版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
202X齊齊哈爾市中考數(shù)學(xué)幾何綜合壓軸題模擬專題一、中考幾何壓軸題1.(1)問題發(fā)現(xiàn):如圖1,在△ABC中和△DCE中,,,,點(diǎn)D是BC的垂線AF上任意一點(diǎn).填空:①的值為;②∠ABE的度數(shù)為.(2)類比探究:如圖2,在△ABC中和△DCE中,,,點(diǎn)D是BC的垂線AF上任意一點(diǎn).請(qǐng)判斷的值及∠ABE的度數(shù),并說明理由;(3)拓展延伸:在(2)的條件下,若,,請(qǐng)直接寫出BE的長(zhǎng).2.如圖1,在中,,點(diǎn)P在斜邊上,點(diǎn)D?E?F分別是線段??的中點(diǎn),易知是直角三角形.現(xiàn)把以點(diǎn)P為中心,順時(shí)針旋轉(zhuǎn),其中.連接??.(1)操作發(fā)現(xiàn)如圖2,若點(diǎn)P是的中點(diǎn),連接,可以發(fā)現(xiàn)____________;(2)類比探究如圖3,中,于點(diǎn)P,請(qǐng)判斷與的大小,結(jié)合圖2說明理由;(3)拓展提高在(2)的條件下,如果,且,在旋轉(zhuǎn)的過程中,當(dāng)以點(diǎn)C?D?F?P四點(diǎn)為頂點(diǎn)的四邊形與以點(diǎn)B?E?F?P四點(diǎn)為頂點(diǎn)的四邊形都是平行四邊形時(shí),直接寫出線段??的長(zhǎng).3.已知:如圖1所示將一塊等腰三角板BMN放置與正方形ABCD的重合,連接AN、CM,E是AN的中點(diǎn),連接BE.(觀察猜想)(1)CM與BE的數(shù)量關(guān)系是________;CM與BE的位置關(guān)系是________;(探究證明)(2)如圖2所示,把三角板BMN繞點(diǎn)B逆時(shí)針旋轉(zhuǎn),其他條件不變,線段CM與BE的關(guān)系是否仍然成立,并說明理由;(拓展延伸)(3)若旋轉(zhuǎn)角,且,求的值.4.點(diǎn)E是矩形ABCD邊AB延長(zhǎng)線上的一動(dòng)點(diǎn),在矩形ABCD外作Rt△ECF,其中∠ECF=90°,過點(diǎn)F作FG⊥BC,交BC的延長(zhǎng)線于點(diǎn)G,連接DF,交CG于點(diǎn)H.(1)發(fā)現(xiàn):如圖1,若AB=AD,CE=CF,猜想線段DH與HF的數(shù)量關(guān)系是;(2)探究:如圖2,若AB=nAD,CF=nCE,則(1)中的猜想是否仍然成立?若成立,請(qǐng)給予證明;若不成立,請(qǐng)說明理由.(3)拓展:在(2)的基礎(chǔ)上,若射線FC過AD的三等分點(diǎn),AD=3,AB=4,則直接寫出線段EF的長(zhǎng).5.(教材呈現(xiàn))下面是華師版八年級(jí)下冊(cè)教材第89頁(yè)的部分內(nèi)容.如圖,G,H是平行四邊形ABCD對(duì)角線AC上的兩點(diǎn),且AG=CH,E,F(xiàn)分別是邊AB和CD的中點(diǎn)求證:四邊形EHFG是平行四邊形證明:連接EF交AC于點(diǎn)O∵四邊形ABCD是平行四邊形∴AB=CD,AB∥CD又∵E,F(xiàn)分別是AB,CD的中點(diǎn)∴AE=CF又∵AB∥CD∴∠EAO=∠FCO又∵∠AOE=∠COF∴△AOE≌△COF請(qǐng)補(bǔ)全上述問題的證明過程.(探究)如圖①,在△ABC中,E,O分別是邊AB、AC的中點(diǎn),D、F分別是線段AO、CO的中點(diǎn),連結(jié)DE、EF,將△DEF繞點(diǎn)O旋轉(zhuǎn)180°得到△DGF,若四邊形DEFG的面積為8,則△ABC的面積為.(拓展)如圖②,GH是正方形ABCD對(duì)角線AC上的兩點(diǎn),且AG=CH,GH=AB,E、F分別是AB和CD的中點(diǎn).若正方形ABCD的面積為16,則四邊形EHFG的面積為.6.隨著教育教學(xué)改革的不斷深入,數(shù)學(xué)教學(xué)如何改革和發(fā)展,如何從“重教輕學(xué)”向自主學(xué)習(xí)探索為主的方向發(fā)展,是一個(gè)值得思考的問題.從數(shù)學(xué)的產(chǎn)生和發(fā)展歷程來(lái)看分析,不外乎就是三個(gè)環(huán)節(jié):(觀察猜想)-(探究證明)-(拓展延伸).下面同學(xué)們從這三個(gè)方面試看解決下列問題:已知:如圖1所示將一塊等腰三角板放置與正方形的重含,連接、,E是的中點(diǎn),連接.(觀察猜想)(1)與的數(shù)量關(guān)系是________,與的位置關(guān)系是___________;(探究證明)(2)如圖2所示,把三角板繞點(diǎn)B逆時(shí)針旋轉(zhuǎn),其他條件不變,線段與的關(guān)系是否仍然成立,并說明理由;(拓展延伸)(3)若旋轉(zhuǎn)角,且,求的值.7.在中,于點(diǎn),點(diǎn)為射線上任一點(diǎn)(點(diǎn)除外)連接,將線段繞點(diǎn)順時(shí)針方向旋轉(zhuǎn),,得到,連接.(1)(觀察發(fā)現(xiàn))如圖1,當(dāng),且時(shí),BP與的數(shù)量關(guān)系是___________,與的位置關(guān)系是___________.(2)(猜想證明)如圖2,當(dāng),且時(shí),(1)中的結(jié)論是否成立?若成立,請(qǐng)予以證明;若不成立,請(qǐng)說明理由.(請(qǐng)選擇圖2,圖3中的一種情況予以證明或說理)(3)(拓展探究)在(2)的條件下,若,,請(qǐng)直接寫出的長(zhǎng).8.綜合與實(shí)踐操作探究(1)如圖1,將矩形折疊,使點(diǎn)與點(diǎn)重合,折痕為,與交于點(diǎn).請(qǐng)回答下列問題:①與全等的三角形為______,與相似的三角形為______.并證明你的結(jié)論:(相似比不為1,只填一個(gè)即可):②若連接、,請(qǐng)判斷四邊形的形狀:______.并證明你的結(jié)論;拓展延伸(2)如圖2,矩形中,,,點(diǎn)、分別在、邊上,且,將矩形折疊,使點(diǎn)與點(diǎn)重合,折痕為,與交于點(diǎn),連接.①設(shè),,則與的數(shù)量關(guān)系為______;②設(shè),,請(qǐng)用含的式子表示:______;③的最小值為______.9.(1)(問題發(fā)現(xiàn))如圖①,正方形的兩邊分別在正方形的邊和上,連接.填空:①線段與的數(shù)量關(guān)系為______;②直線與所夾銳角的度數(shù)為_______.(2)(拓展探究)如圖②,將正方形繞點(diǎn)逆時(shí)針旋轉(zhuǎn),在旋轉(zhuǎn)的過程中,(1)中的結(jié)論是否仍然成立,請(qǐng)利用圖②進(jìn)行說明.(3)(解決問題)如圖③,在正方形中,,點(diǎn)M為直線上異于B,C的一點(diǎn),以為邊作正方形,點(diǎn)N為正方形的中心,連接,若,直接寫出的長(zhǎng).10.(問題情境)在△ABC中,BA=BC,∠ABC=α(0°<α<180°),點(diǎn)P為直線BC上一動(dòng)點(diǎn)(不與點(diǎn)B、C重合),連接AP,將線段PA繞點(diǎn)P順時(shí)針旋轉(zhuǎn)得到線段PQ旋轉(zhuǎn)角為α,連接CQ.(特例分析)(1)當(dāng)α=90°,點(diǎn)P在線段BC上時(shí),過P作PF∥AC交直線AB于點(diǎn)F,如圖①,易得圖中與△APF全等的一個(gè)三角形是,∠ACQ=°.(拓展探究)(2)當(dāng)點(diǎn)P在BC延長(zhǎng)線上,AB:AC=m:n時(shí),如圖②,試求線段BP與CQ的比值;(問題解決)(3)當(dāng)點(diǎn)P在直線BC上,α=60°,∠APB=30°,CP=4時(shí),請(qǐng)直接寫出線段CQ的長(zhǎng).11.(1)嘗試探究:如圖①,在中,,,點(diǎn)、分別是邊、上的點(diǎn),且EF∥AB.①的值為_________;②直線與直線的位置關(guān)系為__________;(2)類比延伸:如圖②,若將圖①中的繞點(diǎn)順時(shí)針旋轉(zhuǎn),連接,,則在旋轉(zhuǎn)的過程中,請(qǐng)判斷的值及直線與直線的位置關(guān)系,并說明理由;(3)拓展運(yùn)用:若,,在旋轉(zhuǎn)過程中,當(dāng)三點(diǎn)在同一直線上時(shí),請(qǐng)直接寫出此時(shí)線段的長(zhǎng).12.(1)問題探究:如圖1所示,有公共頂點(diǎn)A的兩個(gè)正方形ABCD和正方形AEFG.AE<AB,連接BE與DG,請(qǐng)判斷線段BE與線段DG之間有怎樣的數(shù)量關(guān)系和位置關(guān)系.并請(qǐng)說明理由.(2)理解應(yīng)用:如圖2所示,有公共頂點(diǎn)A的兩個(gè)正方形ABCD和正方形AEFG,AE<AB,AB=10,將正方形AEFG繞點(diǎn)A在平面內(nèi)任意旋轉(zhuǎn),當(dāng)∠ABE=15°,且點(diǎn)D、E、G三點(diǎn)在同一條直線上時(shí),請(qǐng)直接寫出AE的長(zhǎng);(3)拓展應(yīng)用:如圖3所示,有公共頂點(diǎn)A的兩個(gè)矩形ABCD和矩形AEFG,AD=4,AB=4,AG=4,AE=4,將矩形AEFG繞點(diǎn)A在平面內(nèi)任意旋轉(zhuǎn),連接BD,DE,點(diǎn)M,N分別是BD,DE的中點(diǎn),連接MN,當(dāng)點(diǎn)D、E、G三點(diǎn)在同一條直線上時(shí),請(qǐng)直接寫出MN的長(zhǎng)13.如圖1,在菱形ABCD中,,點(diǎn)E,F(xiàn)分別是AC,AB上的點(diǎn),且,猜想:①的值是_______;②直線DE與直線CF所成的角中較小的角的度數(shù)是_______.(2)類比探究:如圖2,將繞點(diǎn)A逆時(shí)針旋轉(zhuǎn),在旋轉(zhuǎn)的過程中,(1)中結(jié)論是否成立,就圖2的情形說明理由.(3)拓展延伸:在繞點(diǎn)A旋轉(zhuǎn)的過程中,當(dāng)三點(diǎn)共線時(shí),請(qǐng)直接寫出CF的長(zhǎng).14.(1)觀察發(fā)現(xiàn):如圖1,在中,,,點(diǎn)是的平分線上一點(diǎn),將線段繞點(diǎn)逆時(shí)針旋轉(zhuǎn)90°到,連結(jié)、,交于.填空:①線段與的數(shù)量關(guān)系是_________;②線段與的位置關(guān)系是_________.(2)拓展探究:如圖2,在中,,,點(diǎn)是邊的中點(diǎn),將繞點(diǎn)逆時(shí)針旋轉(zhuǎn)到,連結(jié)、,交于.(1)中的結(jié)論是否仍然成立?請(qǐng)說明理由.(3)拓展應(yīng)用:如圖3,在中,,,,的平分線交于,點(diǎn)是射線上的一點(diǎn),將繞點(diǎn)順時(shí)針旋轉(zhuǎn)60°到,連結(jié)、、,與相交于,若以、、為頂點(diǎn)的三角形與全等,直接寫出的長(zhǎng).15.如圖1,在等腰三角形中,點(diǎn)分別在邊上,連接點(diǎn)分別為的中點(diǎn).(1)觀察猜想圖1中,線段的數(shù)量關(guān)系是____,的大小為_____;(2)探究證明把繞點(diǎn)順時(shí)針方向旋轉(zhuǎn)到如圖2所示的位置,連接判斷的形狀,并說明理由;(3)拓展延伸把繞點(diǎn)在平面內(nèi)自由旋轉(zhuǎn),若,請(qǐng)求出面積的最大值.16.石家莊某學(xué)校數(shù)學(xué)興趣小組利用機(jī)器人開展數(shù)學(xué)活動(dòng),在相距150個(gè)單位長(zhǎng)度的直線跑道AB上,機(jī)器人甲從端點(diǎn)A出發(fā),勻速往返于端點(diǎn)A、B之間,機(jī)器人乙同時(shí)從端點(diǎn)B出發(fā),以大于甲的速度勻速往返于端點(diǎn)B、A之間.他們到達(dá)端點(diǎn)后立即轉(zhuǎn)身折返,用時(shí)忽略不計(jì),興趣小組成員探究這兩個(gè)機(jī)器人迎面相遇的情況,這里的“迎面相遇”包括面對(duì)面相遇、在端點(diǎn)處相遇這兩種.(觀察)①觀察圖1,若這兩個(gè)機(jī)器人第一次迎面相遇時(shí),相遇地點(diǎn)與點(diǎn)A之間的距離為30個(gè)單位長(zhǎng)度,則他們第二次迎面相遇時(shí),相遇地點(diǎn)與點(diǎn)A之間的距離為個(gè)單位長(zhǎng)度.②若這兩個(gè)機(jī)器人第一次迎面相遇時(shí),相遇地點(diǎn)與點(diǎn)A之間的距離為35個(gè)單位長(zhǎng)度,則他們第二次迎面相遇時(shí),相遇地點(diǎn)與點(diǎn)A之間的距離為個(gè)單位長(zhǎng)度.(發(fā)現(xiàn))設(shè)這兩個(gè)機(jī)器人第一次迎面相遇時(shí),相遇地點(diǎn)與點(diǎn)A之間的距離為x個(gè)單位長(zhǎng)度,他們第二次迎面相遇時(shí),相遇地點(diǎn)與點(diǎn)A之間的距離為y個(gè)單位長(zhǎng)度,興趣小組成員發(fā)現(xiàn)了y與x的函數(shù)關(guān)系,并畫出了部分函數(shù)圖象(線段OP,不包括點(diǎn)O,如圖2所示)①a=;②分別求出各部分圖象對(duì)應(yīng)的函數(shù)解析式,并在圖2中補(bǔ)全函數(shù)圖象.(拓展)設(shè)這兩個(gè)機(jī)器人第一次迎面相遇時(shí),相遇地點(diǎn)與點(diǎn)A之間的距離為x個(gè)單位長(zhǎng)度,他們第三次迎面相遇時(shí),相遇地點(diǎn)與點(diǎn)A之間的距離為y個(gè)單位長(zhǎng)度,若這兩個(gè)機(jī)器人在第三次迎面相遇時(shí),相遇地點(diǎn)與點(diǎn)A之間的距離y不超過60個(gè)單位長(zhǎng)度,則他們第一次迎面相遇時(shí),相遇地點(diǎn)與點(diǎn)A之間的距離x的取值范圍是.(直接寫出結(jié)果)17.定義:如圖1,點(diǎn)M、N把線段AB分割成AM、MN和BN,若以AM、MN、BN為邊的三角形是一個(gè)直角三角形,則稱點(diǎn)M、N是線段AB的勾股點(diǎn).已知點(diǎn)M、N是線段AB的勾股點(diǎn),若AM=1,MN=2,則BN=.(1)(類比探究)如圖2,DE是△ABC的中位線,M、N是AB邊的勾股點(diǎn)(AM<MN<NB),連接CM、CN分別交DE于點(diǎn)G、H.求證:G、H是線段DE的勾股點(diǎn).(2)(知識(shí)遷移)如圖3,C,D是線段AB的勾股點(diǎn),以CD為直徑畫⊙O,P在⊙O上,AC=CP,連結(jié)PA,PB,若∠A=2∠B,求∠B的度數(shù).(3)(拓展應(yīng)用)如圖4,點(diǎn)P(a,b)是反比例函數(shù)(x>0)上的動(dòng)點(diǎn),直線與坐標(biāo)軸分別交于A、B兩點(diǎn),過點(diǎn)P分別向x、y軸作垂線,垂足為C、D,且交線段AB于E、F.證明:E、F是線段AB的勾股點(diǎn).18.[探索發(fā)現(xiàn)](1)如圖①,△ABC與△ADE為等腰三角形,且兩頂角∠ABC=∠ADE,連接BD與CE,則△ABD與△ACE的關(guān)系是;[操作探究](2)在△ABC中,AB=AC=3,∠BAC=100°,D是BC的中點(diǎn),在線段AD上任取一點(diǎn)P,連接PB,將線段PB繞點(diǎn)P按逆時(shí)針方向旋轉(zhuǎn)80°,點(diǎn)B的對(duì)應(yīng)點(diǎn)是點(diǎn)E,連接BE,得到△BPE,隨著點(diǎn)P在線段AD上位置的變化,點(diǎn)E的位置也在變化,點(diǎn)E可能在直線AD的左側(cè),也可能在直線AD上,還可能在直線AD的右側(cè).請(qǐng)你探究,當(dāng)點(diǎn)E在直線AD上時(shí),如圖②所示,連接CE,判斷直線CE與直線AB的位置關(guān)系,并說明理由.[拓展應(yīng)用](3)在(2)的應(yīng)用下,請(qǐng)?jiān)趫D③中畫出△BPE,使得點(diǎn)E在直線AD的右側(cè),連接CE,試求出點(diǎn)P在線段AD上運(yùn)動(dòng)時(shí),AE的最小值.19.將兩個(gè)完全相同的三角形紙片和重合放置,其中.(1)操作發(fā)現(xiàn):如圖2,固定使繞點(diǎn)旋轉(zhuǎn),設(shè)的面積為的面積為當(dāng)點(diǎn)恰好落在邊上時(shí),則與的數(shù)量關(guān)系是;(2)猜想論證:當(dāng)繞點(diǎn)旋轉(zhuǎn)到如圖3所示的位置時(shí),小明猜想中與的數(shù)量關(guān)系為相等,并嘗試分別作出了和中邊上的高請(qǐng)你證明小明的猜想,即證明:.(3)拓展探究:已知,點(diǎn)是角平分線上的一點(diǎn),交于點(diǎn)(如圖4).若射線上存在點(diǎn),使,請(qǐng)直接寫出相應(yīng)的的長(zhǎng).20.(1)問題發(fā)現(xiàn)如圖1,△ACB和△DCE均為等邊三角形,點(diǎn)A,D,E在同一直線上,連接BE.填空:①∠AEB的度數(shù)為;②線段AD,BE之間的數(shù)量關(guān)系為.(2)拓展探究如圖2,△ACB和△DCE均為等腰直角三角形,∠ACB=∠DCE=90°,點(diǎn)A,D,E在同一直線上,CM為△DCE中DE邊上的高,連接BE,請(qǐng)判斷∠AEB的度數(shù)及線段CM,AE,BE之間的數(shù)量關(guān)系,并說明理由.(3)解決問題如圖3,在正方形ABCD中,CD=,若點(diǎn)P滿足PD=1,且∠BPD=90°,請(qǐng)直接寫出點(diǎn)A到BP的距離.【參考答案】***試卷處理標(biāo)記,請(qǐng)不要?jiǎng)h除一、中考幾何壓軸題1.(1)①1;②90°;(2)(2),,理由見解析;(3)或【分析】(1)①根據(jù)已知條件可知為等邊三角形,根據(jù)等邊三角形的性質(zhì)可證明,即可得出答案;②根據(jù),得出,因?yàn)椋^而推出;(2)利用已知解析:(1)①1;②90°;(2)(2),,理由見解析;(3)或【分析】(1)①根據(jù)已知條件可知為等邊三角形,根據(jù)等邊三角形的性質(zhì)可證明,即可得出答案;②根據(jù),得出,因?yàn)?,繼而推出;(2)利用已知條件證明△ACD∽△BCE,即可推出,;(3)當(dāng)點(diǎn)E在AF右邊時(shí),如圖2所示,由已知條件可得出,在中運(yùn)用勾股定理可求出AD的值,再運(yùn)用(2)中結(jié)論即可得出BE的值;當(dāng)點(diǎn)E在AF左邊時(shí),如圖3所示,可證明,,再運(yùn)用(2)中結(jié)論即可得出BE的值.【詳解】解:(1)①∵,,∴為等邊三角形∴∴∴∴的值為1;故答案為:1;②∵∴∵∴∴∵∴故答案為:90°.(2),.理由如下:在Rt△ABC中,,.∴.同理:.∴.又.∴.∴△ACD∽△BCE.∴,.∴.(3)當(dāng)點(diǎn)E在AF右邊時(shí),如圖2所示:∵,,,∴,∴∵∴;當(dāng)點(diǎn)E在AF左邊時(shí),如圖3所示同理,可得,∵∴∴∴∵∵∴綜上所述,BE的值為或.【點(diǎn)睛】本題是一道關(guān)于三角形相似的綜合題目,涉及的知識(shí)點(diǎn)有全等三角形的判定及性質(zhì)、相似三角形的判定及性質(zhì)、等邊三角形的判定、解直角三角形、勾股定理的應(yīng)用等多個(gè)知識(shí)點(diǎn),它充分體現(xiàn)了數(shù)學(xué)解題中的數(shù)形結(jié)合思想和整體轉(zhuǎn)化思想.2.(1)1,1;(2)結(jié)論:,理由見解析;(3),,.【分析】(1)利用直角三角形斜邊中線的性質(zhì)以及全等三角形的性質(zhì)解決問題即可.(2)結(jié)論:.如圖3中,連接.利用相似三角形的性質(zhì)解決問題即可.解析:(1)1,1;(2)結(jié)論:,理由見解析;(3),,.【分析】(1)利用直角三角形斜邊中線的性質(zhì)以及全等三角形的性質(zhì)解決問題即可.(2)結(jié)論:.如圖3中,連接.利用相似三角形的性質(zhì)解決問題即可.(3)分兩種情形:如圖中,當(dāng)時(shí),滿足條件,如圖中,當(dāng)點(diǎn)落在上時(shí),四邊形是矩形,四邊形是矩形,分別求解即可.【詳解】解:(1)如圖2中,連接,.,,,,,,,,,,,同法可證,,,.故答案為1,1.(2)結(jié)論:.理由:如圖3中,連接.,,,,,,,,,同法可證,,,,,,,.(3)如圖中,當(dāng)時(shí),,,,,,四邊形是平行四邊形,,,,,,同法可證,,四邊形是平行四邊形,,,,,,,,,,,,,,由(2)可知,,,.如圖中,當(dāng)點(diǎn)落在上時(shí),四邊形是矩形,四邊形是矩形,此時(shí),由(2)可知,,,.綜上所述,,,.【點(diǎn)睛】本題屬于四邊形綜合題,考查了旋轉(zhuǎn)變換,全等三角形的判定和性質(zhì),相似三角形的判定和性質(zhì),平行四邊形的判定和性質(zhì)等知識(shí),解題的關(guān)鍵是正確尋找全等三角形或相似三角形解決問題,屬于中考?jí)狠S題.3.(1);;(2)成立,理由見解析;(3)【分析】(1)【觀察猜想】根據(jù)正方形ABCD,得到AB=CB,由等腰三角形BMN,得到BM=BN,可證明Rt△BAN≌Rt△BCM(HL),又根據(jù)E是A解析:(1);;(2)成立,理由見解析;(3)【分析】(1)【觀察猜想】根據(jù)正方形ABCD,得到AB=CB,由等腰三角形BMN,得到BM=BN,可證明Rt△BAN≌Rt△BCM(HL),又根據(jù)E是AN的中點(diǎn),即可證明CM=2BE,根據(jù)等邊對(duì)等角得到∠ABE=∠BCM,∠ABE+∠BMC=90°即可證明CM⊥BE.(2)【探究證明】延長(zhǎng)BE至F使EF=BE,連接AF,先證明△AEF≌△NEB,再證明△FAB≌MBC,得到CM=BF=2BE,∠BCM=∠ABF,得到∠ABF+∠FBC=90°,進(jìn)而求得∠BCM+∠EBC=90°,即可證明EB⊥CM;(3)[拓展延伸]由a=45°得到∠ABE=15°,由前面可得∠BMC=30°,過C作CG⊥MB于G,設(shè)CG為m,則BC=m,MG=m,所以MB=BN=m-m,最后求得的值.【詳解】解:【觀察猜想】(1)CM=2BE;CM⊥BE;如圖1所示圖1∵正方形ABCD,∴AB=CB,∵等腰三角形BMN,∴BM=BN,∴Rt△BAN≌Rt△BCM(HL),∴∠BAN=∠BCM,又∵E是AN的中點(diǎn),∴BE=AE=NE=AN,∴CM=2BE,∵BE=AE,∴∠BAN=∠ABE,∴∠ABE=∠BCM,∴∠ABE+∠BMC=∠BCM+∠BMC=90°∴∠BPM=90°∴CM⊥BE.【探究證明】(2)CM=2BE,CM⊥BE仍然成立.如圖2所示,延長(zhǎng)BE至F使EF=BE,連接AF,∵AE=EN,∠AEF=∠NEB,EF=BE,∴△AEF≌△NEB∴AF=BN,∠F=∠EBN,∴AF//BN,AF=BM,∴∠FAB+∠ABN=180°,∵∠MBN=∠ABC=90°,∴∠NBC+∠ABN=90°,∴∠NBA+∠FAD=90°,∴∠CBN=∠FAD∴∠FAB=∠MBC,∵AB=BC,∴△FAB≌MBC,∴CM=BF=2BE,∠BCM=∠ABF,∵∠ABF+∠FBC=90°∴∠BCM+∠EBC=90°,∴EB⊥CM;[拓展延伸](3)由a=45°得∠MBA=∠ABN=45°,∵∠NBE=2∠ABE,∴∠ABE=15°,由前面可得∠MCB=∠ABE=15°,∠MBC=135°,∴∠BMC=180°-15°-135°=30°,如圖3所示,過C作CG⊥MB于G,圖3設(shè)CG為m則BC=m,MG=m,所以MB=BN=m-m,∴.【點(diǎn)睛】本題考查了正方形的性質(zhì),全等三角形的性質(zhì)和判定,等腰直角三角形的性質(zhì),直角三角形的性質(zhì),解題的關(guān)鍵是靈活運(yùn)用以上性質(zhì)解決問題.4.(1)DH=HF;(2)DH=HF仍然成立,理由見解析;(3)或.【分析】(1)證明,得,則,則證,得出即可;(2)證,則,由矩形的性質(zhì)得出,證,即可得出;(3)根據(jù)矩形的性質(zhì)和已知得,則解析:(1)DH=HF;(2)DH=HF仍然成立,理由見解析;(3)或.【分析】(1)證明,得,則,則證,得出即可;(2)證,則,由矩形的性質(zhì)得出,證,即可得出;(3)根據(jù)矩形的性質(zhì)和已知得,則,分兩種情況,根據(jù)勾股定理和平行線的性質(zhì)進(jìn)行解答即可.【詳解】解:(1),理由如下:∵四邊形ABCD是矩形,,∴四邊形ABCD是正方形,∴,,∵,,∴,,∴,∵,∴,在和中,,∴,∴,∴,∴,,在和中,,∴,∴,故答案為,(2)仍然成立,理由如下:∵四邊形ABCD是矩形,,,∴∴,∵,∴,∴,∴,∴四邊形ABCD是矩形,,∴,∴,∴,∵四邊形ABCD是矩形,∴,∵,∴,∴,,在和中,,∴,∴,(3)如圖所示,延長(zhǎng)FC交AD于R,∵四邊形ABCD是矩形,∴,,,,∵,,∴,∴,分兩種情況:①當(dāng)時(shí),∵,∴,,在中,由勾股定理得:,∵,,∴,∴,由勾股定理得:EF=;②當(dāng)時(shí),同理可得:,,,,由勾股定理得:,綜上所說,若射線FC過AD的三等分點(diǎn),,,則線段EF的長(zhǎng)為或.【點(diǎn)睛】本題主要考查了正方形的判定與性質(zhì)、矩形的性質(zhì)、平行線的性質(zhì)、全等三角形的判定與性質(zhì)、勾股定理、相似三角形的判定與性質(zhì)等知識(shí),熟練掌握平行線的性質(zhì)和相似三角形的判定與性質(zhì)是解題的關(guān)鍵.5.教材呈現(xiàn):見解析;探究:16;拓展:4【分析】教材呈現(xiàn):先根據(jù)三角形全等的性質(zhì)可得,再根據(jù)線段的和差可得,然后根據(jù)平行四邊形的判定即可得證;探究:先由旋轉(zhuǎn)的性質(zhì)可得,再根據(jù)等底同高可得,從而可解析:教材呈現(xiàn):見解析;探究:16;拓展:4【分析】教材呈現(xiàn):先根據(jù)三角形全等的性質(zhì)可得,再根據(jù)線段的和差可得,然后根據(jù)平行四邊形的判定即可得證;探究:先由旋轉(zhuǎn)的性質(zhì)可得,再根據(jù)等底同高可得,從而可得,然后根據(jù)三角形中位線定理即可得;拓展:先根據(jù)正方形的性質(zhì)和面積可得,從而可得,再根據(jù)等腰直角三角形和勾股定理可得,然后利用三角形的面積公式可得,最后利用平行四邊形的性質(zhì)即可得.【詳解】解:教材呈現(xiàn):補(bǔ)充完整證明過程如下:∴OE=OF,OA=OC,又∵AG=CH,∴OA-AG=OC-CH,即OG=OH,∴四邊形EHFG是平行四邊形;探究:如圖,連接OE,BO,由旋轉(zhuǎn)的性質(zhì)得:,點(diǎn)O是AC的中點(diǎn),點(diǎn)D是AO的中點(diǎn),點(diǎn)F是CO的中點(diǎn),,由等底同高得:,,又點(diǎn)E是AB的中點(diǎn),點(diǎn)O是AC的中點(diǎn),∴S△BEO=S△AEO=4,∴S△ABO=S△BEO+S△AEO=8,,故答案為:16;拓展:如圖,過點(diǎn)E作于點(diǎn)O,四邊形ABCD是面積為16的正方形,,在Rt△ABC中,由勾股定理得,∵AC為正方形的對(duì)角線,∴∠EAO=45°,點(diǎn)E是AB的中點(diǎn),,∵,∴,∴AO=EO,在Rt△AEO中由勾股定理的AO2+EO2=AE2,即2OE2=4解得,,,,由教材呈現(xiàn)可知,四邊形EHFG是平行四邊形,則四邊形EHFG的面積為,故答案為:.【點(diǎn)睛】本題考查了旋轉(zhuǎn)的性質(zhì)、三角形中線性質(zhì)、平行四邊形的判定與性質(zhì)、正方形的性質(zhì),等腰直角三角形性質(zhì),勾股定理等知識(shí)點(diǎn),較難的是拓展,通過作輔助線,構(gòu)造等腰直角三角形是解題關(guān)鍵.6.(1)CM=2BE,CM⊥BE;(2)成立,理由見解析;(3)【分析】(1)設(shè)證明,由點(diǎn)是的中點(diǎn),得到,進(jìn)而求解;(2)證明和,得到,,進(jìn)而求解;(3)證明,過點(diǎn)作于點(diǎn),設(shè),則,,則,即可求解析:(1)CM=2BE,CM⊥BE;(2)成立,理由見解析;(3)【分析】(1)設(shè)證明,由點(diǎn)是的中點(diǎn),得到,進(jìn)而求解;(2)證明和,得到,,進(jìn)而求解;(3)證明,過點(diǎn)作于點(diǎn),設(shè),則,,則,即可求解.【詳解】解:(1)設(shè)交于點(diǎn),為等腰直角三角形,,,,,,,點(diǎn)是的中點(diǎn),則,即,,,即,故答案為:,CM⊥BE;(2),,仍然成立.如圖所示,延長(zhǎng)至使,連接,,,,,,,,,而,,,,,,,,,;(3)由得,,則,由(2)知,,,過點(diǎn)作于點(diǎn),設(shè),則,,,.【點(diǎn)睛】本題是四邊形綜合題,主要考查了正方形的性質(zhì)、直角三角形中線定理、解直角三角形、三角形全等等,綜合性強(qiáng),難度較大.7.(1),;(2)成立,不成立,與的關(guān)系為,見解析;(3)2或14【分析】(1)連接AE,證明△ABC、△APE為等邊三角形,再證明,根據(jù)全等三角形的性質(zhì)可得BP=CE,,再求得,即可得,所有.解析:(1),;(2)成立,不成立,與的關(guān)系為,見解析;(3)2或14【分析】(1)連接AE,證明△ABC、△APE為等邊三角形,再證明,根據(jù)全等三角形的性質(zhì)可得BP=CE,,再求得,即可得,所有.(2)成立,不成立,與的關(guān)系為.選圖2證明:連接,易證,根據(jù)相似三角形的性質(zhì)可得,,根據(jù)等腰直角三角形的性質(zhì)可得,由此可得,結(jié)論可證;選圖3證明,類比圖2的證明方法即可;(3)分圖2和圖3兩種情況求CE的長(zhǎng)即可.【詳解】(1)如圖,連接AE,∵,且,∴△ABC為等邊三角形,∴,AB=AC,∵,且,∴△APE為等邊三角形,∴,AP=AE,∴,∴;在△BAP和△CAE中,,∴,∴BP=CE,,∵,,,∴∠ABP=30°,∴,∴,∴.故答案為:,.(2)成立,不成立,與的關(guān)系為.理由如下:選圖2證明:連接,由題意可知:、均為等腰直角三角形,∴,,∴,即;又∵,∴,∴,,∵,,∴,∴,∴,∴,.選圖3證明:理由如下:連接,由題意可知:、均為等腰直角三角形,∴,,∴,即,又∵,∴,∴,,∵,,∴,∴,∴,∴,;(3)或14.如圖,∵,∴,∵,∴在中,,∴,由(2)知:,∴;如圖,同理可得,∴,∴.綜上:的長(zhǎng)為2或14.【點(diǎn)睛】本題是三角形綜合題,考查了全等三角形的判定與性質(zhì)、相似三角形的判定與性質(zhì)、勾股定理等知識(shí),熟練運(yùn)用相關(guān)知識(shí)是解決問題的關(guān)鍵.8.(1)①;或;證明見解析;②菱形,證明見解析;(2)①;②;③【分析】(1)①利用矩形的性質(zhì)與軸對(duì)稱的性質(zhì)證明如圖1,連接證明即可得到答案;②如圖1,由①得:再證明四邊形為平行四邊形解析:(1)①;或;證明見解析;②菱形,證明見解析;(2)①;②;③【分析】(1)①利用矩形的性質(zhì)與軸對(duì)稱的性質(zhì)證明如圖1,連接證明即可得到答案;②如圖1,由①得:再證明四邊形為平行四邊形與可得結(jié)論;(2)①如圖2,連接由折疊可得:再利用勾股定理可得答案;②如圖3,連接交于證明四邊形是菱形,可得從而可得答案;③由②得:可得,再利用二次函數(shù)的性質(zhì)可得答案.【詳解】解:(1)①矩形由折疊可得:如圖1,連接由折疊可得:同理:故答案為:,或②如圖1,由①得:矩形四邊形為平行四邊形,四邊形為菱形,(2)①如圖2,連接由折疊可得:矩形,,故答案為:②如圖3,連接交于矩形重合,同理可得:由對(duì)折可得:四邊形是菱形,,,故答案為:③由②得:當(dāng)時(shí),最小,最小值為的最小值為:故答案為:【點(diǎn)睛】本題考查的是全等三角形的判定與性質(zhì),平行四邊形的判定,矩形的性質(zhì),菱形的判定與性質(zhì),勾股定理的應(yīng)用,二次函數(shù)的性質(zhì),熟練掌握以上知識(shí)是解題的關(guān)鍵.9.(1)①;②;(2)仍然成立,證明見解析;(3)或【分析】(1)【問題發(fā)現(xiàn)】連接.易證,,三點(diǎn)共線.易知.,推出,從而得出與所夾銳角的度數(shù);(2)【拓展探究】連接,,延長(zhǎng)交的延長(zhǎng)線于點(diǎn),交于點(diǎn)解析:(1)①;②;(2)仍然成立,證明見解析;(3)或【分析】(1)【問題發(fā)現(xiàn)】連接.易證,,三點(diǎn)共線.易知.,推出,從而得出與所夾銳角的度數(shù);(2)【拓展探究】連接,,延長(zhǎng)交的延長(zhǎng)線于點(diǎn),交于點(diǎn),根據(jù)四邊形的性質(zhì)得到,根據(jù)得到,根據(jù)相似三角形的性質(zhì)即可解決問題;(3)【解決問題】需分兩種情況討論:①當(dāng)點(diǎn)M在線段BC上時(shí),連接AB,AN,根據(jù)正方形的性質(zhì)得到∠ABC=∠BAC=45°,∠MAN=45°,可得∠BAM=∠CAN,根據(jù),可得△ABM∽△CAN,從而得到CN=BM,根據(jù),可得到BM=AC-CM=2,從而可求出CN的值;②當(dāng)點(diǎn)M在線段BC的延長(zhǎng)線上時(shí),連接AB,AN,根據(jù)正方形的性質(zhì)得到∠ABC=∠BAC=45°,∠MAN=45°,可得∠BAM=∠CAN,根據(jù),可得△ABM∽△CAN,從而得到CN=BM,根據(jù),可得到BM=AC+CM=6,從而可求出CN的值.【詳解】解:(1)【問題發(fā)現(xiàn)】如圖①中,①線段與的數(shù)量關(guān)系為;②直線與所夾銳角的度數(shù)為.理由:如圖①中,連接.易證,,三點(diǎn)共線.∵.,∴.故答案為,.(2)【拓展探究】結(jié)論不變.理由:連接,,延長(zhǎng)交的延長(zhǎng)線于點(diǎn),交于點(diǎn).∵,∴,∵,∴,∴,∴,∴,∵,∴.(3)【解決問題】①當(dāng)點(diǎn)M在線段BC上時(shí),如圖,連接AB,AN,∵四邊形ADBC,四邊形AMEF為正方形,∴∠ABC=∠BAC=45°,∠MAN=45°,∴∠BAC-∠MAC=∠MAN-∠MAC,即∠BAM=∠CAN,∵,∴△ABM∽△CAN,∴,∴CN=BM,∵,∴BM=AC-CM=2,∴CN=BM=;②當(dāng)點(diǎn)M在線段BC的延長(zhǎng)線上時(shí),如圖,連接AB,AN,∵四邊形ADBC,四邊形AMEF為正方形,∴∠ABC=∠BAC=45°,∠MAN=45°,∴∠BAC+∠MAC=∠MAN+∠MAC,即∠BAM=∠CAN,∵,∴△ABM∽△CAN,∴,∴CN=BM,∵,∴BM=AC+CM=2=6,∴CN=BM=.【點(diǎn)睛】本題考查了正方形的性質(zhì),相似三角形的判定與性質(zhì).解題的關(guān)鍵是正確尋找相似三角形解決問題.10.(1)△PQC,90;(2);(3)線段CQ的長(zhǎng)為2或8.【分析】(1)△ABC是等腰直角三角形,PF∥AC,得到△BPF是等腰直角三角形,證明AF=CP,利用旋轉(zhuǎn)的旋轉(zhuǎn)證明AP=PQ,∠PAF解析:(1)△PQC,90;(2);(3)線段CQ的長(zhǎng)為2或8.【分析】(1)△ABC是等腰直角三角形,PF∥AC,得到△BPF是等腰直角三角形,證明AF=CP,利用旋轉(zhuǎn)的旋轉(zhuǎn)證明AP=PQ,∠PAF=∠QPC,從而可得結(jié)論,(2)過P作PF∥AC,交BA的延長(zhǎng)線于F,則,再證明△AFP≌△PCQ,利用△ABC∽△FBP的性質(zhì)可得答案,(3)分情況討論:當(dāng)P在CB的延長(zhǎng)線上時(shí),證明△APC≌△QPC,利用等邊三角形的性質(zhì)可得答案,當(dāng)P在BC的延長(zhǎng)線上時(shí),連接AQ,利用等邊三角形的性質(zhì),證明△ACQ≌△PCQ,從而可得答案.【詳解】解:(1)如圖①,∵∠ABC=90°,AB=CB,∴△ABC是等腰直角三角形,∵PF∥AC,∴∠BPF=∠BFP=45°,∴△BPF是等腰直角三角形,∴BF=BP,∴AF=CP,由旋轉(zhuǎn)可得,AP=PQ,∠APQ=90°,而∠BPF=45°,∴∠QPC=45°﹣∠APF,又∵∠PAF=∠PFB﹣∠APF=45°﹣∠APF,∴∠PAF=∠QPC,∴△APF≌△PQC,∴∠PCQ=∠AFP=135°,又∵∠ACB=45°,∴∠ACQ=90°,故答案為:△PQC,90;(2)如圖②,過P作PF∥AC,交BA的延長(zhǎng)線于F,則,又∵AB=BC,∴AF=CP,又∵∠FAP=∠ABC+∠APB=α+∠APB,∠CPQ=∠APQ+∠APB=α+∠APB,∴∠FAP=∠CPQ,由旋轉(zhuǎn)可得,PA=PQ,∴△AFP≌△PCQ,∴FP=CQ,∵PF∥AC,∴△ABC∽△FBP,∴,∴(3)如圖,當(dāng)P在CB的延長(zhǎng)線上時(shí),∠CPQ=∠APQ﹣∠APB=60°﹣30°=30°,∴∠APC=∠QPC,又∵AP=QP,PC=PC,∴△APC≌△QPC,∴CQ=AC,又∵BA=BC,∠ABC=60°,∴△ABC是等邊三角形,∴∠ABC=60°,∠BAP=∠ABC﹣∠APB=30°,∴BP=AB=BC=PC=2,∴QC=AC=BC=2;如圖,當(dāng)P在BC的延長(zhǎng)線上時(shí),連接AQ,由旋轉(zhuǎn)可得,AP=QP,∠APQ=∠ABC=60°,∴△APQ是等邊三角形,∴AQ=PQ,∠APQ=60°=∠AQP,又∵∠APB=30°,∠ACB=60°,∴∠CAP=30°,∠CPQ=90°,∴∠CAP=∠APA,∴AC=PC,∴△ACQ≌△PCQ,∴∠AQC=∠PQC=∠AQP=30°,∴Rt△PCQ中,CQ=2CP=8.綜上所述,線段CQ的長(zhǎng)為2或8.【點(diǎn)睛】本題屬于相似形綜合題,主要考查了相似三角形的判定與性質(zhì),全等三角形的判定與性質(zhì)以及含30°角的直角三角形的性質(zhì)的運(yùn)用,解決問題的關(guān)鍵是作輔助線構(gòu)造全等三角形或相似三角形,利用全等三角形的對(duì)應(yīng)邊相等,相似三角形的對(duì)應(yīng)邊成比例進(jìn)行推算.11.(1)①,②;(2),,證明見解析;(3)或【分析】(1)①由銳角三角函數(shù)可得AC=BC,CF=CE,可得AF=AC?CF=(BC?CE),BE=BC?CE,即可求;②由垂直的定義可得AF⊥B解析:(1)①,②;(2),,證明見解析;(3)或【分析】(1)①由銳角三角函數(shù)可得AC=BC,CF=CE,可得AF=AC?CF=(BC?CE),BE=BC?CE,即可求;②由垂直的定義可得AF⊥BE;(2)由題意可證△ACF∽△BCE,可得,∠FAC=∠CBE,由余角的性質(zhì)可證AF⊥BE;(3)分兩種情況討論,由旋轉(zhuǎn)的性質(zhì)和勾股定理可求AF的長(zhǎng).【詳解】解:(1)∵,,∴,∴,∵,∴,∴,∴,∴,,∴,∵,∴,故答案為:,;(2),如圖,連接,延長(zhǎng)交于,交于點(diǎn),∵旋轉(zhuǎn),∴,∵,∴,且,∴,∴,,∵,∴,∴;(3)①如圖,過點(diǎn)作交的延長(zhǎng)線于點(diǎn),∵,,,,∴,,∵,,∴,且三點(diǎn)在同一直線上,∴,∵旋轉(zhuǎn),∴,∴,且,∴,,∴,∴;②如圖,過點(diǎn)作于點(diǎn),∵,,,,∴,,∵,,∴,∵旋轉(zhuǎn),∴,且,∴,,∴,∴.【點(diǎn)睛】本題是相似綜合題,考查了平行線的性質(zhì),直角三角形的性質(zhì),相似三角形的判定和性質(zhì),勾股定理,熟練運(yùn)用這些性質(zhì)進(jìn)行推理是本題的關(guān)鍵.12.(1)BE=DG,BE⊥DG,見解析;(2)5﹣5;(3)6或8【分析】(1)由“SAS”可證△GAD≌△EAB,可得BE=DG,∠ADG=∠ABE,由直角三角形的性質(zhì)可得BE⊥DG;(2)由解析:(1)BE=DG,BE⊥DG,見解析;(2)5﹣5;(3)6或8【分析】(1)由“SAS”可證△GAD≌△EAB,可得BE=DG,∠ADG=∠ABE,由直角三角形的性質(zhì)可得BE⊥DG;(2)由“SAS”可證△GAD≌△EAB,可得BE=DG,∠ADG=∠ABE=15°,可得∠DEB=90°,由直角三角形的性質(zhì)可求解;(3)分兩種情況討論,通過證明△AGD∽△AEB,可得,∠DGA=∠AEB,由勾股定理和三角形中位線定理可求解.【詳解】解:(1)BE=DG,BE⊥DG,理由如下:如圖1:延長(zhǎng)BE交AD于N,交DG于H,∵四邊形ABCD是正方形,四邊形AEFG是正方形,∴AG=AE,AB=AD,∠GAE=∠DAB=90°,∴∠GAD=∠EAB,∴△GAD≌△EAB(SAS),∴BE=DG,∠ADG=∠ABE,∵∠ABE+∠ANB=90°,∴∠ADG+∠DNH=90°,∴∠DHN=90°,∴BE⊥DG;(2)如圖,當(dāng)點(diǎn)G在線段DE上時(shí),連接BD,∵四邊形ABCD是正方形,四邊形AEFG是正方形,∴AG=AE,AB=AD=10,∠GAE=∠DAB=90°,∠ADB=45°=∠ABD,BD=AB=10,GE=AE,∴∠GAD=∠EAB,∴△GAD≌△EAB(SAS),∴BE=DG,∠ADG=∠ABE=15°,∴∠BDE=45°﹣15°=30°,∠DBE=45°+15°=60°,∴∠DEB=90°,∴BE=BD=5=DG,DE=BE=5,∴GE=5﹣5,∴AE==5﹣5,當(dāng)點(diǎn)E在線段DG上時(shí),同理可求AE=5﹣5,故答案為:5﹣5;(3)如圖,若點(diǎn)G在線段DE上時(shí),∵AD=4,AB=4,AG=4,AE=4,∴DB===8,GE===8,∠DAB=∠GAE=90°,∴∠DAG=∠BAE,又∵,∴△AGD∽△AEB,∴,∠DGA=∠AEB,∴BE=DG,∵∠DGA=∠GAE+∠DEA,∠AEB=∠DEB+∠AED,∴∠GAE=∠DEB=90°,∵DB2=DE2+BE2,∴64×13=(DG+8)2+3DG2,∴DG=12或DG=﹣16(舍去),∴BE=12,∵點(diǎn)M,N分別是BD,DE的中點(diǎn),∴MN=BE=6;如圖,當(dāng)點(diǎn)E在線段DG上時(shí),同理可求:BE=16,∵點(diǎn)M,N分別是BD,DE的中點(diǎn),∴MN=BE=8,綜上所述:MN為6或8,故答案為:6或8.【點(diǎn)睛】本題是四邊形綜合題,考查了全等三角形的判定和性質(zhì),正方形的性質(zhì),矩形的性質(zhì),勾股定理的應(yīng)用,相似三角形的判定和性質(zhì),利用分類討論思想解決問題是本題的關(guān)鍵.13.(1)①;②30度;(2)成立,理由見解析;(3)或,理由見解析.【分析】①由得;②延長(zhǎng)DE、CF交于K,由得,再由可得(2)連接BD交AC于點(diǎn)G,先證明可得,再利用“8”字型可得;(3解析:(1)①;②30度;(2)成立,理由見解析;(3)或,理由見解析.【分析】①由得;②延長(zhǎng)DE、CF交于K,由得,再由可得(2)連接BD交AC于點(diǎn)G,先證明可得,再利用“8”字型可得;(3)過點(diǎn)A作,交直線DE于M,再結(jié)合(2)中相似分類討論即可;【詳解】(1)①∵菱形ABCD中,∴,∵∴∴∴;②如解題圖1,延長(zhǎng)DE、CF交于K,∵∴,∵∴∴∴∴(2)成立,理由如下如解題圖2,連接BD交AC于點(diǎn)G,∵四邊形ABCD是菱形,∴,,即直線DE與CF夾角所成的較小角的度數(shù)是30度(3)或理由如下:(1)過點(diǎn)A作,交直線DE于M,如解題圖3:當(dāng)D,E,F三點(diǎn)共線時(shí),由(2)得,(2)如解題圖4,過點(diǎn)A作,當(dāng)D,E,F三點(diǎn)共線時(shí),由(2)得【點(diǎn)睛】本題綜合考察相似三角形的性質(zhì)與判定,菱形的性質(zhì),30°直角三角形的性質(zhì),熟練運(yùn)用性質(zhì)進(jìn)行角度轉(zhuǎn)換是解題的關(guān)鍵14.(1)①;②;(2)(1)中的結(jié)論仍然成立,理由詳見解析;(3)或2或.【分析】(1)利用旋轉(zhuǎn)的性質(zhì)證明△BCD≌△BCE(SAS),可得結(jié)論;(2)結(jié)論仍然成立.利用旋轉(zhuǎn)的性質(zhì)證明△BCD≌解析:(1)①;②;(2)(1)中的結(jié)論仍然成立,理由詳見解析;(3)或2或.【分析】(1)利用旋轉(zhuǎn)的性質(zhì)證明△BCD≌△BCE(SAS),可得結(jié)論;(2)結(jié)論仍然成立.利用旋轉(zhuǎn)的性質(zhì)證明△BCD≌△BCE(SAS),可得結(jié)論;(3)分三種情形利用等邊三角形的判定和性質(zhì)分別求解即可.【詳解】(1)如圖1中,∵CM平分∠ACB,∠ACB=90°,
∠ACM=∠BCM=45°,
根據(jù)旋轉(zhuǎn)的性質(zhì)知:∠DCE=90°,CD=CE,
∴∠BCD=∠BCE=45°,在△BCD和△BCE中,,∴△BCD≌△BCE(SAS),
∴BD=BE,
∵CD=CE,
∴BC垂直平分線段DE,
故答案為:BD=BE,BC⊥DE;(2)結(jié)論仍然成立.理由:∵,點(diǎn)是的中點(diǎn),∴,根據(jù)旋轉(zhuǎn)的性質(zhì)知:∠DCE=,CD=CE,∴,在△BCD和△BCE中,,∴△BCD≌△BCE(SAS),
∴BD=BE,
∵CD=CE,
∴BC垂直平分線段DE,
故BD=BE,BC⊥DE仍然成立;(3)①如圖3(1),當(dāng)時(shí),∵,,,CD是的平分線,∴△ABC是等邊三角形,且邊長(zhǎng)為2,∴AD=AB=1,CD⊥AB,∠ECA=30,根據(jù)旋轉(zhuǎn)的性質(zhì)知:CE=CF,∠ECF=60,∴△EFC是等邊三角形,∵,∴AF=AE,∠DAE=∠GAF,∴∠DAE+∠EAG=∠GAF+∠EAG=60,∴△AEF是等邊三角形,在Rt△ADE中,,∴EF=AE=;②如圖3(2),當(dāng)時(shí),由①得:AD=AB=1,CD⊥AB,△EFC是等邊三角形,∵,∴,∠AGF=∠ADE=90,由①得:∠ECA=∠FCA=30,在Rt△ADC和Rt△FGC中,,∴Rt△ADCRt△FGC,∴,∴;③如圖(3),當(dāng)時(shí),∵,∴,同理可得△EFC是等邊三角形,可求得:∠GFA=30,AG=AD=1,∴,∴;綜上,的長(zhǎng)或2或【點(diǎn)睛】本題屬于幾何變換綜合題,考查了等邊三角形的性質(zhì),旋轉(zhuǎn)變換,全等三角形的判定和性質(zhì),解直角三角形等知識(shí),解題的關(guān)鍵是正確尋找全等三角形解決問題,屬于中考?jí)狠S題.15.(1)相等,;(2)是等邊三角形,理由見解析;(3)面積的最大值為.【分析】(1)根據(jù)"點(diǎn)分別為的中點(diǎn)",可得MNBD,NPCE,根據(jù)三角形外角和定理,等量代換求出.(2)先求出,得出,根據(jù)解析:(1)相等,;(2)是等邊三角形,理由見解析;(3)面積的最大值為.【分析】(1)根據(jù)"點(diǎn)分別為的中點(diǎn)",可得MNBD,NPCE,根據(jù)三角形外角和定理,等量代換求出.(2)先求出,得出,根據(jù)MNBD,NPCE,和三角形外角和定理,可知MN=PN,再等量代換求出,即可求解.(3)根據(jù),可知BD最大值,繼而求出面積的最大值.【詳解】由題意知:AB=AC,AD=AE,且點(diǎn)分別為的中點(diǎn),∴BD=CE,MNBD,NPCE,MN=BD,NP=EC∴MN=NP又∵M(jìn)NBD,NPCE,∠A=,AB=AC,∴∠MNE=∠DBE,∠NPB=∠C,∠ABC=∠C=根據(jù)三角形外角和定理,得∠ENP=∠NBP+∠NPB∵∠MNP=∠MNE+∠ENP,∠ENP=∠NBP+∠NPB,∠NPB=∠C,∠MNE=∠DBE,∴∠MNP=∠DBE+∠NBP+∠C=∠ABC+∠C=.是等邊三角形.理由如下:如圖,由旋轉(zhuǎn)可得在ABD和ACE中.點(diǎn)分別為的中點(diǎn),是的中位線,且同理可證且.在中∵∠MNP=,MN=PN是等邊三角形.根據(jù)題意得:即,從而的面積.∴面積的最大值為.【點(diǎn)睛】本題主要考查了三角形中點(diǎn)的性質(zhì)、三角形相似的判定定理、三角形外角和定理以及圖形旋轉(zhuǎn)的相關(guān)知識(shí);正確掌握三角形相似的判定定理、三角形外角和定理以及圖形旋轉(zhuǎn)的相關(guān)知識(shí)是解題的關(guān)鍵.16.【觀察】①90;②105;【發(fā)現(xiàn)】①50;②y=,補(bǔ)全圖象見解析;【拓展】0<x≤12或48≤x≤72【分析】【觀察】①先據(jù)題意求出兩個(gè)機(jī)器人速度的關(guān)系,再確定第二次迎面相遇的位置,然后設(shè)此時(shí)相解析:【觀察】①90;②105;【發(fā)現(xiàn)】①50;②y=,補(bǔ)全圖象見解析;【拓展】0<x≤12或48≤x≤72【分析】【觀察】①先據(jù)題意求出兩個(gè)機(jī)器人速度的關(guān)系,再確定第二次迎面相遇的位置,然后設(shè)此時(shí)相遇點(diǎn)距點(diǎn)A為m個(gè)單位,根據(jù)題意列方程即可求出結(jié)果;②仿照①的解題思路和方法解答即可;【發(fā)現(xiàn)】①當(dāng)點(diǎn)第二次相遇地點(diǎn)剛好在點(diǎn)B時(shí),根據(jù)題意可列方程150﹣x=2x,解出的x的值即為a的值;②分0<x≤50與50<x<75兩種情況,分別求出正比例函數(shù)與一次函數(shù)的關(guān)系式,進(jìn)一步即可補(bǔ)全函數(shù)圖象;【拓展】分三種情況畫出圖形,然后根據(jù)題意得出相應(yīng)的分式方程,解方程即可得出y與x的關(guān)系,進(jìn)而可得關(guān)于x的不等式,解不等式即可得到結(jié)論.【詳解】解:【觀察】①∵相遇地點(diǎn)與點(diǎn)A之間的距離為30個(gè)單位長(zhǎng)度,∴相遇地點(diǎn)與點(diǎn)B之間的距離為150﹣30=120個(gè)單位長(zhǎng)度,設(shè)機(jī)器人甲的速度為v,則機(jī)器人乙的速度為v=4v,∴機(jī)器人甲從相遇點(diǎn)到點(diǎn)B所用的時(shí)間為,機(jī)器人乙從相遇地點(diǎn)到點(diǎn)A再返回到點(diǎn)B所用時(shí)間為,而,∴機(jī)器人甲與機(jī)器人乙第二次迎面相遇時(shí),機(jī)器人乙從第一次相遇地點(diǎn)到點(diǎn)A,返回到點(diǎn)B,再返回向A時(shí)和機(jī)器人甲第二次迎面相遇,設(shè)此時(shí)相遇點(diǎn)距點(diǎn)A為m個(gè)單位,根據(jù)題意得,30+150+150﹣m=4(m﹣30),解得:m=90,故答案為:90;②∵相遇地點(diǎn)與點(diǎn)A之間的距離為35個(gè)單位長(zhǎng)度,∴相遇地點(diǎn)與點(diǎn)B之間的距離為150﹣35=115個(gè)單位長(zhǎng)度,設(shè)機(jī)器人甲的速度為v,則機(jī)器人乙的速度為,∴機(jī)器人乙從相遇點(diǎn)到點(diǎn)A再到點(diǎn)B所用的時(shí)間為,機(jī)器人甲從相遇點(diǎn)到點(diǎn)B所用時(shí)間為,而,∴機(jī)器人甲與機(jī)器人乙第二次迎面相遇時(shí),機(jī)器人乙從第一次相遇地點(diǎn)到點(diǎn)A,返回到點(diǎn)B,再返回向A時(shí)和機(jī)器人甲第二次迎面相遇,設(shè)此時(shí)相遇點(diǎn)距點(diǎn)A為m個(gè)單位,根據(jù)題意得,35+150+150﹣m=(m﹣35),解得:m=105,故答案為:105;【發(fā)現(xiàn)】①當(dāng)?shù)诙蜗嘤龅攸c(diǎn)剛好在點(diǎn)B時(shí),設(shè)機(jī)器人甲的速度為v,則機(jī)器人乙的速度為,根據(jù)題意知,150﹣x=2x,∴x=50,即:a=50,故答案為:50;②當(dāng)0<x≤50時(shí),點(diǎn)P(50,150)在線段OP上,∴線段OP的表達(dá)式為y=3x,當(dāng)v<時(shí),即當(dāng)50<x<75,此時(shí),第二次相遇地點(diǎn)是機(jī)器人甲在到點(diǎn)B返回向點(diǎn)A時(shí),設(shè)機(jī)器人甲的速度為v,則機(jī)器人乙的速度為,根據(jù)題意知,x+y=(150﹣x+150﹣y),整理,得y=﹣3x+300,∴y與x的函數(shù)關(guān)系式是y=,補(bǔ)全圖象如圖2所示:【拓展】①如圖,由題意知,,∴y=5x,∵0<y≤60,∴0<x≤12;②如圖,∴,∴y=﹣5x+300,∵0≤y≤60,∴48≤x≤60,③如圖,由題意得,=,∴y=5x﹣300,∵0≤y≤60,∴60≤x≤72,∵0<x<75,∴48≤x≤72,綜上所述,相遇地點(diǎn)與點(diǎn)A之間的距離x的取值范圍是0<x≤12或48≤x≤72,故答案為:0<x≤12或48≤x≤72.【點(diǎn)睛】本題考查了一次函數(shù)的應(yīng)用、分式方程的應(yīng)用、兩點(diǎn)間的距離、一元一次方程和一元一次不等式的應(yīng)用,難度較大,正確理解題意、靈活應(yīng)用數(shù)形結(jié)合的思想是解題的關(guān)鍵.17.BN=或;(1)見解析;(2)∠B=15°;(3)見解析.【分析】定義:根據(jù)勾股點(diǎn)的定理,即可求出BN的長(zhǎng);(1)根據(jù)已知條件可得到CG=GM,CH=HN,得到DG=AM,GH=MN,EH=B解析:BN=或;(1)見解析;(2)∠B=15°;(3)見解析.【分析】定義:根據(jù)勾股點(diǎn)的定理,即可求出BN的長(zhǎng);(1)根據(jù)已知條件可得到CG=GM,CH=HN,得到DG=AM,GH=MN,EH=BN,根據(jù)條件求出(BN)2=(MN)2+(AM)2,即可得到結(jié)果;(2)連接PD,根據(jù)已知條件可得PC2+BD2=CD2,進(jìn)而求出∠PDC=∠A,在Rt△PCD中,得到2∠A+∠A=90°,即可得到結(jié)果;(3)根據(jù)已知條件先求得點(diǎn)F的坐標(biāo)為(2﹣,),即可求得BF、EF,根據(jù)已知條件可得BF2+AE2=16+2a2﹣8a+﹣=EF2,即可求得結(jié)果;【詳解】定義:∵點(diǎn)M、N是線段AB的勾股點(diǎn),∴或,∴BN=.(1)如圖,∵CD=DA,CE=EB,∴DE∥AB,∴CG=GM,CH=HN,∴DG=AM,GH=MN,EH=BN,∵BN2=MN2+AM2,∴BN2=MN2+AM2,∴(BN)2=(MN)2+(AM)2,∴EH2=GH2+DG2,∴G、H是線段DE的勾股點(diǎn).(2)如圖所示,連接PD,∵AC=PC,∴∠A=∠APC,∴∠PCD=2∠A,∵C,D是線段AB的勾股點(diǎn),∴AC2+BD2=CD2,∴PC2+BD2=CD2,∵CD是⊙O的直徑,∴∠CPD=90°,∴PC2+PD2=CD2,∴PD=BD,∴∠PDC=2∠B,∵∠A=2∠B,∴∠PDC=∠A,在Rt△PCD中,∵∠PCD+∠PDC=90°,∴2∠A+∠A=90°,解得∠A=30°,則∠B=∠A=15°.(3)∵點(diǎn)P(a,b)是反比例函數(shù)y=(x>0)上的動(dòng)點(diǎn),∴b=.∵直線y=﹣x+2與坐標(biāo)軸分別交于A、B兩點(diǎn),∴點(diǎn)B的坐標(biāo)為(0,2),點(diǎn)A的坐標(biāo)為(2,0);當(dāng)x=a時(shí),y=﹣x+2=2﹣a,∴點(diǎn)E的坐標(biāo)為(a,2﹣a);當(dāng)y=時(shí),有﹣x+2=,解得:x=2﹣,∴點(diǎn)F的坐標(biāo)為(2﹣,).∴BF==(2﹣),EF=,=|2﹣a﹣|,AE==(2﹣a).∵BF2+AE2=16+2a2﹣8a+﹣=EF2,∴以BF、AE、EF為邊的三角形是一個(gè)直角三角形,∴E、F是線段AB的勾股點(diǎn).【點(diǎn)睛】本題主要考查了勾股定理的擴(kuò)展應(yīng)用,結(jié)合中位線定理、圓周角定理等知識(shí)點(diǎn)解題是關(guān)鍵.18.(1)相似;(2)AB∥EC,理由見解析;(3)3.【分析】(1)結(jié)論:相似.先判斷出△BAC∽△DAE,即可得出結(jié)論.(2)利用等腰三角形的性質(zhì)證明∠ABC=40°,∠ECB=40°,推出∠解析:(1)相似;(2)AB∥EC,理由見解析;(3)3.【分析】(1)結(jié)論:相似.先判斷出△BAC∽△DAE,即可得出結(jié)論.(2)利用等腰三角形的性質(zhì)證明∠ABC=40°,∠ECB=40°,推出∠ABC=∠ECB即可.(3)如圖3中,以P為圓心,PB為半徑作⊙P.利用圓周角定理證明∠BCE=∠BPE=40°,推出AB∥CE,因?yàn)辄c(diǎn)E在射線CE上運(yùn)動(dòng),點(diǎn)P在線段AD上運(yùn)動(dòng),所以當(dāng)點(diǎn)P運(yùn)動(dòng)到與點(diǎn)A重合時(shí),AE的值最小,此時(shí)AE的最小值=AB=3.【詳解】解:(1)如圖①中,∵△ABC與△ACE為等腰三角形,且兩頂角∠ABC=∠ADE,∴BA=BC,DA=DE,∴∠BAC=∠DAE,∴△BAC∽△DAE,∴=,∴=,∵∠BAC=∠DAE,∴∠BAD=∠CAE,∴△BAD∽△CAE.故答案為:相似.(2)如圖2中,結(jié)論:AB∥EC.理由:∵∠BPE=80°,PB=PE,∴∠PEB=∠PBE=50°,∵AB=AC,BD=DC,∴AD⊥BC,∴∠BDE=90°,∴∠EBD=90°﹣50°=40°,∵AE垂直平分線段BC,∴EB=EC,∴∠ECB=∠EBC=40°,∵AB=AC,∠BAC=100°,∴∠ABC=∠ACB=40°,∴∠ABC=∠ECB,∴AB∥EC.故答案為50,AB∥EC.(2)如圖3中,以P為圓心,PB為半徑作⊙P.∵AD垂直平分線段BC,∴PB=PC,∴∠BCE=∠BPE=40°,∵∠ABC=40°,∴AB∥EC.如圖4中,作AH⊥CE于H,∵點(diǎn)E在射線CE上運(yùn)動(dòng),點(diǎn)P在線段AD上運(yùn)動(dòng),∴當(dāng)點(diǎn)P運(yùn)動(dòng)到與點(diǎn)A重合時(shí),AE的值最小,此時(shí)AE的最小值=AB=3.【點(diǎn)睛】本題主要考查等腰三角形的性質(zhì)、相似三角形的性質(zhì)與判定及圓的基本性質(zhì),關(guān)鍵是根據(jù)題意得到三角形的相似,然后結(jié)合等腰三角形的性質(zhì)得到問題答案,關(guān)鍵是要利用圓的基本性質(zhì)求解最值問題.19.(1);(2)詳見解析;(3)或【分析】(1)根據(jù)旋轉(zhuǎn)的性質(zhì)可得AC=CD,然后求出△ACD是等邊三角形,根據(jù)等邊三角形的性質(zhì)可得AC=AD,再根據(jù)直角三角形30°角所對(duì)的直角邊等于斜邊的一半求解析:(1);(2)詳見解析;(3)或【分析】(1)根據(jù)旋轉(zhuǎn)的性質(zhì)可得AC=CD,然后求出△ACD是等邊三角形,根據(jù)等邊三角形的性質(zhì)可得AC=AD,再根據(jù)直角三角形30°角所對(duì)的直角邊等于斜邊的一半求出AC=AB,然后求出AC=BD,再根據(jù)等邊三角形的性質(zhì)求出點(diǎn)C到AB的距離等于點(diǎn)D到AC的距離,然后根據(jù)等底等高的三角形的面積相等解答;(2)根據(jù)旋轉(zhuǎn)的性質(zhì)可得BC=CE,AC=CD,再求出∠ACN=∠DCM,然后利用“角角邊”證明△ACN和△DCM全等,根據(jù)全等三角形對(duì)應(yīng)邊相等可得AN=DM,然后利用等底等高的三角形的面積相等證明;
(3)過點(diǎn)D作//BE,求出四邊形是菱形,根據(jù)菱形的對(duì)邊相等可得BE=,然后根據(jù)等底等高的三角形的面積相等可知點(diǎn)為所求的點(diǎn),過點(diǎn)D作⊥BD,求出∠=60°,從而得到△是等邊三角形,然后求出,再求出∠=∠,利用“邊角邊”證明△和全等,根據(jù)全等三角形的面積相等可得點(diǎn)也是所求的點(diǎn),根據(jù)菱形和等邊三角形的性
溫馨提示
- 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 廣東韶關(guān)翁源中學(xué)教育集團(tuán)2026年第一批赴外地院校公開招聘教師備考題庫(kù)參考答案詳解
- 廣州南洋理工職業(yè)學(xué)院2026年春季學(xué)期教職工招聘?jìng)淇碱}庫(kù)及1套參考答案詳解
- 廣州市天河區(qū)美好居幼兒園2026年1月編外聘用制專任教師招聘?jìng)淇碱}庫(kù)及完整答案詳解1套
- 酶制劑微生物菌種工操作水平考核試卷含答案
- 通信行業(yè)2025Q3財(cái)報(bào)總結(jié)業(yè)績(jī)持續(xù)增長(zhǎng)看好算力景氣度持續(xù)及端側(cè)AI放量
- 靜電成像顯影材料墨粉(色調(diào)劑)制造工班組協(xié)作評(píng)優(yōu)考核試卷含答案
- 銳明技術(shù)深度報(bào)告:商用車AI龍頭下游全面開花、出海加速滲透
- 重過磷酸鈣生產(chǎn)工安全素養(yǎng)模擬考核試卷含答案
- 電工合金金屬粉末處理工崗前基礎(chǔ)實(shí)操考核試卷含答案
- 香料精制工崗前安全規(guī)程考核試卷含答案
- 2025年蘇州工業(yè)園區(qū)領(lǐng)軍創(chuàng)業(yè)投資有限公司招聘?jìng)淇碱}庫(kù)及參考答案詳解一套
- 水電維修工面試題庫(kù)含答案
- 2025年中醫(yī)執(zhí)業(yè)醫(yī)師考試試卷及答案
- 道路施工臨時(shí)交通疏導(dǎo)方案
- 雨課堂學(xué)堂在線學(xué)堂云《城市規(guī)劃理論與方法(江蘇師大 )》單元測(cè)試考核答案
- 管理學(xué)原理期末總復(fù)習(xí)重點(diǎn)
- 高邊坡施工測(cè)量方案設(shè)計(jì)
- 2025年企業(yè)戰(zhàn)略研究員招聘面試參考題庫(kù)及答案
- 電力工程結(jié)算管理
- (人教2024版PEP)英語(yǔ)二年級(jí)上冊(cè)全冊(cè)單元測(cè)試(含答案+聽力音頻)新教材
- 雨課堂在線學(xué)堂《文獻(xiàn)管理與信息分析》課后作業(yè)單元考核答案
評(píng)論
0/150
提交評(píng)論