版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
簡單線性回歸與相關(guān)TheSimpleLinearRegressionandCorrelationPurposeofRegressionandCorrelationAnalysis
回歸與相關(guān)分析的目的
RegressionAnalysisisUsedPrimarilyfor Prediction(回歸主要用于預(yù)測)
Astatisticalmodelusedtopredictthevaluesofa dependentorresponsevariablebasedonvaluesof atleastoneindependentorexplanatoryvariable
CorrelationAnalysisisUsedtoMeasure StrengthoftheAssociationBetween NumericalVariables(度量關(guān)系密切程度)TheScatterDiagram
散點(diǎn)圖Plotofall(Xi,
Yi)pairsTypesofRegressionModelsPositiveLinearRelationshipNegativeLinearRelationshipRelationshipNOTLinearNoRelationshipSimpleLinearRegressionModel
簡單線性回歸模型
YinterceptSlopeTheStraightLinethatBestFittheDataRelationshipBetweenVariablesIsaLinearFunctionRandomErrorDependent(Response)VariableIndependent(Explanatory)Variable
i=RandomErrorYXPopulation
LinearRegressionModelObservedValueObservedValue
YXiX
01YXiii
01SampleLinearRegressionModel
簡單線性相關(guān)模型
Yi
=PredictedValueofYforobservationiXi
=ValueofXforobservation
ib0
=SampleY-interceptusedasestimateof thepopulation
0b1
=SampleSlopeusedasestimateofthe population
1SimpleLinearRegressionEquation:ExampleYouwishtoexaminetherelationshipbetweenthesquarefootageofproducestoresanditsannualsales.Sampledatafor7storeswereobtained.Findtheequationofthestraightlinethatfitsthedatabest
AnnualStore Square Sales Feet ($000)11,726 3,68121,542 3,3953 2,816 6,6534 5,555 9,5435 1,292 3,3186 2,208 5,5637 1,313 3,760 ScatterDiagramExampleEquationfortheBestStraightLine
FromExcelPrintout:GraphoftheBestStraightLineYi=1636.415+1.487Xi
InterpretingtheResultsYi=1636.415+1.487XiTheslopeof1.487meansforeachincreaseofoneunitinX,theYisestimatedtoincrease1.487units.Foreachincreaseof1squarefootinthesizeofthestore,themodelpredictsthattheexpectedannualsalesareestimatedtoincreaseby$1487.
MeasuresofVariation:
TheSumofSquares變異平方和
SST
=
TotalSumofSquares
measuresthevariationofthe
Yi
valuesaroundtheir meanYSSR=RegressionSum
ofSquaresexplainedvariationattributabletotherelationship betweenXandYSSE
=
ErrorSumofSquares
variationattributabletofactorsotherthanthe relationshipbetweenXandY_MeasuresofVariation:TheSumofSquaresXiYi=b0+b1XiYXYSST=
(Yi
-
Y)2SSE=
(Yi
-
Yi)2
SSR=
(Yi-
Y)2
___
MeasuresofVariation TheSumofSquares:ExampleExcelOutputforProduceStoresSSRSSESSTTheCoefficientofDetermination
決定系數(shù)----用回歸解釋相關(guān)的橋梁SSRregressionsumofsquaresSSTtotalsumofsquaresr2==
MeasurestheproportionofvariationthatisexplainedbytheindependentvariableXintheregressionmodelCoefficientsofDetermination(r2)andCorrelation(r)
r2=1,r2=1,r2=.8,r2=0,YYi=b0+b1XiX^YYi=b0+b1XiX^YYi=b0+b1XiX^YYi=b0+b1XiX^r=+1r=-1r=+0.9r=0StandardErrorofEstimate
標(biāo)準(zhǔn)誤的估計(jì)
=ThestandarddeviationofthevariationofobservationsaroundtheregressionlineMeasuresofVariation:ExampleExcelOutputforProduceStores
r2=.94Syx94%ofthevariationinannualsalescanbeexplainedbythevariabilityinthesizeofthestoreasmeasuredbysquarefootageLinearRegressionAssumptions1. NormalityYValuesAreNormallyDistributedForEachXProbabilityDistributionofErrorisNormal2. Homoscedasticity(ConstantVariance)3. IndependenceofErrorsForLinearModelsVariationofErrorsAroundtheRegressionLineX1X2XYf(e)yvaluesarenormallydistributedaroundtheregressionline.Foreachxvalue,thespreadsorvariancearoundtheregressionlineisthesame.RegressionLineResidualAnalysis
殘差分析PurposesExamineLinearityEvaluateviolationsofassumptionsGraphicalAnalysisofResidualsPlotresidualsVs.
XivaluesDifferencebetweenactual
Yi
&predicted
YiStudentizedresiduals:Allowsconsiderationforthemagnitudeoftheresiduals
ResidualAnalysisforLinearityNotLinearLinear
XeeXResidualAnalysisforHomoscedasticityHeteroscedasticity
HomoscedasticityUsingStandardizedResidualsSRXSRXResidualAnalysis:
ComputerOutputExampleProduceStoresExcelOutputTheDurbin-WatsonStatisticUsedwhendataiscollectedovertimetodetect autocorrelation(Residualsinonetimeperiod arerelatedtoresidualsinanotherperiod)MeasuresViolationofindependenceassumptionShouldbecloseto2.Ifnot,examinethemodelforautocorrelation.ResidualAnalysisforIndependence獨(dú)立性殘差分析NotIndependentIndependent
XSRXSRInferencesabouttheSlope:tTest(回歸系數(shù)的檢驗(yàn))tTestforaPopulationSlope IsaLinearRelationshipBetweenX&Y?TestStatistic:anddf=n-2NullandAlternativeHypotheses
H0:
1=0 (NoLinearRelationship) H1:
1
0 (LinearRelationship)WhereExample:ProduceStoresDatafor7Stores:RegressionModelObtained:Theslopeofthismodelis
1.487.
Istherealinearrelationshipbetweenthesquarefootageofastoreanditsannualsales?
AnnualStore Square Sales Feet ($000)11,726 3,68121,542 3,3953 2,816 6,6534 5,555 9,5435 1,292 3,3186 2,208 5,5637 1,313 3,760 Yi=1636.415+1.487Xi H0:
1=0 H1:
1
0
.05df
7-2=7CriticalValue(s):TestStatistic:Decision:Conclusion:Thereisevidenceofarelationship.t02.5706-2.5706.025RejectReject.025FromExcelPrintoutRejectH0InferencesabouttheSlope:tTestExampleInferencesabouttheSlope:ConfidenceIntervalExampleConfidenceIntervalEstimateoftheSlopeb1
tn-2
ExcelPrintoutforProduceStoresAt95%levelofConfidenceTheconfidenceIntervalfortheslopeis(1.062,1.911).Doesnotinclude0.Conclusion:
Thereisasignificantlinearrelationshipbetweenannualsalesandthesizeofthestore.EstimationofPredictedValuesConfidenceIntervalEstimate for
XYTheMeanofYgivenaparticularXitvaluefromtablewithdf=n-2StandarderroroftheestimateSizeofintervalvaryaccordingtodistanceawayfrommean,X.EstimationofPredictedValues區(qū)間預(yù)測ConfidenceIntervalEstimateforIndividualResponseYi
ataParticularXiAdditionofthis1increasedwidthofintervalfromthatforthemeanYIntervalEstimatesforDifferentValuesofXXYXConfidenceIntervalforaindividualYiAGivenXConfidenceIntervalforthemeanofYYi=b0+b1Xi
_Example:ProduceStoresYi=1636.415+1.487XiDatafor7Stores:RegressionModelObtained:Predicttheannualsalesforastorewith2000squarefeet.
AnnualStore Square Sales Feet ($000)11,726 3,68121,542 3,3953 2,816 6,6534 5,555 9,5435 1,292 3,3186 2,208 5,5637 1,313 3,760 EstimationofPredictedValues:ExampleConfidenceIntervalEstimate forIndividualYFindthe95%confidenceintervalfortheaverageannualsalesforstoresof2,000squarefeetPredictedSalesYi=1636.415+1.487Xi=4610.45($000)
X=2350.29SYX=611.75
tn-2=t5=2.5706=4610.45
980.97ConfidenceintervalformeanYEstimationofPredictedValues:ExampleConfidenceIntervalEstimate for
XYFindthe95%confidenceintervalforannualsalesofoneparticularstoresof2,000squarefeetPredictedSalesYi=1636.415+1.487Xi=4610.45($000)
X=2350.29SYX=611.75
tn-2=t5=2.5706=4610.45
1853.45ConfidenceintervalforindividualYCorre
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- GB/T 46937-2025醫(yī)用口罩及材料病毒過濾效率測試方法Phi-X174噬菌體氣溶膠法
- 2025年中職(市場營銷)營銷策劃試題及答案
- 2025年高職郵政(快遞分揀技術(shù))試題及答案
- 2025年高職(育嬰師)嬰兒護(hù)理綜合測試題及答案
- 2025年高職航空物流(航空物流運(yùn)營)試題及答案
- 2025年大學(xué)化學(xué)工程與工藝(化工傳遞過程)試題及答案
- 2025年大學(xué)護(hù)理(老年護(hù)理實(shí)訓(xùn))試題及答案
- 2025年高職(藥學(xué))藥物研發(fā)基礎(chǔ)綜合測試試題及答案
- 2025年中職電子商務(wù)(電子商務(wù)基礎(chǔ))試題及答案
- 2025年高職(水利水電建筑工程)水工建筑物施工階段測試試題及答案
- 電子技術(shù)基礎(chǔ)(模擬電子電路)
- 教科版九年級物理上冊期末測試卷(1套)
- 內(nèi)蒙古自治區(qū)通遼市霍林郭勒市2024屆中考語文最后一模試卷含解析
- 復(fù)方蒲公英注射液的藥代動力學(xué)研究
- 單純皰疹病毒感染教學(xué)演示課件
- 廣東省中山市2023-2024學(xué)年四年級上學(xué)期期末數(shù)學(xué)試卷
- 變配電室送電施工方案
- 地質(zhì)勘查現(xiàn)場安全風(fēng)險(xiǎn)管控清單
- 松下panasonic-經(jīng)銷商傳感器培訓(xùn)
- 中醫(yī)舌、脈象的辨識與臨床應(yīng)用課件
- 建設(shè)工程項(xiàng)目施工風(fēng)險(xiǎn)管理課件
評論
0/150
提交評論