版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
人教版8年級數(shù)學下冊《平行四邊形》綜合訓練考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、在平面直角坐標系中,平行四邊形ABCD的頂點A、B、D的坐標分別是(0,0),(5,0),(2,3),則頂點C的坐標是()A.(7,3) B.(8,2) C.(3,7) D.(5,3)2、如圖,在長方形ABCD中,AB=6,BC=8,點E是BC邊上一點,將△ABE沿AE折疊,使點B落在點F處,連接CF,當△CEF為直角三角形時,則BE的長是()A.4 B.3 C.4或8 D.3或63、如圖,將矩形紙片ABCD沿BD折疊,得到△BC′D,C′D與AB交于點E,若∠1=40°,則∠2的度數(shù)為()A.25° B.20° C.15° D.10°4、下列命題正確的是()A.對角線相等的四邊形是平行四邊形 B.對角線相等的四邊形是矩形C.對角線互相垂直的平行四邊形是菱形 D.對角線互相垂直且相等的四邊形是正方形5、如圖,正方形ABCO和正方形DEFO的頂點A、E、O在同一直線上,且EF=,AB=3,給出下列結(jié)論:①∠COD=45°;②AE=3+;③CF=AD=;④S△COF+S△EOF=.期中正確的個數(shù)為()A.1個 B.2個 C.3個 D.4個第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、如圖,在平行四邊形ABCD中,,E、F分別在CD和BC的延長線上,,,則______.2、如圖,在矩形ABCD中,AB=3,BC=4,點P是對角線AC上一點,若點P、A、B組成一個等腰三角形時,△PAB的面積為___________.3、如圖,每個小正方形的邊長都為1,△ABC是格點三角形,點D為AC的中點,則線段BD的長為_____.4、在平行四邊形ABCD中,若∠A=130°,則∠B=______,∠C=______,∠D=______.5、如圖中,分別是由個、個、個正方形連接成的圖形,在圖中,;在圖中,;通過以上計算,請寫出圖中______(用含的式子表示)三、解答題(5小題,每小題10分,共計50分)1、已知:?ABCD的對角線AC,BD相交于O,M是AO的中點,N是CO的中點,求證:BM∥DN,BM=DN.
2、如圖,在?ABCD中,對角線AC,BD交于點O,E是BD延長線上一點,且△ACE是等邊三角形.(1)求證:四邊形ABCD是菱形;(2)若∠AED=2∠EAD,AB=a,求四邊形ABCD的面積.3、△ABC為等邊三角形,AB=4,AD⊥BC于點D,E為線段AD上一點,AE=.以AE為邊在直線AD右側(cè)構(gòu)造等邊△AEF.連結(jié)CE,N為CE的中點.
(1)如圖1,EF與AC交于點G,①連結(jié)NG,求線段NG的長;②連結(jié)ND,求∠DNG的大?。?)如圖2,將△AEF繞點A逆時針旋轉(zhuǎn),旋轉(zhuǎn)角為α.M為線段EF的中點.連結(jié)DN、MN.當30°<α<120°時,猜想∠DNM的大小是否為定值,并證明你的結(jié)論.4、如圖,在四邊形ABCD中,∠ABC=∠ADC=90°,E是AC的中點,連接BD,ED,EB.求證:∠1=∠2.5、如圖,ABCD的對角線AC、BD相交于點O,BD12cm,AC6cm,點E在線段BO上從點B以1cm/s的速度向點O運動,點F在線段OD上從點O以2cm/s的速度向點D運動.
(1)若點E、F同時運動,設運動時間為t秒,當t為何值時,四邊形AECF是平行四邊形.(2)在(1)的條件下,當AB為何值時,AECF是菱形;(3)求(2)中菱形AECF的面積.-參考答案-一、單選題1、A【解析】【分析】利用平行四邊形的對邊平行且相等的性質(zhì),先利用對邊平行,得到D點和C點的縱坐標相等,再求出CD=AB=5,得到C點橫坐標,最后得到C點的坐標.【詳解】解:四邊形ABCD為平行四邊形。且。C點和D的縱坐標相等,都為3.A點坐標為(0,0),B點坐標為(5,0),.D點坐標為(2,3),C點橫坐標為,點坐標為(7,3).故選:A.【點睛】本題主要是考察了平行四邊形的性質(zhì)、利用線段長求點坐標,其中,熟練應用平行四邊形對邊平行且相等的性質(zhì),是解決與平行四邊形有關(guān)的坐標題的關(guān)鍵.2、D【解析】【分析】當為直角三角形時,有兩種情況:①當點F落在矩形內(nèi)部時連接,先利用勾股定理計算出,根據(jù)折疊的性質(zhì)得,而當為直角三角形時,只能得到,所以點A、F、C共線,即沿折疊,使點B落在對角線上的點F處,則,,可計算出然后利用勾股定理求解即可;②當點F落在邊上時.此時為正方形,由此即可得到答案.【詳解】解:當為直角三角形時,有兩種情況:①當點F落在矩形內(nèi)部時,如圖所示.連接,在中,,,∴,∵△ABE沿折疊,使點B落在點F處,∴,BE=EF,當為直角三角形時,只能得到,∴∴點A、F、C共線,即△ABE沿折疊,使點B落在對角線上的點F處,∴,∴,設BE=EF=x,則EC=BC-BE=8-x,∵,∴,解得,∴BE=3;②當點F落在邊上時,如圖所示,由折疊的性質(zhì)可知AB=AF,BE=EF,∠AEF=∠B=90°,∠FEC=90°,∴為正方形,∴,綜上所述,BE的長為3或6.故選D.【點睛】本題考查折疊問題:折疊前后兩圖形全等,即對應線段相等;對應角相等.也考查了矩形的性質(zhì),正方形的性質(zhì)與判定以及勾股定理.解題的關(guān)鍵是要注意本題有兩種情況,需要分類討論,避免漏解.3、D【解析】【分析】根據(jù)矩形的性質(zhì),可得∠ABD=40°,∠DBC=50°,根據(jù)折疊可得∠DBC′=∠DBC=50°,最后根據(jù)∠2=∠DBC′?∠DBA進行計算即可.【詳解】解:∵四邊形ABCD是矩形,∴∠ABC=90°,CD∥AB,∴∠ABD=∠1=40°,∴∠DBC=∠ABC-∠ABD=50°,由折疊可得∠DBC′=∠DBC=50°,∴∠2=∠DBC′?∠DBA=50°?40°=10°,故選D.【點睛】本題考查了長方形性質(zhì),平行線性質(zhì),折疊性質(zhì),角的有關(guān)計算的應用,關(guān)鍵是求出∠DBC′和∠DBA的度數(shù).4、C【解析】【分析】根據(jù)平行四邊形、矩形、菱形以及正方形的判定方法,對選項逐個判斷即可.【詳解】解:A、對角線互相平分的四邊形是平行四邊形,選項錯誤,不符合題意;B、對角線相等平行四邊形是矩形,選項錯誤,不符合題意;C、對角線互相垂直的平行四邊形是菱形,選項正確,符合題意;D、對角線互相垂直且相等的平行四邊形是正方形,選項錯誤,不符合題意;故選C【點睛】此題考查了平行四邊形、矩形、菱形以及正方形的判定,掌握它們的判定方法是解題的關(guān)鍵.5、B【解析】【分析】根據(jù)∠COD=180°﹣∠AOC﹣∠DOE得到∠COD=45°,根據(jù)已知條件求出OE=2,得到AE=AO+OE=2+3=5,作DH⊥AB于H,作FG⊥CO交CO的延長線于G,根據(jù)勾股定理即可得到BD,根據(jù)三角形面積的關(guān)系計算即可;【詳解】①∵∠AOC=90°,∠DOE=45°,∴∠COD=180°﹣∠AOC﹣∠DOE=45°,故①正確;②∵EF,∴OE=2,∵AO=AB=3,∴AE=AO+OE=2+3=5,故②錯誤;③作DH⊥AB于H,作FG⊥CO交CO的延長線于G,則FG=1,CF,BH=3﹣1=2,DH=3+1=4,BD,故③錯誤;④△COF的面積S△COF3×1,△EOF的面積S△EOF=()2=1S△COF+S△EOF=故④正確;正確的是①④;故選:B.【點睛】本題主要考查了正方形的性質(zhì),勾股定理,準確計算是解題的關(guān)鍵.二、填空題1、8【解析】【分析】證明四邊形ABDE是平行四邊形,得到DE=CD=,,過點E作EH⊥BF于H,證得CH=EH,利用勾股定理求出EH,再根據(jù)30度角的性質(zhì)求出EF.【詳解】解:∵四邊形ABCD是平行四邊形,∴,AB=CD,∵,∴四邊形ABDE是平行四邊形,∴DE=CD=,,過點E作EH⊥BF于H,∵,∴∠ECH=,∴CH=EH,∵,,∴CH=EH=4,∵∠EHF=90°,,∴EF=2EH=8,故答案為:8.【點睛】此題考查了平行四邊形的判定及性質(zhì),勾股定理,直角三角形30度角的性質(zhì),熟記各知識點并應用解決問題是解題的關(guān)鍵.2、或或3【解析】【分析】過B作BM⊥AC于M,根據(jù)矩形的性質(zhì)得出∠ABC=90°,根據(jù)勾股定理求出AC,根據(jù)三角形的面積公式求出高BM,分為三種情況:①AB=BP=3,②AB=AP=3,③AP=BP,分別畫出圖形,再求出面積即可.【詳解】解:∵四邊形ABCD是矩形,∴∠ABC=90°,由勾股定理得:,有三種情況:①當AB=BP=3時,如圖1,過B作BM⊥AC于M,S△ABC=,,解得:,∵AB=BP=3,BM⊥AC,∴,∴AP=AM+PM=,∴△PAB的面積=;②當AB=AP=3時,如圖2,∵BM=,∴△PAB的面積S=;③作AB的垂直平分線NQ,交AB于N,交AC于P,如圖3,則AP=BP,BN=AN=,∵四邊形ABCD是矩形,NQ⊥AC,∴PN∥BC,∵AN=BN,∴AP=CP,∴,∴△PAB的面積;即△PAB的面積為或或3.故答案為:或或3.【點睛】本題主要是考查了矩形的性質(zhì)、等腰三角形的判定以及勾股定理求邊長,熟練掌握矩形的性質(zhì),利用等腰三角形的判定,分成三種情況討論,是解決本題的關(guān)鍵.3、##【解析】【分析】根據(jù)勾股定理列式求出AB、BC、AC,再利用勾股定理逆定理判斷出△ABC是直角三角形,然后根據(jù)直角三角形斜邊上的中線等于斜邊的一半解答即可.【詳解】解:,,,,∴∠ABC=90°,∵點D為AC的中點,∴BD為AC邊上的中線,∴BD=AC,故答案為:【點睛】本題考查了直角三角形斜邊上的中線等于斜邊的一半的性質(zhì),勾股定理,勾股定理逆定理的應用,判斷出△ABC是直角三角形是解題的關(guān)鍵.4、【解析】【分析】利用平行四邊形的性質(zhì):鄰角互補,對角相等,即可求得答案.【詳解】解:在平行四邊形ABCD中,、是的鄰角,是的對角,,,故答案為:,,.【點睛】本題主要是考查了平行四邊形的性質(zhì):對角相等,鄰角互補,熟練掌握平行四邊形的性質(zhì),求解決本題的關(guān)鍵.5、90n【解析】【分析】連接各小正方形的對角線,由圖1中四邊形內(nèi)角和定理化簡可得:;由圖2中四邊形內(nèi)角和定理化簡可得:;結(jié)合圖形即可發(fā)現(xiàn)規(guī)律,求得結(jié)果.【詳解】解:連接各小正方形的對角線,如下圖:圖中,,即,圖中,,即,,以此類推,,故答案為:.【點睛】題目主要考查根據(jù)規(guī)律列出相應代數(shù)式,正方形性質(zhì)等,理解題意,探索發(fā)現(xiàn)規(guī)律是解題關(guān)鍵.三、解答題1、見解析【分析】連接,根據(jù)平行四邊形的性質(zhì)可得AO=OC,DO=OB,由M是AO的中點,N是CO的中點,進而可得MO=ON,進而即可證明四邊形是平行四邊形,即可得證.【詳解】如圖,連接,
∵四邊形ABCD為平行四邊形,∴AO=OC,DO=OB.∵M為AO的中點,N為CO的中點,即∴MO=ON.四邊形是平行四邊形,∴BM∥DN,BM=DN.【點睛】本題考查了平行四邊形的性質(zhì)與判定,掌握平行四邊形的性質(zhì)與判定是解題的關(guān)鍵.2、(1)見解析;(2)正方形ABCD的面積為【分析】(1)由等邊三角形的性質(zhì)得EO⊥AC,即BD⊥AC,再根據(jù)對角線互相垂直的平行四邊形是菱形,即可得出結(jié)論;(2)證明菱形ABCD是正方形,即可得出答案.【詳解】(1)證明:∵四邊形ABCD是平行四邊形,∴AO=OC,∵△ACE是等邊三角形,∴EO⊥AC(三線合一),即BD⊥AC,∴?ABCD是菱形;(2)解:∵△ACE是等邊三角形,∴∠EAC=60°由(1)知,EO⊥AC,AO=OC∴∠AEO=∠OEC=30°,△AOE是直角三角形,∵∠AED=2∠EAD,∴∠EAD=15°,∴∠DAO=∠EAO﹣∠EAD=45°,∵?ABCD是菱形,∴∠BAD=2∠DAO=90°,∴菱形ABCD是正方形,∴正方形ABCD的面積=AB2=a2.【點睛】本題考查了菱形的判定與性質(zhì)、正方形的判定與性質(zhì)、平行四邊形的性質(zhì)、等邊三角形的性質(zhì)等知識,證明四邊形ABCD為菱形是解題的關(guān)鍵.3、(1)①;②;(2)的大小是定值,證明見解析.【分析】(1)①先根據(jù)等邊三角形的性質(zhì)、勾股定理可得,從而可得,再利用勾股定理可得,然后根據(jù)等邊三角形的性質(zhì)可得,最后根據(jù)直角三角形斜邊上的中線等于斜邊的一半即可得;②先根據(jù)直角三角形斜邊上的中線等于斜邊的一半可得,再根據(jù)等腰三角形的性質(zhì)可得,從而可得,然后根據(jù)四邊形的內(nèi)角和即可得;(2)連接,先證出,根據(jù)全等三角形的性質(zhì)可得,從而可得,再根據(jù)三角形中位線定理可得,然后根據(jù)三角形的外角性質(zhì)、角的和差即可得出結(jié)論.【詳解】解:(1)①∵是等邊三角形,,,∴,∴,∵,∴,∴,∵是等邊三角形,,,∴,即,又∵點為的中點,∴;②如圖,連接,由(1)①知,,∵,點為的中點,∴,,,∴;(2)的大小是定值,證明如下:如圖,連接,∵和都是等邊三角形,∴,∴,即,在和中,,∴,∴,∵,∴,∵點為的中點,點為的中點,∴,∴,∵,即點是的中點,∴,∴,∵,∴,∴的大小為定值.【點睛】本題考查了等邊三角形的性質(zhì)、直角三角形斜邊上的中線等于斜邊的一半、
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年中職(機電技術(shù)應用)機械基礎期末測試題及解析
- 2025年大二(旅游管理)景區(qū)規(guī)劃與管理期末試題
- 2025年大學園藝學(園藝產(chǎn)品貯藏加工學)試題及答案
- 2026年審計咨詢(審計服務)考題及答案
- 2025年高職第二學年(導游服務類)景區(qū)講解綜合測試試題及答案
- 2025年高職無人機應用技術(shù)(無人機工程創(chuàng)意)試題及答案
- 2025年中職網(wǎng)絡技術(shù)(無線網(wǎng)絡搭建)試題及答案
- 2026年海南體育職業(yè)技術(shù)學院高職單招職業(yè)適應性測試備考試題有答案解析
- 2026年福建體育職業(yè)技術(shù)學院單招職業(yè)技能考試模擬試題帶答案解析
- 2026年滁州職業(yè)技術(shù)學院高職單招職業(yè)適應性測試備考題庫有答案解析
- 婚外賠償協(xié)議書
- 血小板減少紫癜課件
- 2025年大學公共管理(公共管理學)試題及答案
- 雨課堂學堂在線學堂云《藥物信息學(山東大學 )》單元測試考核答案
- 鋼結(jié)構(gòu)波形梁護欄技術(shù)說明書
- 新能源車電池性能檢測報告范本
- 2025年春新滬粵版物理八年級下冊全冊教案
- 2025年上海市嘉定區(qū)高考生物二模試卷
- 量子醫(yī)學課件
- 2025年秋閩教版小學英語五年級上冊(期末)綜合詞匯句子專項訓練題及答案
- 大學消防風險評估報告
評論
0/150
提交評論