難點解析京改版數(shù)學(xué)9年級上冊期中試題【考試直接用】附答案詳解_第1頁
難點解析京改版數(shù)學(xué)9年級上冊期中試題【考試直接用】附答案詳解_第2頁
難點解析京改版數(shù)學(xué)9年級上冊期中試題【考試直接用】附答案詳解_第3頁
難點解析京改版數(shù)學(xué)9年級上冊期中試題【考試直接用】附答案詳解_第4頁
難點解析京改版數(shù)學(xué)9年級上冊期中試題【考試直接用】附答案詳解_第5頁
已閱讀5頁,還剩38頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

京改版數(shù)學(xué)9年級上冊期中試題考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題26分)一、單選題(6小題,每小題2分,共計12分)1、已知拋物線經(jīng)過點,且該拋物線的對稱軸經(jīng)過點A,則該拋物線的解析式為()A. B. C. D.2、二次函數(shù)的圖像如圖所示,現(xiàn)有以下結(jié)論:(1):(2);(3),(4);(5);其中正確的結(jié)論有(

)A.2個 B.3個 C.4個 D.5個.3、如圖,已知中,,則的值為(

)A. B. C. D.4、北中環(huán)橋是省城太原的一座跨汾河大橋(如圖1),它由五個高度不同,跨徑也不同的拋物線型鋼拱通過吊橋,拉鎖與主梁相連,最高的鋼拱如圖2所示,此鋼拱(近似看成二次函數(shù)的圖象-拋物線)在同一豎直平面內(nèi),與拱腳所在的水平面相交于A,B兩點,拱高為78米(即最高點O到AB的距離為78米),跨徑為90米(即AB=90米),以最高點O為坐標(biāo)原點,以平行于AB的直線為軸建立平面直角坐標(biāo)系,則此拋物線鋼拱的函數(shù)表達(dá)式為(

)A. B. C. D.5、如圖,D,E分別是△ABC的邊AB,AC上的點,連接DE,下列條件不能判定△ADE與△ABC相似的是()A.∠ADE=∠B B.∠AED=∠C C. D.6、如圖所示,雙曲線y=上有一動點A,連接OA,以O(shè)為頂點、OA為直角邊,構(gòu)造等腰直角三角形OAB,則△OAB面積的最小值為(

)A. B. C.2 D.2二、多選題(7小題,每小題2分,共計14分)1、已知四條線段a,b,c,d是成比例線段,即,下列說法正確的是(

)A.a(chǎn)d=bc B. C. D.2、已知:線段a、b,且,則下列說法正確的是(

)A.a(chǎn)=2cm,b=3cm B.a(chǎn)=2k,b=3k(k≠0)C.3a=2b D.3、如圖,在直角坐標(biāo)系中,直線y1=2x﹣2與坐標(biāo)軸交于A、B兩點,與雙曲線y2=(x>0)交于點C,過點C作CD⊥x軸,垂足為D,且OA=AD,則以下結(jié)論中正確的是(

)A.S△ADB=S△ADC;B.當(dāng)0<x<3時,y1<y2;C.如圖,當(dāng)x=3時,EF=;D.當(dāng)x>0時,y1隨x的增大而增大,y2隨x的增大而減小.4、二次函數(shù)y=ax2+bx+c(a≠0)圖象如圖,下列結(jié)論中正確的有()A.a(chǎn)bc>0 B.3a+c<0 C.a(chǎn)+b≥am2+bm D.a(chǎn)﹣b+c>0 E.若ax12+bx1=ax22+bx2,且x1≠x2,則x1+x2=25、如圖所示,,,,均在正方形網(wǎng)格中的格點上,,分別用和表示,下列四個選項中不正確的是()A. B. C. D.6、如圖,在正方形ABCD中,E是BC的中點,F(xiàn)是CD上一點,且,下列結(jié)論:①∠BAE=30°,②△ABE∽△AEF,③AE⊥EF,④△ADF∽△ECF.其中正確的為(

)A.① B.② C.③ D.④7、已知蓄電池的電壓為定值,使用蓄電池時,電流I(單位:A)與電阻R(單位:Ω)是反比例函數(shù)關(guān)系,它的圖象如圖所示.下列說法正確的是(

)A.函數(shù)解析式為I= B.當(dāng)R=9Ω時,I=4AC.蓄電池的電壓是13V D.當(dāng)I≤10A時,R≥3.6Ω第Ⅱ卷(非選擇題74分)三、填空題(7小題,每小題2分,共計14分)1、如圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖像分別交、軸于點、,將直線繞點按順時針方向旋轉(zhuǎn),交軸于點,則直線的函數(shù)表達(dá)式是__________.2、如圖,在平行四邊形中,點在邊上,,連接交于點,則的面積與四邊形的面積之比為___

3、如圖,在矩形ABCD中,E,F(xiàn)為邊AD上兩點,將矩形ABCD沿BE折疊,點A恰好落在BF上的A'處,且A′E=A'F,再將矩形ABCD沿過點B的直線折疊,使點C落在BF上的C'處,折痕交CD于點H,將矩形ABCD再沿FH折疊,D與C'恰好重合.已知AE=,則AD=_____.4、如圖,在四邊形ABCD中,點E、F分別是AB、CD的中點,過點E作AB的垂線,過點F作CD的垂線,兩垂線交于點G,連接AG、BG、CG、DG,且∠AGD=∠BGC.若AD、BC所在直線互相垂直,的值為___.5、已知拋物線與x軸的一個交點為,則代數(shù)式的值為______.6、已知二次函數(shù)y=x2+bx+c的頂點在x軸上,點A(m﹣1,n)和點B(m+3,n)均在二次函數(shù)圖象上,求n的值為____.7、圖1是一輛吊車的實物圖,圖2是其工作示意圖,AC是可以伸縮的起重臂,其轉(zhuǎn)動點A離地面BD的高度AH為3.4m.當(dāng)起重臂AC長度為9m,張角∠HAC為118°時,操作平臺C離地面的高度為_______米.(結(jié)果保留小數(shù)點后一位:參考數(shù)據(jù):sin28°≈0.47,cos28°≈0.88,tan28°≈0.53)四、解答題(6小題,每小題10分,共計60分)1、受“新冠”疫情的影響,某銷售商在網(wǎng)上銷售A、B兩種型號的“手寫板”,獲利頗豐.已知A型,B型手寫板進(jìn)價、售價和每日銷量如表格所示:進(jìn)價(元/個)售價(元/個)銷量(個/日)A型600900200B型8001200400根據(jù)市場行情,該銷售商對A手寫板降價銷售,同時對B手寫板提高售價,此時發(fā)現(xiàn)A手寫板每降低5就可多賣1,B手寫板每提高5就少賣1,要保持每天銷售總量不變,設(shè)其中A手寫板每天多銷售x,每天總獲利的利潤為y(1)求y、x間的函數(shù)關(guān)系式并寫出x取值范圍;(2)要使每天的利潤不低于234000元,直接寫出x的取值范圍;(3)該銷售商決定每銷售一個B手寫板,就捐a元給因“新冠疫情”影響的困難家庭,當(dāng)時,每天的最大利潤為229200元,求a的值.2、如圖,已知正比例函數(shù)y=2x和反比例函數(shù)的圖象交于點A(m,﹣2).(1)求反比例函數(shù)的解析式;(2)觀察圖象,直接寫出正比例函數(shù)值小于反比例函數(shù)值時自變量x的取值范圍;(3)若雙曲線上點C(2,n)沿OA方向平移個單位長度得到點B,在x軸上是否存在點P,使S△OCP=S四邊形OABC?若存在,請求出P點的坐標(biāo);若不存在,請說明理由.3、在“鄉(xiāng)村振興”行動中,某村辦企業(yè)以,兩種農(nóng)作物為原料開發(fā)了一種有機產(chǎn)品,原料的單價是原料單價的1.5倍,若用900元收購原料會比用900元收購原料少.生產(chǎn)該產(chǎn)品每盒需要原料和原料,每盒還需其他成本9元.市場調(diào)查發(fā)現(xiàn):該產(chǎn)品每盒的售價是60元時,每天可以銷售500盒;每漲價1元,每天少銷售10盒.(1)求每盒產(chǎn)品的成本(成本=原料費+其他成本);(2)設(shè)每盒產(chǎn)品的售價是元(是整數(shù)),每天的利潤是元,求關(guān)于的函數(shù)解析式(不需要寫出自變量的取值范圍);(3)若每盒產(chǎn)品的售價不超過元(是大于60的常數(shù),且是整數(shù)),直接寫出每天的最大利潤.4、如圖,一次函數(shù)圖象與坐標(biāo)軸交于點A、B,二次函數(shù)圖象過A、B兩點.(1)求二次函數(shù)解析式;(2)點B關(guān)于拋物線對稱軸的對稱點為點C,點P是對稱軸上一動點,在拋物線上是否存在點Q,使得以B、C、P、Q為頂點的四邊形是菱形?若存在,求出Q點坐標(biāo);若不存在,請說明理由.5、如圖,在中,,,,為的中點.動點從點出發(fā)以每秒個單位向終點勻速運動(點不與、、重合),過點作的垂線交折線于點.以、為鄰邊構(gòu)造矩形.設(shè)矩形與重疊部分圖形的面積為,點的運動時間為秒.(1)直接寫出的長(用含的代數(shù)式表示);(2)當(dāng)點落在的邊上時,求的值;(3)當(dāng)矩形與重疊部分圖形不是矩形時,求與的函數(shù)關(guān)系式,并寫出的取值范圍;(4)沿直線將矩形剪開,得到兩個圖形,用這兩個圖形拼成不重疊且無縫隙的圖形恰好是三角形.請直接寫出所有符合條件的的值.6、小明和小麗先后從A地出發(fā)同一直道去B地,設(shè)小麗出發(fā)第時,小麗、小明離B地的距離分別為、,與x之間的數(shù)表達(dá)式,與x之間的函數(shù)表達(dá)式是.(1)小麗出發(fā)時,小明離A地的距離為.(2)小麗發(fā)至小明到達(dá)B地這段時間內(nèi),兩人何時相距最近?最近距離是多少?-參考答案-一、單選題1、D【解析】【分析】根據(jù)拋物線圖象性質(zhì)可得A點是拋物線頂點坐標(biāo),再根據(jù)頂點坐標(biāo)公式進(jìn)行求解即可.【詳解】∵拋物線經(jīng)過點,且該拋物線的對稱軸經(jīng)過點A,∴函數(shù)的頂點坐標(biāo)是,∴,解得,經(jīng)檢驗均符合∴該拋物線的解析式為.故選D.【考點】本題主要考查拋物線的性質(zhì)和頂點坐標(biāo)公式,解決本題的關(guān)鍵是要熟練掌握拋物線的性質(zhì)和頂點坐標(biāo)公式.2、C【解析】【分析】由拋物線的開口方向判斷a與0的關(guān)系,由拋物線與y軸的交點判斷c與0的關(guān)系,然后根據(jù)對稱軸及拋物線與x軸交點情況進(jìn)行推理,進(jìn)而對所得結(jié)論進(jìn)行判斷.【詳解】解:(1)∵函數(shù)開口向下,∴a<0,∵對稱軸在y軸的右邊,∴,∴b>0,故命題正確;(2)∵a<0,b>0,c>0,∴abc<0,故命題正確;(3)∵當(dāng)x=-1時,y<0,∴a-b+c<0,故命題錯誤;(4)∵當(dāng)x=1時,y>0,∴a+b+c>0,故命題正確;(5)∵拋物線與x軸于兩個交點,∴b2-4ac>0,故命題正確;故選C.【考點】本題考查了二次函數(shù)圖象與二次函數(shù)系數(shù)之間的關(guān)系,會利用對稱軸的范圍求2a與b的關(guān)系,以及二次函數(shù)與方程之間的轉(zhuǎn)換,根的判別式的熟練運用.3、D【解析】【分析】根據(jù)勾股定理,可得BC的長,根據(jù),可得答案.【詳解】解:在中,由勾股定理,得,∴.故選D【考點】本題考查了銳角正切值的求法,利用正切函數(shù)等于對邊比鄰邊是解題關(guān)鍵.4、B【解析】【分析】設(shè)拋物線解析式為y=ax2,由已知可得點B坐標(biāo)為(45,-78),利用待定系數(shù)法進(jìn)行求解即可.【詳解】∵拱高為78米(即最高點O到AB的距離為78米),跨徑為90米(即AB=90米),以最高點O為坐標(biāo)原點,以平行于AB的直線為軸建立平面直角坐標(biāo)系,∴設(shè)拋物線解析式為y=ax2,點B(45,-78),∴-78=452a,解得:a=,∴此拋物線鋼拱的函數(shù)表達(dá)式為,故選B.【考點】本題考查了二次函數(shù)的應(yīng)用,熟練掌握待定系數(shù)法是解本題的關(guān)鍵.5、D【解析】【分析】根據(jù)相似三角形的判定定理逐個分析判斷即可.【詳解】解:∵∠ADE=∠B,∴故A能判定△ADE與△ABC相似,不符合題意;∠AED=∠C,∴故B能判定△ADE與△ABC相似,不符合題意;,∴故C能判定△ADE與△ABC相似,不符合題意;,條件未給出,不能判定△ADE與△ABC相似,故D符合題意故選D【考點】本題考查了相似三角形的判定定理,掌握相似三角形的判定定理是解題的關(guān)鍵.6、C【解析】【分析】根據(jù)等腰直角三角形性質(zhì)得出S△OAB=OA?OB=OA2,先求得OA取最小值時A的坐標(biāo),即可求得OA的長,從而求得△OAB面積的最小值.【詳解】解:∵△AOB是等腰直角三角形,∴OA=OB,∴S△OAB=OA?OB=OA2,∴OA取最小值時,△OAB面積的值最小,∵當(dāng)直線OA為y=x時,OA最小,解得或,∴此時A的坐標(biāo)為(,),∴OA=2,∴,∴△OAB面積的最小值為2,故選:C.【考點】本題考查了反比例函數(shù)圖象上點的坐標(biāo)特征,等腰直角三角形的性質(zhì),三角形的面積,求得OA取最小值時A的坐標(biāo)是解題的關(guān)鍵.二、多選題1、ABD【解析】【分析】根據(jù)比例的性質(zhì)將原式變形,分別進(jìn)行判斷即可,進(jìn)而得出答案.【詳解】解:∵四條線段a,b,c,d是成比例線段,即,∴A.利用內(nèi)項之積等于外項之積,ad=bc,故選項正確,B.利用內(nèi)項之積等于外項之積,a(b+d)=b(a+c),ab+ad=ab+bc,即ad=bc,故選項正確,C.∵,∴,故選項錯誤,D.∵∴,故選項正確,故選:ABD.【考點】此題主要考查了比例的性質(zhì),將比例式靈活正確變形得出是解題關(guān)鍵.2、BCD【解析】【分析】根據(jù)比例的定義和性質(zhì),對選項一一分析,即可選出正確答案.【詳解】解:A、兩條線段的比,沒有長度單位,它與所采用的長度單位無關(guān),故選項錯誤,不符合題意;B、,根據(jù)等比性質(zhì),a=2k,b=3k(k>0),故選項正確,符合題意;C、?3a=2b,故選項正確,符合題意;D、?a=b,故選項正確,符合題意.故選:BCD.【考點】本題考查了比例的性質(zhì).在比例里,兩個外項的乘積等于兩個內(nèi)項的乘積.注意兩條線段的比,沒有長度單位,它與所采用的長度單位無關(guān).3、ACD【解析】【分析】對于直線解析式,分別令x與y為0求出y與x的值,確定出A與B坐標(biāo),利用AAS得到三角形OBA與三角形CDA全等,利用全等三角形對應(yīng)邊相等得到,確定出C坐標(biāo),代入反比例解析式求出k的值,確定出反比例解析式,由圖象判斷時x的范圍,以及與的增減性,把分別代入直線與反比例解析式,相減求出EF的長,即可做出判斷.【詳解】解:對于直線,令,得到;令,得到,,,即,,在和中,,,,(同底等高三角形面積相等),選項A正確;,把C點坐標(biāo)代入反比例解析式得:,即,由函數(shù)圖象得:當(dāng)時,,選項B錯誤;當(dāng)時,,,即,選項C正確;當(dāng)時,隨x的增大而增大,隨x的增大而減小,選項D正確.故選:ACD.【考點】此題考查了反比例函數(shù)與一次函數(shù)的交點,涉及的知識有:一次函數(shù)與坐標(biāo)系的交點,待定系數(shù)法確定反比例函數(shù)解析式,坐標(biāo)與圖形性質(zhì)以及反比例函數(shù)的性質(zhì),熟練掌握函數(shù)的性質(zhì)是解本題的關(guān)鍵.4、BCE【解析】【分析】根據(jù)二次函數(shù)開口方向、對稱軸和函數(shù)圖像與坐標(biāo)軸的知識點逐一判斷即可;【詳解】∵拋物線開口向下,∴,∵拋物線的對稱軸為直線,∴,∵拋物線于x軸的交點在x軸上方,∴,∴,故A錯誤;∵拋物線于x軸的一個交點在與之間,∴當(dāng)時,,即,故D錯誤;∴,即,故B正確;∵時,y有最大值,∴,即,故C正確;∵,∴,∴,而,∴,∴,故E正確;故選BCE.【考點】本題主要考查了二次函數(shù)圖象與系數(shù)的關(guān)系,結(jié)合一元二次方程根與系數(shù)的關(guān)系判定是解題的關(guān)鍵.5、ABD【解析】【分析】利用勾股定理先求解再分別求解,從而可得答案.【詳解】解:由勾股定理得:所以:,,,,故A,B,D符合題意,C不符合題意;故選:ABD【考點】本題考查的是銳角三角函數(shù)的定義及計算,掌握銳角三角函數(shù)的定義是解題的關(guān)鍵.6、BC【解析】【分析】根據(jù)相似三角形的定義,已知條件判定相似的三角形,再利用相似三角形的性質(zhì)逐一判斷選項即可.【詳解】解:在正方形中,是的中點,是上一點,且,,..,.,,,..,.②③正確.故選:BC.【考點】本題考查了相似三角形的判定與性質(zhì),解題的關(guān)鍵是掌握判定定理有①有兩個對應(yīng)角相等的三角形相似,②有兩個對應(yīng)邊的比相等,且其夾角相等,則兩個三角形相似;③三組對應(yīng)邊的比相等,則兩個三角形相似.7、BD【解析】【分析】設(shè)函數(shù)解析式為,將點(4,9)代入判斷A錯誤;將R=9Ω代入判斷B正確;由解析式判斷C錯誤;由函數(shù)性質(zhì)判斷D正確.【詳解】解:設(shè)函數(shù)解析式為,將點(4,9)代入,得,∴函數(shù)解析式為,故A錯誤;當(dāng)R=9Ω時,I=4A,故B正確;蓄電池的電壓是36V,故C錯誤;∵39>0,∴I隨R的增大而減小,∴當(dāng)I≤10A時,R≥3.6Ω,故D正確;故選:BD.【考點】此題考查了求反比例函數(shù)解析式,反比例函數(shù)的增減性,已知自變量求函數(shù)值的大小,正確掌握反比例函數(shù)的綜合知識是解題的關(guān)鍵.三、填空題1、【解析】【分析】先根據(jù)一次函數(shù)求得、坐標(biāo),再過作的垂線,構(gòu)造直角三角形,根據(jù)勾股定理和正余弦公式求得的長度,得到點坐標(biāo),從而得到直線的函數(shù)表達(dá)式.【詳解】因為一次函數(shù)的圖像分別交、軸于點、,則,,則.過作于點,因為,所以由勾股定理得,設(shè),則,根據(jù)等面積可得:,即,解得.則,即,所以直線的函數(shù)表達(dá)式是.【考點】本題綜合考察了一次函數(shù)的求解、勾股定理、正余弦公式,以及根據(jù)一次函數(shù)的解求一次函數(shù)的表達(dá)式,要學(xué)會通過作輔助線得到特殊三角形,以便求解.2、【解析】【分析】由DE:EC=3:1,可得DF:FB=3:4,根據(jù)在高相等的情況下三角形面積比等于底邊的比,可得S△EFD:S△BEF=3:4,S△BDE:S△BEC=3:1,可求△DEF的面積與四邊形BCEF的面積的比值.【詳解】解:連接BE∵DE:EC=3:1∴設(shè)DE=3k,EC=k,則CD=4k∵ABCD是平行四邊形∴AB∥CD,AB=CD=4k,∴,∴S△EFD:S△BEF=3:4∵DE:EC=3:1∴S△BDE:S△BEC=3:1設(shè)S△BDE=3a,S△BEC=a則S△EFD=,,S△BEF=,∴SBCEF=S△BEC+S△BEF=,∴則△DEF的面積與四邊形BCEF的面積之比9:19故答案為:.【考點】本題考查了平行線分線段成比例,平行四邊形的性質(zhì),關(guān)鍵是運用在高相等的情況下三角形面積比等于底邊的比求三角形的面積比值.3、【解析】【分析】由折疊的性質(zhì)得出△A'EF為等腰直角三角形,得出EF=A'E=2,∠EFC'=45°,求出AF=AE+EF=+2,證明△ABF為等腰直角三角形,求出AB的長,證明△FDH∽△EAB,由相似三角形的性質(zhì)得出,求出DF的長,則可得出答案.【詳解】解:∵AE=A'E,∴A'E=,∵A'E=A'F,∠EA'B=∠EAB=90°,∴△A'EF為等腰直角三角形,∴EF=A'E=2,∠EFC'=45°,∴AF=AE+EF=+2,△ABF為等腰直角三角形,∴AB=AF=+2,∠ABF=45°,∴∠ABE=∠HBF=22.5°,∴∠AEB=67.5°,∵將矩形ABCD再沿FH折疊,D與C'恰好重合,∴∠C'FH=∠DFH=67.5°,∴∠AEB=∠DFH,又∵∠A=∠D,∴△FDH∽△EAB,∴,∵DH=C'H=CH,∴DH=∴DF=AE=,∴AD=AE+EF+DF=+2.故答案為:+2.【考點】本題考查了三角形相似的判定與性質(zhì),折疊的性質(zhì),矩形的性質(zhì),熟練掌握折疊的性質(zhì)是解題的關(guān)鍵.4、【解析】【分析】延長AD交GB于點M,交BC的延長線于點H,則AHBH,由線段垂直平分線的性質(zhì)得出GA=GB,GD=GC,由SAS證明△AGD△BGC,得出∠GAD=∠GBC,再求出∠AGE=∠AHB=90°,得出∠AGE=∠AGB=45°,求出,先證出∠AGB=∠DGC,由,證出△AGB△DGC,得出比例式,再證出∠AGD=∠EGF,即可得出,即可得出的值.【詳解】解:延長AD交GB于點M,交BC的延長線于點H,如圖所示:則AHBH,GE是AB的垂直平分線,GA=GB,同理:GD=GC,在△AGD和△BGC中,,△AGD△BGC(SAS),∠GAD=∠GBC,在△GAM和△HBM中,∠GAD=∠GBC,∠GMA=∠HMB,∠AGB=∠AHB=90°,∠AGE=∠AGB=45°,∠AGD=∠BGC,∠AGB=∠DGC=90°,∴△AGB和△DGC是等腰直角三角形,,,又∠AGE=∠DGF,∠AGD=∠EGF,△AGD△EGF,.【考點】本題是相似三角形綜合題目,考查了線段垂直平分線的性質(zhì)、全等三角形的判定與性質(zhì)、相似三角形的判定與性質(zhì)、銳角三角函數(shù)等知識,本題難度較大,綜合性強,解題的關(guān)鍵是通過作輔助線綜合運用全等三角形和相似三角形的性質(zhì).5、2019【解析】【分析】先將點(m,0)代入函數(shù)解析式,然后求代數(shù)式的值即可得出結(jié)果.【詳解】解:將(m,0)代入函數(shù)解析式得,m2-m-1=0,∴m2-m=1,∴-3m2+3m+2022=-3(m2-m)+2022=-3+2022=2019.故答案為:2019.【考點】本題考查了二次函數(shù)圖象上點的坐標(biāo)特征及求代數(shù)式的值,解題的關(guān)鍵是將點(m,0)代入函數(shù)解析式得到有關(guān)m的代數(shù)式的值.6、4【解析】【分析】由A、B坐標(biāo)可得對稱軸,由頂點在x軸上可得,求得b=﹣2(m+1),c=(m+1)2,即可得出y=x2﹣2(m+1)x+(m+1)2,把A的坐標(biāo)代入即可求得n的值.【詳解】解:∵點A(m﹣1,n)和點B(m+3,n)均在二次函數(shù)y=x2+bx+c圖象上,∴,∴b=﹣2(m+1),∵二次函數(shù)y=x2+bx+c的頂點在x軸上,∴,∴b2﹣4c=0,∴[﹣2(m+1)]2﹣4c=0,∴c=(m+1)2,∴y=x2﹣2(m+1)x+(m+1)2,把A的坐標(biāo)代入得,n=(m﹣1)2﹣2(m+1)(m﹣1)+(m+1)2=4,故答案為:4.【考點】本題考查了二次函數(shù)的性質(zhì),二次函數(shù)的頂點坐標(biāo),表示出b、c的值是解題的關(guān)鍵.7、7.6【解析】【分析】作于,于,如圖2,易得四邊形為矩形,則,,再計算出,在中利用正弦可計算出,然后計算即可.【詳解】解:作于E,于,如圖2,∴四邊形為矩形,∴,,∴,∴在中,,∴,∴,∴操作平臺離地面的高度為.故答案是:.【考點】本題考查了解直角三角形的應(yīng)用:先將實際問題抽象為數(shù)學(xué)問題(畫出平面圖形,構(gòu)造出直角三角形轉(zhuǎn)化為解直角三角形問題),然后利用三角函數(shù)的定義進(jìn)行幾何計算.四、解答題1、(1)(),且x為整數(shù);(2),且x為整數(shù);(3)a=30【解析】【分析】(1)根據(jù)題意列函數(shù)關(guān)系式和不等式組,于是得到結(jié)論;(2)根據(jù)題意列方程和不等式,于是得到結(jié)論;(3)根據(jù)題意列函數(shù)關(guān)系式,然后根據(jù)二次函數(shù)的性質(zhì)即可得到結(jié)論.【詳解】解:(1)由題意得,,解得,故的取值范圍為且為整數(shù);(2)的取值范圍為.理由如下:,當(dāng)時,,,,解得:或.要使,得;,;(3)設(shè)捐款后每天的利潤為元,則,對稱軸為,,,拋物線開口向下,當(dāng)時,隨的增大而增大,當(dāng)時,最大,,解得.【考點】本題考查了二次函數(shù)的應(yīng)用,一元一次不等式的應(yīng)用,列函數(shù)關(guān)系式等等,最大銷售利潤的問題常利用函數(shù)的增減性來解答.2、(1);(2)或;(3)在x軸上是否存在點P,見解析.【解析】【分析】(1)設(shè)反比例函數(shù)的解析式為y=(k>0),然后根據(jù)條件求出A點坐標(biāo),再求出k的值,進(jìn)而求出反比例函數(shù)的解析式;(2)直接由圖象得出正比例函數(shù)值小于反比例函數(shù)值時自變量x的取值范圍;(3)首先證明四邊形OABC是菱形,然后求出AC、OB的長度,計算出菱形OABC的面積,從而得到△OCP的面積,列方程求解即可..【詳解】解:(1)設(shè)反比例函數(shù)的解析式為y=(k>0),∵A(m,?2)在y=2x上,∴?2=2m,∴m=?1,∴A(?1,?2),又∵點A在y=上,∴k=2,∴反比例函數(shù)的解析式為y=2x;

(2)由反比例函數(shù)的對稱性可知,與一次函數(shù)再第一象限內(nèi)的交點坐標(biāo)為:(1,2),觀察圖像可知:正比例函數(shù)值小于反比例函數(shù)值時自變量的取值范圍:或;(3)在上,

即,,四邊形為菱形

的解析式為y=2x-3,

的解析式,

假設(shè)在軸上存在使,,假設(shè)成立,在軸上存在點使【考點】本題主要考查了反比例函數(shù)的綜合,解答本題的關(guān)鍵是熟練掌握反比例函數(shù)的性質(zhì)以及菱形的判定定理,此題難度不大,是一道不錯的中考試題.3、(1)每盒產(chǎn)品的成本為30元.(2);(3)當(dāng)時,每天的最大利潤為16000元;當(dāng)時,每天的最大利潤為元.【解析】【分析】(1)設(shè)原料單價為元,則原料單價為元.然后再根據(jù)“用900元收購原料會比用900元收購原料少”列分式方程求解即可;(2)直接根據(jù)“總利潤=單件利潤×銷售數(shù)量”列出解析式即可;(3)先確定的對稱軸和開口方向,然后再根據(jù)二次函數(shù)的性質(zhì)求最值即可.【詳解】解:(1)設(shè)原料單價為元,則原料單價為元.依題意,得.解得,,.經(jīng)檢驗,是原方程的根.∴每盒產(chǎn)品的成本為:(元).答:每盒產(chǎn)品的成本為30元.(2);(3)∵拋物線的對稱軸為=70,開口向下∴當(dāng)時,a=70時有最大利潤,此時w=16000,即每天的最大利潤為16000元;當(dāng)時,每天的最大利潤為元.【考點】本題主要考查了分式方程的應(yīng)用、二次函數(shù)的應(yīng)用等知識點,正確理解題意、列出分式方程和函數(shù)解析式成為解答本題的關(guān)鍵.4、(1)拋物線的解析式為:;(2)Q點坐標(biāo)為(1,)或(3,0)或(-1,0).【解析】【分析】(1)由直線與坐標(biāo)軸的交點坐標(biāo)A,B,代入拋物線解析式,求出b,c坐標(biāo)即可;(2)分BC為對角線和邊兩種情況討論,其中當(dāng)BC為邊時注意點Q的位置有兩種:在點P右側(cè)和左側(cè),根據(jù)菱形的性質(zhì)求解即可.【詳解】解:(1)對于:當(dāng)x=0時,;當(dāng)y=0時,,妥得,x=3∴A(3,0),B(0,)把A(3,0),B(0,)代入得:解得,∴拋物線的解析式為:;(2)拋物線的對稱軸為直線故設(shè)P(1,p),Q(m,n)①當(dāng)BC為菱形對角線時,如圖,∵B,C關(guān)于對稱沒對稱,且對稱軸與x軸垂直,∴∴BC與對稱軸垂直,且BC//x軸∵在菱形BQCP中,BC⊥PQ∴PQ⊥x軸∵點P在x=1上,∴點Q也在x=1上,當(dāng)x=1時,∴Q(1,)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論