開(kāi)心就好數(shù)學(xué)試卷_第1頁(yè)
開(kāi)心就好數(shù)學(xué)試卷_第2頁(yè)
開(kāi)心就好數(shù)學(xué)試卷_第3頁(yè)
開(kāi)心就好數(shù)學(xué)試卷_第4頁(yè)
開(kāi)心就好數(shù)學(xué)試卷_第5頁(yè)
已閱讀5頁(yè),還剩35頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

開(kāi)心就好數(shù)學(xué)試卷一、選擇題(每題1分,共10分)

1.在數(shù)學(xué)中,集合A包含元素1,2,3,集合B包含元素2,3,4,則集合A與集合B的交集是?

A.{1,2,3}

B.{2,3}

C.{4}

D.{1,4}

2.函數(shù)f(x)=x^2-4x+4的定義域是?

A.(-∞,+∞)

B.[0,+∞)

C.(-∞,0]∪[4,+∞)

D.[2,+∞)

3.極限lim(x→2)(x^2-4)/(x-2)的值是?

A.0

B.4

C.8

D.不存在

4.在三角函數(shù)中,sin(30°)的值是?

A.1/2

B.1

C.√3/2

D.0

5.直線y=2x+1與x軸的交點(diǎn)坐標(biāo)是?

A.(0,1)

B.(1,0)

C.(-1,0)

D.(0,-1)

6.在幾何中,一個(gè)正方體的表面積是24平方厘米,則其體積是?

A.8立方厘米

B.16立方厘米

C.24立方厘米

D.32立方厘米

7.在概率論中,擲一個(gè)公平的六面骰子,出現(xiàn)偶數(shù)的概率是?

A.1/2

B.1/3

C.1/4

D.1/6

8.在數(shù)列中,等差數(shù)列1,4,7,10,...的第10項(xiàng)是?

A.28

B.29

C.30

D.31

9.在線性代數(shù)中,矩陣[1,2;3,4]的行列式值是?

A.-2

B.2

C.4

D.8

10.在微積分中,函數(shù)f(x)=e^x的導(dǎo)數(shù)是?

A.e^x

B.x^e

C.e^x*x

D.x*e

二、多項(xiàng)選擇題(每題4分,共20分)

1.下列函數(shù)中,在其定義域內(nèi)是奇函數(shù)的有?

A.f(x)=x^3

B.f(x)=sin(x)

C.f(x)=x^2+1

D.f(x)=tan(x)

2.在空間解析幾何中,下列方程表示圓柱體的有?

A.x^2+y^2=1

B.z=x^2+y^2

C.x^2+y^2+z^2=1

D.y=x^2

3.關(guān)于矩陣運(yùn)算,下列說(shuō)法正確的有?

A.兩個(gè)可逆矩陣相乘的結(jié)果仍然是可逆矩陣

B.矩陣乘法是交換律的

C.單位矩陣乘以任何矩陣都等于該矩陣

D.兩個(gè)矩陣乘積的行列式等于它們各自行列式的乘積

4.在概率論與數(shù)理統(tǒng)計(jì)中,下列分布屬于離散型分布的有?

A.正態(tài)分布

B.二項(xiàng)分布

C.泊松分布

D.均勻分布

5.關(guān)于導(dǎo)數(shù)的應(yīng)用,下列說(shuō)法正確的有?

A.函數(shù)的導(dǎo)數(shù)等于0的點(diǎn)一定是極值點(diǎn)

B.函數(shù)的導(dǎo)數(shù)不存在的點(diǎn)不一定是極值點(diǎn)

C.函數(shù)的極大值一定大于其極小值

D.函數(shù)在閉區(qū)間上的最大值一定出現(xiàn)在導(dǎo)數(shù)為0的點(diǎn)上

三、填空題(每題4分,共20分)

1.已知函數(shù)f(x)=log_a(x),若f(8)=3/2,則a的值是________。

2.在直角坐標(biāo)系中,點(diǎn)P(x,y)到直線Ax+By+C=0的距離公式是________。

3.若復(fù)數(shù)z=a+bi的模長(zhǎng)為√5,且a=2,則b的值是________。

4.拋擲一個(gè)六面骰子兩次,兩次出現(xiàn)的點(diǎn)數(shù)之和為7的概率是________。

5.函數(shù)f(x)=x^3-3x^2+2在區(qū)間[-1,3]上的最大值是________。

四、計(jì)算題(每題10分,共50分)

1.計(jì)算不定積分∫(x^2+2x+3)/(x+1)dx。

2.求極限lim(x→0)(e^x-1-x)/(x^2)。

3.解微分方程y'-y=e^x。

4.計(jì)算∫[0,π/2]sin(x)cos(x)dx。

5.已知A=[[1,2],[3,4]],B=[[2,0],[1,2]],求(A+B)^T。

本專(zhuān)業(yè)課理論基礎(chǔ)試卷答案及知識(shí)點(diǎn)總結(jié)如下

一、選擇題答案

1.B

2.A

3.C

4.A

5.A

6.A

7.A

8.D

9.A

10.A

二、多項(xiàng)選擇題答案

1.ABD

2.AB

3.AC

4.BC

5.BCD

三、填空題答案

1.2

2.|Ax+By+C|/√(A^2+B^2)

3.±√5

4.1/6

5.3

四、計(jì)算題答案及過(guò)程

1.解:∫(x^2+2x+3)/(x+1)dx=∫[(x+1)^2+2(x+1)+1-2]/(x+1)dx

=∫[(x+1)^2+2(x+1)-1]/(x+1)dx

=∫[(x+1)^2/(x+1)+2(x+1)/(x+1)-1/(x+1)]dx

=∫(x+1)dx+∫2dx-∫1/(x+1)dx

=(x^2/2+x)+2x-ln|x+1|+C

=x^2/2+3x-ln|x+1|+C

2.解:lim(x→0)(e^x-1-x)/(x^2)

=lim(x→0)[(e^x-1-x)/x^2]*[x/(e^x-1-x)]

=lim(x→0)[(e^x-1-x)/x^2]*lim(x→0)[x/(e^x-1-x)]

=lim(x→0)[(e^x-1-x)/x^2]*1

=lim(x→0)[(e^x-1-x)/x^2]*[(e^x-1-x)/(e^x-1-x)]

=lim(x→0)[(e^x-1-x)^2/x^2(e^x-1-x)]

=lim(x→0)[(e^x-1-x)^2/x^2(e^x-1)]

=lim(x→0)[(e^x-1-x)^2/x^4]*[x^4/(e^x-1)]

=lim(x→0)[(e^x-1-x)^2/x^4]*lim(x→0)[x^4/(e^x-1)]

=[(1-1-0)^2/0^2]*0

=0*0

=0

3.解:y'-y=e^x

y'=y+e^x

y'-y=e^x

y'=y+e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-y=e^x

y'-

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論