版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
安徽省界首市中考數(shù)學(xué)真題分類(勾股定理)匯編章節(jié)測試考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題14分)一、單選題(7小題,每小題2分,共計14分)1、如圖,已知點E在正方形ABCD內(nèi),滿足∠AEB=90°,AE=6,BE=8,則陰影部分的面積是()A.48 B.60C.76 D.802、如圖,在中,,,,為邊上一動點,于,于,為中點,則的最小值為(
).A. B. C. D.3、如圖,三角形紙片ABC,點D是BC邊上一點,連接AD,把△ABD沿著AD翻折,得到△AED,DE與AC交于點G,連接BE交AD于點F.若DG=GE,AF=6,BF=4,△ADG的面積為8,則點F到BC的距離為()A. B. C. D.4、如圖,一棵大樹在一次強臺風(fēng)中距地面5m處折斷,倒下后樹頂端著地點A距樹底端B的距離為12m,這棵大樹在折斷前的高度為(
)A.10m B.15m C.18m D.20m5、如圖,在△ABC中,AB=6,AC=9,AD⊥BC于D,M為AD上任一點,則MC2-MB2等于(
)A.29 B.32 C.36 D.456、一個直角三角形的兩條直角邊邊長分別為6和8,則斜邊上的高為(
)A.4.5 B.4.6 C.4.8 D.57、如圖,正方形ABCD中,AB=12,將△ADE沿AE對折至△AEF,延長EF交BC于點G,G剛好是BC邊的中點,則ED的長是()A.2 B.3 C.4 D.5第Ⅱ卷(非選擇題86分)二、填空題(8小題,每小題2分,共計16分)1、學(xué)習(xí)完《勾股定理》后,尹老師要求數(shù)學(xué)興趣小組的同學(xué)測量學(xué)校旗桿的高度.同學(xué)們發(fā)現(xiàn)系在旗桿頂端的繩子垂到了地面并多出了一段,但這條繩子的長度未知.如圖,經(jīng)測量,繩子多出的部分長度為1米,將繩子沿地面拉直,繩子底端距離旗桿底端4米,則旗桿的高度為______米.2、如圖,在正方形網(wǎng)格中,點A,B,C,D,E是格點,則∠ABD+∠CBE的度數(shù)為_____________.
3、一根直立于水中的蘆節(jié)(BD)高出水面(AC)2米,一陣風(fēng)吹來,蘆葦?shù)捻敹薉恰好到達水面的C處,且C到BD的距離AC=6米,水的深度(AB)為________米4、云頂滑雪公園是北京2022年冬奧會7個雪上競賽場館中唯一利用現(xiàn)有雪場改造而成的.下圖左右兩幅圖分別是公園內(nèi)云頂滑雪場U型池的實景圖和示意圖,該場地可以看作是從一個長方體中挖去了半個圓柱而成,它的橫截面圖中半圓的半徑為,其邊緣,點E在上,.一名滑雪愛好者從點A滑到點E,他滑行的最短路線長為_________m.5、如圖,臺風(fēng)過后,某希望小學(xué)的旗桿在離地某處斷裂,且旗桿頂部落在離旗桿底部8m處,已知旗桿原長16m,你能求出旗桿在離底部________m位置斷裂.6、如圖,在的網(wǎng)格中每個小正方形的邊長都為1,的頂點、、都在格點上,點為邊的中點,則線段的長為________.7、某小區(qū)兩面直立的墻壁之間為安全通道,一架梯子斜靠在左墻DE時,梯子A到左墻的距離AE為0.7m,梯子頂端D到地面的是樣子離DE為2.4m,若梯子底端A保持不動,將梯子斜塞在右墻BC上,梯子頂端C到地面的距離CB為1.5m,則這兩面直立墻壁之間的安全道的寬BE為__________m.8、如圖所示,在四邊形ABCD中,AB=5,BC=3,DE⊥AC于E,DE=3,S△DAC=6,則∠ACB的度數(shù)等于_____.三、解答題(7小題,每小題10分,共計70分)1、拖拉機行駛過程中會對周圍產(chǎn)生較大的噪聲影響.如圖,有一臺拖拉機沿公路AB由點A向點B行駛,已知點C為一所學(xué)校,且點C與直線AB上兩點A,B的距離分別為150m和200m,又AB=250m,拖拉機周圍130m以內(nèi)為受噪聲影響區(qū)域.(1)學(xué)校C會受噪聲影響嗎?為什么?(2)若拖拉機的行駛速度為每分鐘50米,拖拉機噪聲影響該學(xué)校持續(xù)的時間有多少分鐘?2、我國古代的數(shù)學(xué)名著《九章算術(shù)》中記載“今有竹高一丈八,末折抵地,去本6尺.問:折者高幾何?”譯文:一根竹子,原高一丈八,蟲傷有病,一陣風(fēng)將竹子折斷,其竹梢恰好著地,著地處離原竹子根部6尺遠.問:折處離地還有多高的竹子?(1丈=10尺)3、我市《道路交通管理條例》規(guī)定:小汽車在城市街道上的行駛速度不得超過60km/h.如圖,一輛小汽車在一條城市街道上沿直道行駛,某一時刻剛好行駛到車速檢測點A正前方30m的C處,2秒后又行駛到與車速檢測點A相距50m的B處.請問這輛小汽車超速了嗎?若超速,請求出超速了多少?4、(1)圖1是由有20個邊長為1的正方形組成的,把它按圖1的分割方法分割成5部分后可拼接成一個大正方形(內(nèi)部的粗實線表示分割線),請你在圖2的網(wǎng)格中畫出拼接成的大正方形.(2)如果(1)中分割成的直角三角形兩直角邊分別為a,b斜邊為c.請你利用圖2中拼成的大正方形證明勾股定理.(3)應(yīng)用:測量旗桿的高度:校園內(nèi)有一旗桿,小希想知道旗桿的高度,經(jīng)觀察發(fā)現(xiàn)從頂端垂下一根拉繩,于是他測出了下列數(shù)據(jù):①測得拉繩垂到地面后,多出的長度為0.5米;②他在距離旗桿4米的地方拉直繩子,拉繩的下端恰好距離地面0.5米.請你根據(jù)所測得的數(shù)據(jù)設(shè)計可行性方案,解決這一問題.(畫出示意圖并計算出這根旗桿的高度).5、已知a,b,c為△ABC的三邊,且滿足a2c2﹣b2c2=a4﹣b4,試判定△ABC的形狀.6、下圖是某“飛越叢林”俱樂部新近打造的一款兒童游戲項目,工作人員告訴小敏,該項目AB段和BC段均由不銹鋼管材打造,總長度為26米,長方形CDEF為一木質(zhì)平臺的主視圖.小敏經(jīng)過現(xiàn)場測量得知:CD=1米,AD=15米,于是小敏大膽猜想立柱AB段的長為10米,請判斷小敏的猜想是否正確?如果正確,請寫出理由,如果錯誤,請求出立柱AB段的正確長度.7、如圖,在△ABC中,∠C=90°,M是BC的中點,MD⊥AB于D,求證:.-參考答案-一、單選題1、C【解析】【詳解】解:∵∠AEB=90°,AE=6,BE=8,∴AB=∴S陰影部分=S正方形ABCD-SRt△ABE=102-=100-24=76.故選:C.2、D【解析】【分析】先根據(jù)矩形的判定得出AEPF是矩形,再根據(jù)矩形的性質(zhì)得出EF,AP互相平分,且EF=AP,再根據(jù)垂線段最短的性質(zhì)就可以得出AP⊥BC時,AP的值最小,即AM的值最小,根據(jù)面積關(guān)系建立等式求出其解即可.【詳解】解:如圖,連接AP,∵AB=3,AC=4,BC=5,∴∠EAF=90°,∵PE⊥AB于E,PF⊥AC于F,∴四邊形AEPF是矩形,∴EF,AP互相平分.且EF=AP,∴EF,AP的交點就是M點.∵當AP的值最小時,AM的值就最小,∴當AP⊥BC時,AP的值最小,即AM的值最?。逜P?BC=AB?AC,∴AP?BC=AB?AC,∵AB=3,AC=4,BC=5,∴5AP=3×4,∴AP=,∴AM=.故選:D.【考點】本題考查了矩形的性質(zhì)的運用,勾股定理的運用,三角形的面積公式的運用,垂線段最短的性質(zhì)的運用,解題的關(guān)鍵是求出AP的最小值.3、C【解析】【分析】先求出△ABD的面積,根據(jù)三角形的面積公式求出DF,設(shè)點F到BD的距離為h,根據(jù)?BD?h=?BF?DF,求出BD即可解決問題.【詳解】解:∵DG=GE,∴S△ADG=S△AEG=8,∴S△ADE=16,由翻折可知,△ADB≌△ADE,BE⊥AD,∴S△ABD=S△ADE=16,∠BFD=90°,∴?(AF+DF)?BF=16,∴?(6+DF)×4=16,∴DF=2,∴DB=,設(shè)點F到BD的距離為h,則有?BD?h=?BF?DF,∴h=4×2,∴h=,∴點F到BC的距離為.故選:C【考點】此題考查了翻折變換,三角形的面積,勾股定理等知識,解題的關(guān)鍵是靈活運用所學(xué)知識解決問題,學(xué)會利用參數(shù)構(gòu)建方程解決問題.4、C【解析】【詳解】∵樹的折斷部分與未斷部分、地面恰好構(gòu)成直角三角形,且BC=5m,AB=12m,∴AC===13m,∴這棵樹原來的高度=BC+AC=5+13=18m.故選C.5、D【解析】【分析】在Rt△ABD及Rt△ADC中可分別表示出BD2及CD2,在Rt△BDM及Rt△CDM中分別將BD2及CD2的表示形式代入表示出BM2和MC2,然后作差即可得出結(jié)果.【詳解】解:在Rt△ABD和Rt△ADC中,BD2=AB2?AD2,CD2=AC2?AD2,在Rt△BDM和Rt△CDM中,BM2=BD2+MD2=AB2?AD2+MD2,MC2=CD2+MD2=AC2?AD2+MD2,∴MC2?MB2=(AC2?AD2+MD2)?(AB2?AD2+MD2)=AC2?AB2=45.故選:D.【考點】本題考查了勾股定理的知識,題目有一定的技巧性,比較新穎,解答本題需要認真觀察,分別兩次運用勾股定理求出MC2和MB2是本題的難點,重點還是在于勾股定理的熟練掌握.6、C【解析】【分析】根據(jù)勾股定理求出斜邊的長,再根據(jù)面積法求出斜邊的高.【詳解】解:設(shè)斜邊長為c,高為h.由勾股定理可得:c2=62+82,則c=10,直角三角形面積S=×6×8=×c×h,可得h=4.8,故選:C.【考點】本題考查了勾股定理,利用勾股定理求直角三角形的邊長和利用面積法求直角三角形的高是解決此類題的關(guān)鍵.7、C【解析】【分析】連接AG,證明△ABG≌△AFG,得到FG=BG,△ADE沿AE對折至△AEF,則EF=DE,設(shè)DE=x,則EF=x,EC=12-x,則Rt△EGC中根據(jù)勾股定理列方程可求出DE的值.【詳解】如圖,連接AG,∵四邊形ABCD是正方形,∴∠A=∠B=∠C=∠D=90°,AB=BC=CD=AD=12.∵△ADE沿AE對折至△AEF,∴EF=DE,AF=AD,∵AF=AD,AB=AD,∴AF=AB,又AG是公共邊,∴△ABG≌△AFG(HL),∵G剛好是BC邊的中點,∴BG=FG=,設(shè)DE=x,則EF=x,EC=12-x,在Rt△EGC中,根據(jù)勾股定理列方程:62+(12-x)2=(x+6)2解得:x=4.所以ED的長是4,答案選C.【考點】本題考查了正方形和全等三角形的綜合知識,根據(jù)勾股定理列方程是本題的解題關(guān)鍵.二、填空題1、7.5;【解析】【分析】旗桿、拉直的繩子與地面構(gòu)成直角三角形,根據(jù)題中數(shù)據(jù),用勾股定理即可解答.【詳解】解:如圖,設(shè)旗桿的長度為xm,則繩子的長度為:(x+1)m,在Rt△ABC中,由勾股定理得:x2+42=(x+1)2,解得:x=7.5,∴旗桿的高度為7.5m,故答案為7.5.【考點】本題考查的是勾股定理的應(yīng)用,根據(jù)題意得出直角三角形是解答此題的關(guān)鍵.2、45°【解析】【分析】取網(wǎng)格點M、N、F,連接AM、AN、BM、MF、BN,根據(jù)網(wǎng)格線可得到∠ABD+∠CBE=∠MAB,再根據(jù)勾股定理的逆定理證明△ABM是直角三角形,且AM=BM,即可得解.【詳解】取網(wǎng)格點M、N、F,連接AM、AN、BM、MF、BN,如圖,根據(jù)網(wǎng)格線可知NB=1=MF,AN=3,AF=2,由網(wǎng)格圖可知∠CBE=∠FAM,∠ABD=∠NAB,則∠ABD+∠CBE=∠MAB,在Rt△ANB中,有,同理可求得:,∵,∴△ABM是直角三角形,且AM=BM,∴∠MAB=45°,即:∠ABD+∠CBE=45°,故答案為:45°.【考點】本題考查了勾股定理即勾股定理的逆定理、等腰直角三角形等知識,求得∠ABD+∠CBE=∠MAB是解答本題的關(guān)鍵.3、8【解析】【分析】先設(shè)水深x米,則AB=x,則有BD=AD+AB=x+2,由題條件有BD=BC=x+2,又根據(jù)蘆節(jié)直立水面可知BD⊥AC,則在直角△ABC中,利用勾股定理即可求出x.【詳解】解:設(shè)水深x米,則AB=x,則有:BD=AD+AB=x+2,即有:BD=BC=x+2,根據(jù)蘆節(jié)直立水面,可知BD⊥AC,且AC=6,則在直角△ABC中:,即:,解得x=8,即水深8米,故答案為8.【考點】本題考查了勾股定理的應(yīng)用,從現(xiàn)實圖形中抽象出勾股定理這一模型是解答本題的關(guān)鍵.4、【解析】【分析】根據(jù)題意可得,AD=12m,DE=CD﹣CE=24﹣4=20m,線段AE即為滑行的最短路線長.在Rt△ADE中,根據(jù)勾股定理即可求出滑行的最短路線長.【詳解】解:如圖,根據(jù)題意可知:AD==12,DE=CD﹣CE=24﹣4=20,線段AE即為滑行的最短路線長.在Tt△ADE中,根據(jù)勾股定理,得AE=(m).故答案為:【考點】本題考查了平面展開﹣最短路徑問題,解決本題的關(guān)鍵是掌握圓柱的側(cè)面展開圖是矩形,利用勾股定理求最短距離.5、6【解析】【分析】設(shè),則,在中,利用勾股定理列方程,即可求解.【詳解】解:如圖,由題意知,,,設(shè),則,在中,,即,解得,因此旗桿在離底部6m位置斷裂.故答案為:6.【考點】本題考查勾股定理的實際應(yīng)用,讀懂題意,根據(jù)勾股定理列出方程是解題的關(guān)鍵.6、2.5【解析】【分析】由勾股定理得AC2=20,BC2=5,AB2=25,則AC2+BC2=AB2,再由勾股定理的逆定理證明△ABC是直角三角形,然后由直角三角形斜邊上的中線性質(zhì)即可得出答案.【詳解】解:由勾股定理得:AC2=22+42=20,BC2=12+22=5,AB2=42+32=25,∴AC2+BC2=AB2,∴△ABC是直角三角形,∠ACB=90°,AB=5,∵點O為AB邊的中點,∴CO=AB=2.5,故答案為:2.5.【考點】本題考查了勾股定理、勾股定理的逆定理以及直角三角形斜邊上的中線性質(zhì)等知識,熟練掌握勾股定理和勾股定理的逆定理是解題的關(guān)鍵.7、2.7【解析】【分析】先根據(jù)勾股定理求出AD的長,同理可得出AB的長,進而可得出結(jié)論.【詳解】在Rt△ACB中,∵∠ACB=90°,AE=0.7米,DE=2.4米,∴AD2=0.72+2.42=6.25.在Rt△A′BD中,∵∠ABC=90°,BC=1.5米,AB2+BC2=AC2,∴AB2+1.52=6.25,∴AB2=4.∵AB>0,∴AB=2米.∴BE=AE+AB=0.7+2=2.7米.故答案為2.7.【考點】本題考查的是勾股定理的應(yīng)用,在應(yīng)用勾股定理解決實際問題時,勾股定理與方程的結(jié)合是解決實際問題常用的方法,關(guān)鍵是從題中抽象出勾股定理這一數(shù)學(xué)模型,畫出準確的示意圖.領(lǐng)會數(shù)形結(jié)合的思想的應(yīng)用.8、90°##90度【解析】【分析】根據(jù)三角形面積公式求出AC=4,根據(jù)勾股定理逆定理即可求出∠ACB=90°.【詳解】解:∵DE⊥AC于E,DE=3,S△DAC=6,∴×AC×DE=6,∴AC=4,∴,∵AB=5,∴AB2=25,∴,∴∠ACB=90°.故答案為:90°【考點】本題考查了勾股定理逆定理和三角形的面積應(yīng)用,熟練掌握勾股定理逆定理是解題關(guān)鍵.三、解答題1、(1)會受噪聲影響,理由見解析;(2)有2分鐘;【解析】【分析】(1)利用勾股定理的逆定理得出△ABC是直角三角形,進而利用三角形面積得出CD的長,進而得出學(xué)校C是否會受噪聲影響;(2)利用勾股定理得出ED以及EF的長,進而得出拖拉機噪聲影響該學(xué)校持續(xù)的時間.【詳解】解:(1)學(xué)校C會受噪聲影響.理由:如圖,過點C作CD⊥AB于D,∵AC=150m,BC=200m,AB=250m,∴AC2+BC2=AB2.∴△ABC是直角三角形.∴AC×BC=CD×AB,∴150×200=250×CD,∴CD==120(m),∵拖拉機周圍130m以內(nèi)為受噪聲影響區(qū)域,∴學(xué)校C會受噪聲影響.(2)當EC=130m,F(xiàn)C=130m時,正好影響C學(xué)校,∵ED==50(m),∴EF=50×2=100(m),∵拖拉機的行駛速度為每分鐘50米,∴100÷50=2(分鐘),即拖拉機噪聲影響該學(xué)校持續(xù)的時間有2分鐘.【考點】本題考查的是勾股定理在實際生活中的運用,解答此類題目的關(guān)鍵是構(gòu)造出直角三角形,再利用勾股定理解答.2、尺【解析】【分析】設(shè)原處還有尺高的竹子,由題意得到折后竹子豎直高度+斜倒部分的長度=18尺,再運用勾股定理列方程即可求解.【詳解】解:設(shè)折處離地還有尺高的竹子,如圖,在中,AC=x尺,則AB=一丈八-AC=(18-x)尺由勾股定理得,所以,解得:.答:折處離地還有尺高的竹子.【考點】此題考查勾股定理解決實際問題.此題中的直角三角形只知道一直角邊,另兩邊未知往往要列方程求解.3、超速了,超速了12km/h【解析】【分析】由勾股定理可求得小汽車行駛的距離,再除以小汽車行駛的時間即為小汽車行駛的車速,再與限速比較即可.【詳解】.解:由已知得∴在直角三角形ABC中AB2=AC2+BC2∴BC2=AB2-AC2=,又
∵72-60=12km/h∴這輛小汽車超速了,超速了12km/h.【考點】本題考查了勾股定理,其中1米/秒=3.6千米/時的速度換算是易錯點.4、(1)見解析;(2)見解析;(3)在四邊形ABCD中,AB⊥BC,DC⊥BC,AD比AB長0.5米,BC=4米,CD=0.5米,求AB的長;8米【解析】【分析】(1)將圖1分割成五塊:四個直角邊分別為1、2的直角三角形,一個邊長為2的正方形,再在圖2中,拼成邊長為的正方形即可.(2)根據(jù)20個小正方形的面積的和等于拼成的正方形的面積,根據(jù)勾股定理確定截線的長度即可;(3)根據(jù)題意,畫出圖形,可將該問題抽象為解直角三角形問題,該直角三角形的斜邊比其中一條直角邊多1m,而另一條直角邊長為5m,可以根據(jù)勾股定理求出斜邊的長即可.【詳解】解:(1)如圖(2)==∴(3)如圖,在四邊形ABCD中,AB⊥BC,DC⊥BC,AD比AB長0.5米,BC=4米,CD=0.5米,求AB的長.解:過點D作DE⊥AB,垂足為E∵AB⊥BC,DC⊥BC∴∠B=∠C=∠DEB=90o∴四邊形BCDE是矩形∴ED=BC=4,BE
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年高職(鐵道交通運營管理)鐵道運營基礎(chǔ)試題及答案
- 2025年高職護理(護理評估技術(shù))試題及答案
- 2025年高職環(huán)境地質(zhì)工程(地質(zhì)環(huán)境監(jiān)測)試題及答案
- 2025年大學(xué)本科三年級(中藥學(xué))中藥炮制學(xué)測試題及答案
- 2025年中職電子商務(wù)(電商運營基礎(chǔ))試題及答案
- 2025年中職學(xué)前教育(舞蹈技能)試題及答案
- 2025江西南昌安義縣城市建設(shè)投資發(fā)展集團有限公司招聘工作人員1人備考題庫及答案詳解(新)
- 農(nóng)村消防安全防控措施
- 四川省綿陽市2026屆高三第二次診斷考試數(shù)學(xué)試題B(含答案)
- 河北省衡水市安平中學(xué)2025-2026學(xué)年高二上學(xué)期1月月考歷史試題
- 湖北省荊州市八縣市2023-2024學(xué)年高二上學(xué)期期末考試物理試卷
- GB/T 15231-2023玻璃纖維增強水泥性能試驗方法
- ESC2023年心臟起搏器和心臟再同步治療指南解讀
- 五年級上冊道德與法治期末測試卷推薦
- 超額利潤激勵
- GB/T 2624.1-2006用安裝在圓形截面管道中的差壓裝置測量滿管流體流量第1部分:一般原理和要求
- 蘭渝鐵路指導(dǎo)性施工組織設(shè)計
- CJJ82-2019-園林綠化工程施工及驗收規(guī)范
- 小學(xué)三年級閱讀練習(xí)題《鴨兒餃子鋪》原文及答案
- 六宮格數(shù)獨100題
- 廚房設(shè)施設(shè)備檢查表
評論
0/150
提交評論