB=AC,點E、F在邊BC上,且∠EAF=45°,若BE=3,EF=5,求CF的長.19.(5分)某農(nóng)場用2臺大收割機和5臺小收割機同時工作2小時共收割小麥3.6公頃,3臺大收割機和2臺小收割機同時工作5小時共收割小麥8公頃.1臺大收割機和1臺小收割機每小時各收割小麥多少公頃?20.(8分)反比例函數(shù)的圖象經(jīng)過點A(2,3).(1)求這個函數(shù)的解析式;(2)請判斷點B(1,6)是否在這個反比例函數(shù)的圖象上,并說明理由.21.(10分)有4張正面分別標(biāo)有數(shù)字﹣1,2,﹣3,4的不透明卡片,它們除數(shù)字外其余全部相同,現(xiàn)將它們背面朝上,洗勻后從4張卡片中隨機摸出一張不放回,將該卡片上的數(shù)字記為m,在隨機抽取1張,將卡片的數(shù)字即為n.(1)請用列表或樹狀圖的方式把(m,n)所有的結(jié)果表示出來.(2)求選出的(m,n)在二、四象限的概率.22.(10分)問題探究(1)如圖1,△ABC和△DEC均為等腰直角三角形,且∠BAC=∠CDE=90°,AB=AC=3,DE=CD=1,連接AD、BE,求的值;(2)如圖2,在Rt△ABC中,∠ACB=90°,∠B=30°,BC=4,過點A作AM⊥AB,點P是射線AM上一動點,連接CP,做CQ⊥CP交線段AB于點Q,連接PQ,求PQ的最小值;(3)李師傅準(zhǔn)備加工一個四邊形零件,如圖3,這個零件的示意圖為四邊形ABCD,要求BC=4cm,∠BAD=135°,∠ADC=90°,AD=CD,請你幫李師傅求出這個零件的對角線BD的最大值.圖323.(12分)“母親節(jié)”前夕,某商店根據(jù)市場調(diào)查,用3000元購進第一批盒裝花,上市后很快售完,接著又用5000元購進第二批這種盒裝花.已知第二批所購花的盒數(shù)是第一批所購花盒數(shù)的2倍,且每盒花的進價比第一批的進價少5元.求第一批盒裝花每盒的進價是多少元?24.(14分)如圖,在五邊形ABCDE中,∠BCD=∠EDC=90°,BC=ED,AC=AD.求證:△ABC≌△AED;當(dāng)∠B=140°時,求∠BAE的度數(shù).
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【解析】【分析】根據(jù)在直角三角形中,銳角的正弦為對邊比斜邊,可得答案.【詳解】∵∠BDC=90°,∴∠B+∠BCD=90°,∵∠ACB=90°,即∠BCD+∠ACD=90°,∴∠ACD=∠B=α,A、在Rt△BCD中,sinα=,故A正確,不符合題意;B、在Rt△ABC中,sinα=,故B正確,不符合題意;C、在Rt△ACD中,sinα=,故C正確,不符合題意;D、在Rt△ACD中,cosα=,故D錯誤,符合題意,故選D.【點睛】本題考查銳角三角函數(shù)的定義及運用:在直角三角形中,銳角的正弦為對邊比斜邊,余弦為鄰邊比斜邊,正切為對邊比鄰邊.2、B【解析】試題分析:根據(jù)線段垂直平分線上的點到兩端點的距離相等解答.解:到三角形三個頂點的距離相等的點是三角形三邊垂直平分線的交點.故選B.點評:本題考查了線段垂直平分線上的點到兩端點的距離相等的性質(zhì),熟記性質(zhì)是解題的關(guān)鍵.3、A【解析】
根據(jù)眾數(shù)、中位數(shù)的定義分別進行解答即可.【詳解】由表知數(shù)據(jù)5出現(xiàn)了6次,次數(shù)最多,所以眾數(shù)為5;因為共有20個數(shù)據(jù),所以中位數(shù)為第10、11個數(shù)據(jù)的平均數(shù),即中位數(shù)為=6,故選A.【點睛】本題考查了眾數(shù)和中位數(shù)的定義.用到的知識點:一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù)叫做這組數(shù)據(jù)的眾數(shù).將一組數(shù)據(jù)按照從小到大(或從大到?。┑捻樞蚺帕?,如果數(shù)據(jù)的個數(shù)是奇數(shù),則處于中間位置的數(shù)就是這組數(shù)據(jù)的中位數(shù);如果這組數(shù)據(jù)的個數(shù)是偶數(shù),則中間兩個數(shù)據(jù)的平均數(shù)就是這組數(shù)據(jù)的中位數(shù).4、A【解析】
根據(jù)不等式組的解集在數(shù)軸上表示的方法即可解答.【詳解】∵x≥﹣2,故以﹣2為實心端點向右畫,x<1,故以1為空心端點向左畫.故選A.【點睛】本題考查了不等式組解集的在數(shù)軸上的表示方法,不等式的解集在數(shù)軸上表示方法為:>、≥向右畫,<、≤向左畫,“≤”、“≥”要用實心圓點表示;“<”、“>”要用空心圓點表示.5、D【解析】
根據(jù)解一元一次不等式基本步驟:移項、系數(shù)化為1可得.【詳解】移項,得:-2x>-4,
系數(shù)化為1,得:x<2,
故選D.【點睛】考查解一元一次不等式的基本能力,嚴(yán)格遵循解不等式的基本步驟是關(guān)鍵,尤其需要注意不等式兩邊都乘以或除以同一個負數(shù)不等號方向要改變.6、B【解析】作AD⊥BC的延長線于點D,如圖所示:在Rt△ADC中,BD=AD,則AB=BD.cos∠ACB=,故選B.7、D【解析】試題分析:此題考察一元二次方程的解法,觀察發(fā)現(xiàn)可以采用提公因式法來解答此題.原方程可化為:,因此或,所以.故選D.考點:一元二次方程的解法——因式分解法——提公因式法.8、D【解析】
根據(jù)拋物線和直線的關(guān)系分析.【詳解】由拋物線圖像可知,所以反比例函數(shù)應(yīng)在二、四象限,一次函數(shù)過原點,應(yīng)在二、四象限.故選D【點睛】考核知識點:反比例函數(shù)圖象.9、C【解析】試題分析:(1)根據(jù)二次函數(shù)y=ax2+bx的性質(zhì)a、b同號對稱軸在y軸左側(cè),a、b異號對稱軸在y軸右側(cè)即可判斷.(2)根據(jù)“派生函數(shù)”y=ax2+bx,x=0時,y=0,經(jīng)過原點,不能得出結(jié)論.(1)∵P(a,b)在y=上,∴a和b同號,所以對稱軸在y軸左側(cè),∴存在函數(shù)y=的一個“派生函數(shù)”,其圖象的對稱軸在y軸的右側(cè)是假命題.(2)∵函數(shù)y=的所有“派生函數(shù)”為y=ax2+bx,∴x=0時,y=0,∴所有“派生函數(shù)”為y=ax2+bx經(jīng)過原點,∴函數(shù)y=的所有“派生函數(shù)”,的圖象都進過同一點,是真命題.考點:(1)命題與定理;(2)新定義型10、D【解析】分析:根據(jù)從左邊看得到的圖形是左視圖,可得答案.詳解:從左邊看是等長的上下兩個矩形,上邊的矩形小,下邊的矩形大,兩矩形的公共邊是虛線,故選D.點睛:本題考查了簡單組合體的三視圖,從左邊看得到的圖形是左視圖.二、填空題(共7小題,每小題3分,滿分21分)11、1.【解析】尋找規(guī)律:不難發(fā)現(xiàn),第1個圖形有3=22-1個小五角星;第2個圖形有8=32-1個小五角星;第3個圖形有15=42-1個小五角星;…第n個圖形有(n+1)2-1個小五角星.∴第10個圖形有112-1=1個小五角星.12、S=1n-1【解析】觀察可得,n=2時,S=1;
n=3時,S=1+(3-2)×1=12;
n=4時,S=1+(4-2)×1=18;
…;
所以,S與n的關(guān)系是:S=1+(n-2)×1=1n-1.
故答案為S=1n-1.【點睛】本題是一道找規(guī)律的題目,這類題型在中考中經(jīng)常出現(xiàn).對于找規(guī)律的題目首先應(yīng)找出哪些部分發(fā)生了變化,是按照什么規(guī)律變化的.13、3【解析】試題分析:先進行二次根式的化簡,然后合并,可得原式=23+3=33.14、1.【解析】先設(shè)點D坐標(biāo)為(a,b),得出點B的坐標(biāo)為(2a,2b),A的坐標(biāo)為(4a,b),再根據(jù)△AOD的面積為3,列出關(guān)系式求得k的值.解:設(shè)點D坐標(biāo)為(a,b),∵點D為OB的中點,∴點B的坐標(biāo)為(2a,2b),∴k=4ab,又∵AC⊥y軸,A在反比例函數(shù)圖象上,∴A的坐標(biāo)為(4a,b),∴AD=4a﹣a=3a,∵△AOD的面積為3,∴×3a×b=3,∴ab=2,∴k=4ab=4×2=1.故答案為1“點睛”本題主要考查了反比例函數(shù)系數(shù)k的幾何意義,以及運用待定系數(shù)法求反比例函數(shù)解析式,根據(jù)△AOD的面積為1列出關(guān)系式是解題的關(guān)鍵.15、【解析】分析:根據(jù)題意把李明步行和騎車各自所走路程表達出來,再結(jié)合步行和騎車所走總里程為2900米,列出方程即可.詳解:設(shè)他推車步行的時間為x分鐘,根據(jù)題意可得:80x+250(15-x)=2900.故答案為80x+250(15-x)=2900.點睛:弄清本題中的等量關(guān)系:李明推車步行的路程+李明騎車行駛的路程=2900是解題的關(guān)鍵.16、【解析】
根據(jù)拋物線的解析式結(jié)合拋物線過點B、C,即可得出點C的橫坐標(biāo),由菱形的性質(zhì)可得出AD=AB=BC=1,再根據(jù)勾股定理可求出OB的長度,套用平行四邊形的面積公式即可得出菱形ABCD的面積.【詳解】拋物線的對稱軸為x=-.∵拋物線y=-x2-1x+c經(jīng)過點B、C,且點B在y軸上,BC∥x軸,∴點C的橫坐標(biāo)為-1.∵四邊形ABCD為菱形,∴AB=BC=AD=1,∴點D的坐標(biāo)為(-2,0),OA=2.在Rt△ABC中,AB=1,OA=2,∴OB==4,∴S菱形ABCD=AD?OB=1×4=3.故答案為3.【點睛】本題考查了二次函數(shù)圖象上點的坐標(biāo)特征、二次函數(shù)的性質(zhì)、菱形的性質(zhì)以及平行四邊形的面積,根據(jù)二次函數(shù)的性質(zhì)、菱形的性質(zhì)結(jié)合勾股定理求出AD=1、OB=4是解題的關(guān)鍵.17、25【解析】試題解析:由題意三、解答題(共7小題,滿分69分)18、(1)DF=EF+BE.理由見解析;(2)CF=1.【解析】(1)把△ABE繞點A逆時針旋轉(zhuǎn)90°至△ADG,可使AB與AD重合,證出△AEF≌△AFG,根據(jù)全等三角形的性質(zhì)得出EF=FG,即可得出答案;(2)根據(jù)旋轉(zhuǎn)的性質(zhì)的AG=AE,CG=BE,∠ACG=∠B,∠EAG=90°,∠FCG=∠ACB+∠ACG=∠ACB+∠B=90°,根據(jù)勾股定理有FG2=FC2+CG2=BE2+FC2;關(guān)鍵全等三角形的性質(zhì)得到FG=EF,利用勾股定理可得CF.解:(1)DF=EF+BE.理由:如圖1所示,∵AB=AD,∴把△ABE繞點A逆時針旋轉(zhuǎn)90°至△ADG,可使AB與AD重合,∵∠ADC=∠ABE=90°,∴點C、D、G在一條直線上,∴EB=DG,AE=AG,∠EAB=∠GAD,∵∠BAG+∠GAD=90°,∴∠EAG=∠BAD=90°,∵∠EAF=15°,∴∠FAG=∠EAG﹣∠EAF=90°﹣15°=15°,∴∠EAF=∠GAF,在△EAF和△GAF中,,∴△EAF≌△GAF,∴EF=FG,∵FD=FG+DG,∴DF=EF+BE;(2)∵∠BAC=90°,AB=AC,∴將△ABE繞點A順時針旋轉(zhuǎn)90°得△ACG,連接FG,如圖2,∴AG=AE,CG=BE,∠ACG=∠B,∠EAG=90°,∴∠FCG=∠ACB+∠ACG=∠ACB+∠B=90°,∴FG2=FC2+CG2=BE2+FC2;又∵∠EAF=15°,而∠EAG=90°,∴∠GAF=90°﹣15°,在△AGF與△AEF中,,∴△AEF≌△AGF,∴EF=FG,∴CF2=EF2﹣BE2=52﹣32=16,∴CF=1.“點睛”本題考查了全等三角形的性質(zhì)和判定,勾股定理,正方形的性質(zhì)的應(yīng)用,正確的作出輔助線構(gòu)造全等三角形是解題的關(guān)鍵,此題是一道綜合題,難度較大,題目所給例題的思路,為解決此題做了較好的鋪墊.19、1臺大收割機和1臺小收割機每小時各收割小麥0.4hm2和0.2hm2.【解析】
此題可設(shè)1臺大收割機和1臺小收割機每小時各收割小麥x公頃和y公頃,根據(jù)題中的等量關(guān)系列出二元一次方程組解答即可【詳解】設(shè)1臺大收割機和1臺小收割機每小時各收割小麥x公頃和y公頃根據(jù)題意可得解得答:每臺大小收割機每小時分別收割0.4公頃和0.2公頃.【點睛】此題主要考查了二元一次方程組的實際應(yīng)用,解題關(guān)鍵在于弄清題意,找到合適的等量關(guān)系20、(1)y=(2)點B(1,6)在這個反比例函數(shù)的圖象上【解析】
(1)設(shè)反比例函數(shù)的解析式是y=,只需把已知點的坐標(biāo)代入,即可求得函數(shù)解析式;(2)根據(jù)反比例函數(shù)圖象上點的坐標(biāo)特征進行判斷.【詳解】設(shè)反比例函數(shù)的解析式是,則,得.則這個函數(shù)的表達式是;因為,所以點不在函數(shù)圖象上.【點睛】本題考查了待定系數(shù)法求反比例函數(shù)解析式:設(shè)出含有待定系數(shù)的反比例函數(shù)解析式y(tǒng)=(k為常數(shù),k≠0);把已知條件(自變量與函數(shù)的對應(yīng)值)代入解析式,得到待定系數(shù)的方程;解方程,求出待定系數(shù);寫出解析式.也考查了反比例函數(shù)圖象上點的坐標(biāo)特征.21、(1)詳見解析;(2)P=.【解析】試題分析:(1)樹狀圖列舉所有結(jié)果.(2)用在第二四象限的點數(shù)除以所有結(jié)果.試題解析:(1)畫樹狀圖得:
則(m,n)共有12種等可能的結(jié)果:(2,-1),(2,﹣3),(2,4),(-1,2),(-1,﹣3),(1,4),(﹣3,2),(﹣3,-1),(﹣3,4),(﹣4,2),(4,-1),(4,﹣3).
(2)(m,n)在二、四象限的(2,-1),(2,﹣3),(-1,2),(﹣3,2),(﹣3,4),(﹣4,2),(4,-1),(4,﹣3),
∴所選出的m,n在第二、三四象限的概率為:P==點睛:(1)利用頻率估算法:大量重復(fù)試驗中,事件A發(fā)生的頻率會穩(wěn)定在某個常數(shù)p附近,那么這個常數(shù)P就叫做事件A的概率(有些時候用計算出A發(fā)生的所有頻率的平均值作為其概率).(2)定義法:如果在一次試驗中,有n種可能的結(jié)果,并且它們發(fā)生的可能性都相等,考察事件A包含其中的m中結(jié)果,那么事件A發(fā)生的概率為P.(3)列表法:當(dāng)一次試驗要設(shè)計兩個因素,可能出現(xiàn)的結(jié)果數(shù)目較多時,為不重不漏地列出所有可能的結(jié)果,通常采用列表法.其中一個因素作為行標(biāo),另一個因素作為列標(biāo).(4)樹狀圖法:當(dāng)一次試驗要設(shè)計三個或更多的因素時,用列表法就不方便了,為了不重不漏地列出所有可能的結(jié)果,通常采用樹狀圖法求概率.22、(1);(2);(3)+.【解析】
(1)由等腰直角三角形的性質(zhì)可得BC=3,CE=,∠ACB=∠DCE=45°,可證△ACD∽△BCE,可得=;(2)由題意可證點A,點Q,點C,點P四點共圓,可得∠QAC=∠QPC,可證△ABC∽△PQC,可得,可得當(dāng)QC⊥AB時,PQ的值最小,即可求PQ的最小值;(3)作∠DCE=∠ACB,交射線DA于點E,取CE中點F,連接AC,BE,DF,BF,由題意可證△ABC∽△DEC,可得,且∠BCE=∠ACD,可證△BCE∽△ACD,可得∠BEC=∠ADC=90°,由勾股定理可求CE,DF,BF的長,由三角形三邊關(guān)系可求BD的最大值.【詳解】(1)∵∠BAC=∠CDE=90°,AB=AC=3,DE=CD=1,∴BC=3,CE=,∠ACB=∠DCE=45°,∴∠BCE=∠ACD,∵==,=,∴=,∠BCE=∠ACD,∴△ACD∽△BCE,∴=;(2)∵∠ACB=90°,∠B=30°,BC=4,∴AC=,AB=2AC=,∵∠QAP=∠QCP=90°,∴點A,點Q,點C,點P四點共圓,∴∠QAC=∠QPC,且∠ACB=∠QCP=90°,∴△ABC∽△PQC,∴,∴PQ=×QC=QC,∴當(dāng)QC的長度最小時,PQ的長度
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 中國精準(zhǔn)灌溉系統(tǒng)推廣障礙與解決方案分析報告
- 中國空氣凈化器CADR值競賽與真實效果評估報告
- 2026浙江大學(xué)醫(yī)學(xué)院附屬第一醫(yī)院臺州醫(yī)院(籌)招聘高層次衛(wèi)技人員150人備考題庫及答案詳解(易錯題)
- 營口職業(yè)技術(shù)學(xué)院《基礎(chǔ)護理實踐技能》2023-2024學(xué)年第二學(xué)期期末試卷
- 重慶城市管理職業(yè)學(xué)院《工藝美術(shù)設(shè)計實踐1》2023-2024學(xué)年第二學(xué)期期末試卷
- 中國教育云平臺服務(wù)市場供需狀況與未來增長預(yù)測報告
- 中國抗菌智能玻璃公共衛(wèi)生領(lǐng)域應(yīng)用前景展望報告
- 中國抗真菌中成藥行業(yè)經(jīng)典名方開發(fā)與現(xiàn)代化評價體系報告
- 湖北大學(xué)知行學(xué)院《檢測技術(shù)及控制儀表》2023-2024學(xué)年第二學(xué)期期末試卷
- 浙江交通職業(yè)技術(shù)學(xué)院《高分子合成工藝及設(shè)備》2023-2024學(xué)年第二學(xué)期期末試卷
- 2026江蘇省人民醫(yī)院消化內(nèi)科工勤人員招聘2人考試備考題庫及答案解析
- 2025年浙江省嘉興市嘉善縣保安員考試真題附答案解析
- AFP急性弛緩性麻痹培訓(xùn)課件
- GDPR框架下跨境醫(yī)療數(shù)據(jù)治理策略
- 2026年及未來5年市場數(shù)據(jù)中國滑板車行業(yè)發(fā)展前景及投資戰(zhàn)略規(guī)劃研究報告
- 糖尿病足潰瘍VSD治療足部皮膚護理方案
- 淺談盲人按摩行業(yè)的現(xiàn)狀、困境及出路
- 郵政營業(yè)與投遞崗位履職培訓(xùn)
- 2025煤礦事故一覽表
- 2025版中國經(jīng)皮冠狀動脈介入治療指南課件
- 解讀-2025年版《普通高中課程標(biāo)準(zhǔn)》化學(xué)解讀
評論
0/150
提交評論