難點(diǎn)解析-人教版8年級數(shù)學(xué)上冊《軸對稱》定向測評試題(解析版)_第1頁
難點(diǎn)解析-人教版8年級數(shù)學(xué)上冊《軸對稱》定向測評試題(解析版)_第2頁
難點(diǎn)解析-人教版8年級數(shù)學(xué)上冊《軸對稱》定向測評試題(解析版)_第3頁
難點(diǎn)解析-人教版8年級數(shù)學(xué)上冊《軸對稱》定向測評試題(解析版)_第4頁
難點(diǎn)解析-人教版8年級數(shù)學(xué)上冊《軸對稱》定向測評試題(解析版)_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

人教版8年級數(shù)學(xué)上冊《軸對稱》定向測評考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計(jì)20分)1、如圖,在中,,為邊上的中線,,則的度數(shù)為(

).A.55° B.65° C.75° D.45°2、等腰三角形的一個角比另一個角2倍少20度,等腰三角形頂角的度數(shù)是(

)A.或或 B.或C.或 D.或3、自新冠肺炎疫情發(fā)生以來,全國人民共同抗疫.下面是科學(xué)防控知識的圖片,圖片上有圖案和文字說明,其中的圖案是軸對稱圖形的是()A. B.C. D.4、如圖,已知鈍角△ABC,依下列步驟尺規(guī)作圖,并保留作圖痕跡.步驟1∶以C為圓心,CA為半徑畫弧①;步驟2∶以B為圓心,BA為半徑畫弧②,交弧①于點(diǎn)D;步驟3∶連接AD,交BC延長線于點(diǎn)H.下列敘述正確的是(

)A.BH垂直平分線段AD B.AC平分∠BADC.S△ABC=BC?AH D.AB=AD5、如圖,在矩形中,,,動點(diǎn)滿足,則點(diǎn)到、兩點(diǎn)距離之和的最小值為(

)A. B. C. D.第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計(jì)30分)1、若等腰三角形的一個底角為,則這個等腰三角形的頂角為_____.2、如圖,中,D,E分別是AC,AB上的點(diǎn),BD與CE交于點(diǎn)O.給出下列三個條件:①∠EBO=∠DCO;②∠BEO=∠CDO;③BE=CD.上述三個條件中,哪兩個條件可判定是等腰三角形(用序號寫出一種情形):_______.3、如圖,在△ABC中,AB=BC,∠ABC=110°,AB的垂直平分線DE交AC于點(diǎn)D,連接BD,則∠ABD=

___________°.4、如圖,等邊三角形ABC的邊長為2,D,E是AC,BC上兩個動點(diǎn),且AD=CE,AE,BD交于點(diǎn)F,連接CF,則CF長度的最小值為______.5、在△ABC中,∠ACB=90°,∠A=40°,D為AB邊上一點(diǎn),若△ACD是等腰三角形,則∠BCD的度數(shù)為_____.三、解答題(5小題,每小題10分,共計(jì)50分)1、在△ABC中,DE垂直平分AB,分別交AB、BC于點(diǎn)D、E,MN垂直平分AC,分別交AC,BC于點(diǎn)M、N.(1)如圖1,若∠BAC=112°,求∠EAN的度數(shù);(2)如圖2,若∠BAC=82°,求∠EAN的度數(shù);(3)若∠BAC=α(α≠90°),直接寫出用α表示∠EAN大小的代數(shù)式.2、如圖,是邊長為1的等邊三角形,,,點(diǎn),分別在,上,且,求的周長.3、已知點(diǎn)A(﹣1,3a﹣1)與點(diǎn)B(2b+1,﹣2)關(guān)于x軸對稱,點(diǎn)C(a+2,b)與點(diǎn)D關(guān)于原點(diǎn)對稱.(1)求點(diǎn)A、B、C、D的坐標(biāo);(2)順次聯(lián)結(jié)點(diǎn)A、D、B、C,求所得圖形的面積.4、已知:如圖,AD是等腰三角形ABC的底邊BC上的中線,DE∥AB,交AC于點(diǎn)E.求證:△AED是等腰三角形.5、如圖,已知△ABC中,AB=AC,∠A=108°,BD平分∠ABC.求證:BC=AB+CD.-參考答案-一、單選題1、B【解析】【分析】首先根據(jù)三角形的三線合一的性質(zhì)得到AD⊥BC,然后根據(jù)直角三角形的兩銳角互余得到答案即可.【詳解】∵AB=AC,AD是BC邊上的中線,∴AD⊥BC,∠BAD=∠CAD,∴∠B+∠BAD=90°,∵∠B=25°,∴∠BAD=65°,故選:B.【考點(diǎn)】本題考查了等腰三角形的性質(zhì),了解等腰三角形底邊的高、底邊的中線及頂角的平分線互相重合是解答本題的關(guān)鍵.2、A【解析】【分析】設(shè)另一個角是x,表示出一個角是2x-20°,然后分①x是頂角,2x-20°是底角,②x是底角,2x-20°是頂角,③x與2x-20°都是底角根據(jù)三角形的內(nèi)角和等于180°與等腰三角形兩底角相等列出方程求解即可.【詳解】設(shè)另一個角是x,表示出一個角是2x﹣20°,①x是頂角,2x﹣20°是底角時,x+2(2x﹣20°)=180°,解得x=44°,所以,頂角是44°;②x是底角,2x﹣20°是頂角時,2x+(2x﹣20°)=180°,解得x=50°,所以,頂角是2×50°﹣20°=80°;③x與2x﹣20°都是底角時,x=2x﹣20°,解得x=20°,所以,頂角是180°﹣20°×2=140°;綜上所述,這個等腰三角形的頂角度數(shù)是44°或80°或140°.故選:A.【考點(diǎn)】本題考查了等腰三角形兩底角相等的性質(zhì),三角形的內(nèi)角和定理,難點(diǎn)在于分情況討論,特別是這兩個角都是底角的情況容易漏掉而導(dǎo)致出錯.3、D【解析】【分析】根據(jù)軸對稱圖形的概念:如果一個圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形叫做軸對稱圖形進(jìn)行分析即可.【詳解】解:A、不是軸對稱圖形,不合題意;B、不是軸對稱圖形,不合題意;C、不是軸對稱圖形,不合題意;D、是軸對稱圖形,符合題意.故選:D.【考點(diǎn)】本題考查了軸對稱圖形,熟練掌握軸對稱圖形的定義是解題的關(guān)鍵.4、A【解析】【詳解】解:A.如圖連接CD、BD,∵CA=CD,BA=BD,∴點(diǎn)C、點(diǎn)B在線段AD的垂直平分線上,∴直線BC是線段AD的垂直平分線,故A正確,符合題意;B.CA不一定平分∠BDA,故B錯誤,不符合題意;C.應(yīng)該是S△ABC=?BC?AH,故C錯誤,不符合題意;D.根據(jù)條件AB不一定等于AD,故D錯誤,不符合題意.故選A.5、D【解析】【分析】由,可得△PAB的AB邊上的高h(yuǎn)=2,表明點(diǎn)P在平行于AB的直線EF上運(yùn)動,且兩平行線間的距離為2;延長FC到G,使FC=CG,連接AG交EF于點(diǎn)H,則點(diǎn)P與H重合時,PA+PB最小,在Rt△GBA中,由勾股定理即可求得AG的長,從而求得PA+PB的最小值.【詳解】解:設(shè)△PAB的AB邊上的高為h∵∴∴h=2表明點(diǎn)P在平行于AB的直線EF上運(yùn)動,且兩平行線間的距離為2,如圖所示∴BF=2∵四邊形ABCD為矩形∴BC=AD=3,∠ABC=90゜∴FC=BC-BF=3-2=1延長FC到G,使CG=FC=1,連接AG交EF于點(diǎn)H∴BF=FG=2∵EF∥AB∴∠EFG=∠ABC=90゜∴EF是線段BG的垂直平分線∴PG=PB∵PA+PB=PA+PG≥AG∴當(dāng)點(diǎn)P與點(diǎn)H重合時,PA+PB取得最小值A(chǔ)G在Rt△GBA中,AB=5,BG=2BF=4,由勾股定理得:即PA+PB的最小值為故選:D.【考點(diǎn)】本題是求兩條線段和的最小值問題,考查了矩形的性質(zhì),勾股定理,線段垂直平分線的性質(zhì)、兩點(diǎn)之間線段最短等知識,難點(diǎn)在于確定點(diǎn)P運(yùn)動的路徑,路徑確定后就是典型的將軍飲馬問題.二、填空題1、36°【解析】【分析】根據(jù)等腰三角形的性質(zhì)和三角形的內(nèi)角和即可得到結(jié)論.【詳解】∵等腰三角形的一個底角為,∴等腰三角形的頂角,故答案為.【考點(diǎn)】本題考查了等腰三角形的性質(zhì),熟練掌握等腰三角形的性質(zhì)是解題的關(guān)鍵.2、①③或②③【解析】【分析】已知①③條件,先證△BEO≌△CDO,再證明∠ABC=∠ACB最后得到△ABC是等腰三角形;已知②③條件可證明△BEO≌△CDO,再證明△ABC是等腰三角形.【詳解】解:①③或②③.由①③證明△ABC是等腰三角形.在△BEO和△CDO中,∵∠EBO=∠DCO,∠EOB=∠DOC,BE=CD.∴△BEO≌△CDO(AAS),∴BO=CO,∴∠OBC=∠OCB,∴∠EBO+∠OBC=∠DCO+∠OCB,即∠ABC=∠ACB,∴AB=AC.因此△ABC是等腰三角形.由②③證明△ABC是等腰三角形.在△BEO和△CDO中,∵∠EOB=∠DOC,∠BEO=∠CDO,BE=CD,∴△BEO≌△CDO(AAS),∴BO=CO,∴∠OBC=∠OCB,∴∠EBO+∠OBC=∠DCO+∠OCB,即∠ABC=∠ACB,∴AB=AC.∴△ABC是等腰三角形.故答案為:①③或②③.【考點(diǎn)】本題考查了全等三角形的判定與性質(zhì)、等腰三角形的判定;其中掌握用“AAS”判定兩個三角形全等和用“等角對等邊”判定三角形為等腰三角形是解決本題的關(guān)鍵.3、35【解析】【詳解】∵在△ABC中,AB=BC,∠ABC=110°,∴∠A=∠C=35°,∵AB的垂直平分線DE交AC于點(diǎn)D,∴AD=BD,∴∠ABD=∠A=35°;故答案是35.4、【解析】【分析】由AD=CE,可知點(diǎn)F的路徑是一段弧,即當(dāng)點(diǎn)D運(yùn)動到AC的中點(diǎn)時,CF長度的最小,即點(diǎn)F為△ABC的中心,過B作于,過A點(diǎn)作交于點(diǎn),則可知,由△ABC是等邊三角形,BC=2,得,進(jìn)而可知,則CF長度的最小值是.【詳解】解:∵AD=CE,∴點(diǎn)F的路徑是一段弧,∴當(dāng)點(diǎn)D運(yùn)動到AC的中點(diǎn)時,CF長度的最小,即點(diǎn)F為△ABC的中心,過B作于,過A點(diǎn)作交于點(diǎn),∴,∵△ABC是等邊三角形,BC=2,∴,∴.∴CF長度的最小值是.故答案為:.【考點(diǎn)】本題考查等邊三角形的性質(zhì),三角形中心的定義,求線段的最小值,解題的關(guān)鍵是能夠構(gòu)造合適的輔助線求解.5、20°或50°【解析】【分析】分以下兩種情況求解:①當(dāng)AC=AD時,②當(dāng)CD=AD時,先求出∠ACD的度數(shù),然后即可得出∠BCD的度數(shù)【詳解】解:①如圖1,當(dāng)AC=AD時,∴∠ACD=∠ADC=(180°﹣40°)=70°,∴∠BCD=90°﹣∠ACD=20°;②如圖2,當(dāng)CD=AD時,∠ACD=∠A=40°,∴∠BCD=90°﹣∠ACD=50°,綜上可知∠BCD的度數(shù)為20°或50°,故答案為:20°或50°.【考點(diǎn)】本題考查了等腰三角形的性質(zhì)以及三角形的內(nèi)角和,解題的關(guān)鍵是根據(jù)題意畫出圖形,并運(yùn)用分類討論的思想求解.三、解答題1、(1)∠EAN=44°;(2)∠EAN=16°;(3)當(dāng)0°<α<90°時,∠EAN=180°﹣2α;當(dāng)180°>α>90°時,∠EAN=2α﹣180°.【解析】【分析】(1)根據(jù)線段垂直平分線上的點(diǎn)到線段兩端點(diǎn)的距離相等可得AE=BE,再根據(jù)等邊對等角可得∠BAE=∠B,同理可得,∠CAN=∠C,然后利用三角形的內(nèi)角和定理求出∠B+∠C,再根據(jù)∠EAN=∠BAC﹣(∠BAE+∠CAN)代入數(shù)據(jù)進(jìn)行計(jì)算即可得解;(2)同(1)的思路,最后根據(jù)∠EAN=∠BAE+∠CAN﹣∠BAC代入數(shù)據(jù)進(jìn)行計(jì)算即可得解;(3)根據(jù)前兩問的求解方法,分0°<α<90°與180°>α>90°兩種情況解答.【詳解】解:(1)∵DE垂直平分AB,∴AE=BE,∴∠BAE=∠B,同理可得:∠CAN=∠C,∴∠EAN=∠BAC﹣∠BAE﹣∠CAN,=∠BAC﹣(∠B+∠C),在△ABC中,∠B+∠C=180°﹣∠BAC=68°,∴∠EAN=∠BAC﹣(∠BAE+∠CAN)=112°﹣68°=44°;(2)∵DE垂直平分AB,∴AE=BE,∴∠BAE=∠B,同理可得:∠CAN=∠C,∴∠EAN=∠BAE+∠CAN﹣∠BAC,=(∠B+∠C)﹣∠BAC,在△ABC中,∠B+∠C=180°﹣∠BAC=98°,∴∠EAN=∠BAE+∠CAN﹣∠BAC=98°﹣82°=16°;(3)當(dāng)0°<α<90°時,∵DE垂直平分AB,∴AE=BE,∴∠BAE=∠B,同理可得:∠CAN=∠C,∴∠在△ABC中,∠∴∠當(dāng)180°>α>90°時,∵DE垂直平分AB,∴AE=BE,∴∠BAE=∠B,同理可得:∠CAN=∠C,∴∠在△ABC中,∠所以,當(dāng)0°<α<90°時,∠EAN=180°﹣2α;當(dāng)180°>α>90°時,∠EAN=2α﹣180°.【考點(diǎn)】本題考查了線段垂直平分線上的點(diǎn)到線段兩端點(diǎn)的距離相等的性質(zhì),等邊對等角的性質(zhì),三角形的內(nèi)角和定理,整體思想的利用是解題的關(guān)鍵.2、2【解析】【分析】延長至點(diǎn),使,連接,證明推出,,進(jìn)而得到,從而證明,推出EF=CP,由此求出的周長=AB+AC得到答案.【詳解】解:如圖,延長至點(diǎn),使,連接.∵是等邊三角形,∴.∵,,∴,∴,∴.在和中,,∴,∴,.∵,,∴,∴,∴.在和中,,∴,∴,∴,∴的周長.【考點(diǎn)】此題考查全等三角形的判定及性質(zhì),等邊三角形的性質(zhì),等腰三角形等邊對等角的性質(zhì),題中輔助線的引出是解題的關(guān)鍵.3、(1)點(diǎn)A(?1,2),B(?1,?2),C(3,?1),D(?3,1);(2)圖見詳解,12.【解析】【分析】(1)根據(jù)關(guān)于x軸對稱的點(diǎn)的坐標(biāo)規(guī)律:橫坐標(biāo)相同,縱坐標(biāo)互為相反數(shù),分別求出a,b的值,進(jìn)而求出點(diǎn)A、B、C的坐標(biāo),再根據(jù)關(guān)于原點(diǎn)的對稱點(diǎn),橫縱坐標(biāo)都變成相反數(shù)求出點(diǎn)D的坐標(biāo);(2)把這些點(diǎn)按A?D?B?C?A順次連接起來,再根據(jù)三角形的面積公式計(jì)算其面積即可.【詳解】解:(1)∵點(diǎn)A(?1,3a?1)與點(diǎn)B(2b+1,?2)關(guān)于x軸對稱,∴2b+1=?1,3a?1=2,解得a=1,b=?1,∴點(diǎn)A(?1,2),B(?1,?2),C(3,?1),∵點(diǎn)C(a+2,b)與點(diǎn)D關(guān)于原點(diǎn)對稱,∴點(diǎn)D(?3,1);(2)如圖所示:四邊形ADBC的面積為:×4×2+×4×4=12.【考點(diǎn)】本題考查的是作圖?軸對稱變換,熟知關(guān)于x、y軸對稱的點(diǎn)的坐標(biāo)特點(diǎn)是解答此題的關(guān)鍵.4、見解析【解析】【分析】根據(jù)等腰三角形的性質(zhì)得到∠BAD

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論