版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
人教版8年級數(shù)學下冊《平行四邊形》專題攻克考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、如圖,陰影部分是將一個菱形剪去一個平行四邊形后剩下的,要想知道陰影部分的周長,需要測量一些線段的長,這些線段可以是()A.AF B.AB C.AB與BC D.BC與CD2、如圖,OA⊥OB,OB=4,P是射線OA上一動點,連接BP,以B為直角頂點向上作等腰直角三角形,在OA上取一點D,使∠CDO=45°,當P在射線OA上自O(shè)向A運動時,PD的長度的變化()A.一直增大 B.一直減小C.先增大后減小 D.保持不變3、已知菱形的邊長為6,一個內(nèi)角為60°,則菱形較長的對角線長是()A. B. C.3 D.64、如圖是用若干個全等的等腰梯形拼成的圖形,下列說法錯誤的是()A.梯形的下底是上底的兩倍 B.梯形最大角是C.梯形的腰與上底相等 D.梯形的底角是5、如圖,矩形ABCD中,DE⊥AC于E,若∠ADE=2∠EDC,則∠BDE的度數(shù)為()A.36° B.30° C.27° D.18°第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、在四邊形ABCD中,若AB//CD,BC_____AD,則四邊形ABCD為平行四邊形.2、如圖,正方形ABCD的面積為18,△ABE是等邊三角形,點E在正方形ABCD內(nèi),在對角線AC上有一點P,使PD+PE的和最小,則這個最小值為_____.3、如圖,在正方形ABCD中,AB=4,E為對角線AC上與A,C不重合的一個動點,過點E作EF⊥AB于點F,EG⊥BC于點G,連接DE,F(xiàn)G,下列結(jié)論:①DE=FG;②DE⊥FG;③∠BFG=∠ADE;④FG的最小值為3.其中正確結(jié)論的序號為__.4、如圖,菱形ABCD的兩條對角線長分別為AC=6,BD=8,點P是BC邊上的一動點,則AP的最小值為__.5、已知長方形ABCD中,AB=4,BC=10,M為BC中點,P為AD上的動點,則以B、M、P為頂點組成的等腰三角形的底邊長是______________________.三、解答題(5小題,每小題10分,共計50分)1、(探究發(fā)現(xiàn))(1)如圖1,△ABC中,AB=AC,∠BAC=90°,點D為BC的中點,E、F分別為邊AC、AB上兩點,若滿足∠EDF=90°,則AE、AF、AB之間滿足的數(shù)量關(guān)系是.(類比應(yīng)用)(2)如圖2,△ABC中,AB=AC,∠BAC=120°,點D為BC的中點,E、F分別為邊AC、AB上兩點,若滿足∠EDF=60°,試探究AE、AF、AB之間滿足的數(shù)量關(guān)系,并說明理由.(拓展延伸)(3)在△ABC中,AB=AC=5,∠BAC=120°,點D為BC的中點,E、F分別為直線AC、AB上兩點,若滿足CE=1,∠EDF=60°,請直接寫出AF的長.2、如圖,等腰△ABC中,AB=AC,∠BAC=90°,BE平分∠ABC交AC于E,過C作CD⊥BE于D,(1)如圖1,求證:CD=BE(2)如圖2,過點A作AF⊥BE,寫出AF,BD,CD之間的數(shù)量關(guān)系并說明理由.3、在平面直角坐標系中,過A(0,4)的直線a垂直于y軸,點M(9,4)為直線a上一點,若點P從點M出發(fā),以每秒2cm的速度沿直線a向左移動,點Q從原點同時出發(fā),以每秒1cm的速度沿x軸向右移動,(1)幾秒后PQ平行于y軸?(2)在點P、Q運動的過程中,若線段OQ=2AP,求點P的坐標.4、△ABC為等邊三角形,AB=4,AD⊥BC于點D,E為線段AD上一點,AE=.以AE為邊在直線AD右側(cè)構(gòu)造等邊△AEF.連結(jié)CE,N為CE的中點.
(1)如圖1,EF與AC交于點G,①連結(jié)NG,求線段NG的長;②連結(jié)ND,求∠DNG的大小.(2)如圖2,將△AEF繞點A逆時針旋轉(zhuǎn),旋轉(zhuǎn)角為α.M為線段EF的中點.連結(jié)DN、MN.當30°<α<120°時,猜想∠DNM的大小是否為定值,并證明你的結(jié)論.5、如圖,是的中位線,延長到,使,連接.求證:.
-參考答案-一、單選題1、A【解析】【分析】如圖,延長,交于點,證明,,再利用菱形的性質(zhì)證明:陰影部分的周長,從而可得答案.【詳解】解:如圖,延長,交于點,四邊形是平行四邊形,,,四邊形是菱形,,陰影部分的周長,故需要測量的長度,故選A.【點睛】本題考查的是平行四邊形的性質(zhì),菱形的性質(zhì),證明陰影部分的周長是解本題的關(guān)鍵.2、D【解析】【分析】過點作于,于,先根據(jù)矩形的判定與性質(zhì)可得,再根據(jù)三角形全等的判定定理證出,根據(jù)全等三角形的性質(zhì)可得,然后根據(jù)等腰直角三角形的判定與性質(zhì)可得,最后根據(jù)線段的和差、等量代換即可得出結(jié)論.【詳解】解:如圖,過點作于,于,則四邊形是矩形,,∵是等腰直角三角形,∴,∴,∵,∴,∴,在和中,,∴,∴,∴,∵,∴是等腰直角三角形,∴,∴,∴的長度保持不變,故選:D.【點睛】本題考查了矩形的判定與性質(zhì)、三角形全等的判定定理與性質(zhì)等知識點,通過作輔助線,構(gòu)造矩形和全等三角形是解題關(guān)鍵.3、B【解析】【分析】根據(jù)一個內(nèi)角為60°可以判斷較短的對角線與兩鄰邊構(gòu)成等邊三角形,求出較長的對角線的一半,再乘以2即可得解.【詳解】解:如圖,菱形ABCD,∠ABC=60°,∴AB=BC,AC⊥BD,OB=OD,∴△ABC是等邊三角形,菱形的邊長為6,∴AC=6,∴AO=AC=3,在Rt△AOB中,BO===3,∴菱形較長的對角線長BD是:2×3=6.故選:B.【點睛】本題考查了菱形的性質(zhì)和勾股定理,等邊三角形的判定,解題關(guān)鍵是熟練運用菱形的性質(zhì)和等邊三角形的判定求出對角線長.4、D【解析】【分析】如圖(見解析),先根據(jù)平角的定義可得,再根據(jù)可求出,由此可判斷選項;先根據(jù)等邊三角形的判定與性質(zhì)可得,再根據(jù)平行四邊形的判定可得四邊形是平行四邊形,根據(jù)平行四邊形的性質(zhì)可得,然后根據(jù)菱形的判定可得四邊形是菱形,根據(jù)菱形的性質(zhì)可得,最后根據(jù)線段的和差、等量代換可得,由此可判斷選項.【詳解】解:如圖,,,,,梯形是等腰梯形,,則梯形最大角是,選項B正確;沒有指明哪個角是底角,梯形的底角是或,選項D錯誤;如圖,連接,,是等邊三角形,,,點共線,,,,四邊形是平行四邊形,,,,,,四邊形是菱形,,,,選項A、C正確;故選:D.【點睛】本題考查了等腰梯形、菱形的判定與性質(zhì)、等邊三角形的判定與性質(zhì)等知識點,熟練掌握各判定與性質(zhì)是解題關(guān)鍵.5、B【解析】【分析】根據(jù)已知條件可得以及的度數(shù),然后求出各角的度數(shù)便可求出.【詳解】解:在矩形ABCD中,,∵,∴,,∵,∴,∵,∴,∴,∴.故選:B.【點睛】題目主要考查矩形的性質(zhì),三角形內(nèi)角和及等腰三角形的性質(zhì),理解題意,綜合運用各個性質(zhì)是解題關(guān)鍵.二、填空題1、【解析】【分析】根據(jù)平行四邊形的判定:兩組對邊分別平行的四邊形是平行四邊形即可解決問題.【詳解】解:根據(jù)兩組對邊分別平行的四邊形是平行四邊形可知:∵AB//CD,BC//AD,∴四邊形ABCD為平行四邊形.故答案為://.【點睛】本題考查了平行四邊形的判定,熟練掌握平行四邊形的判定方法是解題的關(guān)鍵.2、【解析】【分析】由正方形的對稱性可知,PB=PD,當B、P、E共線時PD+PE最小,求出BE即可.【詳解】解:∵正方形中B與D關(guān)于AC對稱,∴PB=PD,∴PD+PE=PB+PE=BE,此時PD+PE最小,∵正方形ABCD的面積為18,△ABE是等邊三角形,∴BE=3,∴PD+PE最小值是3,故答案為:3.【點睛】本題考查軸對稱求最短距離,熟練掌握正方形的性質(zhì)是解題的關(guān)鍵.3、①②③【解析】【分析】①連接BE,可得四邊形EFBG為矩形,可得BE=FG;由△AEB≌△AED可得DE=BE,所以DE=FG;②由矩形EFBG可得OF=OB,則∠OBF=∠OFB;由∠OBF=∠ADE,則∠OFB=∠ADE;由四邊形ABCD為正方形可得∠BAD=90°,即∠AHD+∠ADH=90°,所以∠AHD+∠OFH=90°,即∠FMH=90°,可得DE⊥FG;③由②中的結(jié)論可得∠BFG=∠ADE;④由于點E為AC上一動點,當DE⊥AC時,根據(jù)垂線段最短可得此時DE最小,最小值為2,由①知FG=DE,所以FG的最小值為2.【詳解】解:①連接BE,交FG于點O,如圖,∵EF⊥AB,EG⊥BC,∴∠EFB=∠EGB=90°.∵∠ABC=90°,∴四邊形EFBG為矩形.∴FG=BE,OB=OF=OE=OG.∵四邊形ABCD為正方形,∴AB=AD,∠BAC=∠DAC=45°.在△ABE和△ADE中,,∴△ABE≌△ADE(SAS).∴BE=DE.∴DE=FG.∴①正確;②延長DE,交FG于M,交FB于點H,∵△ABE≌△ADE,∴∠ABE=∠ADE.由①知:OB=OF,∴∠OFB=∠ABE.∴∠OFB=∠ADE.∵∠BAD=90°,∴∠ADE+∠AHD=90°.∴∠OFB+∠AHD=90°.即:∠FMH=90°,∴DE⊥FG.∴②正確;③由②知:∠OFB=∠ADE.即:∠BFG=∠ADE.∴③正確;④∵點E為AC上一動點,∴根據(jù)垂線段最短,當DE⊥AC時,DE最小.∵AD=CD=4,∠ADC=90°,∴AC==4.∴DE=AC=2.由①知:FG=DE,∴FG的最小值為2,∴④錯誤.綜上,正確的結(jié)論為:①②③.故答案為:①②③.【點睛】本題考查了全等三角形的性質(zhì)與判定,正方形的性質(zhì),勾股定理,垂線段最短,掌握正方形的性質(zhì)是解題的關(guān)鍵.4、4.8【解析】【分析】由垂線段最短,可得AP⊥BC時,AP有最小值,由菱形的性質(zhì)和勾股定理可求BC的長,由菱形的面積公式可求解.【詳解】設(shè)AC與BD的交點為O,∵點P是BC邊上的一動點,∴AP⊥BC時,AP有最小值,∵四邊形ABCD是菱形,∴AC⊥BD,AO=CO=AC=3,BO=DO=BD=4,∴,∵,∴,故答案為:4.8.【點睛】本題考查了菱形的性質(zhì),勾股定理,確定當AP⊥BC時,AP有最小值是本題關(guān)鍵.5、5或或【解析】【分析】分三種情況:①當BP=PM時,點P在BM的垂直平分線上,取BM的中點N,過點N作NP⊥BM交AD于P,則四邊形ABNP是矩形,得AB=PN=4,根據(jù)勾股定理即可求解;②當BM=PM=5時,當∠PMB為銳角如圖2時,則四邊形ABNP是矩形,得AB=PN=4,根據(jù)勾股定理可得MN=3,從而BN=2,再由勾股定理可得BP的長;③當BM=PM=5時,當∠PMB為鈍角如圖3時,則四邊形ABNP是矩形,得AB=PN=4,根據(jù)勾股定理MN=3,從而BN=8,再由勾股定理可得BP的長;即可求解.【詳解】解:BC=10,M為BC中點,∴BM=5,當△BMP為等腰三角形時,分三種情況:①當BP=PM時,點P在AM的垂直平分線上,取BM的中點N,過點N作NP⊥AD交AD于P,如圖1所示:則△PBM是等腰三角形∴底邊BM的長為5②當BM=PM=5時,當∠PMB為銳角如圖2時,則四邊形ABNP是矩形,∴PN=AB=4,∴MN=∴在Rt△PBN中,③當BM=PM=5時,當∠PMB為鈍角如圖3時,則四邊形ABNP是矩形,得AB=PN=4,同理可得∴在Rt△PBN中,綜上,以B、M、P為頂點組成的等腰三角形的底邊長是:5或或故答案為:5或或.【點睛】本題考查了矩形的性質(zhì)、勾股定理以及分類討論等知識,熟練掌握矩形的性質(zhì),進行分類討論是解題的關(guān)鍵.三、解答題1、(1)AB=AF+AE;(2)AE+AF=AB,理由見解析;(3)或【分析】(1)證明△BDF≌OADE,可得BF=AE,從而證明AB=AF+AE;(2)取AB中點G,連接DG,利用ASA證明△GDF≌△ADE,得到GF=AE,可得AG=AB=AF+FG=AE+AF;(3)分兩種情況:當點E在線段AC上時或當點E在AC延長線上時,取AC的中點H,連接DH,同理證明△ADF≌△HDE,得到AF=HE,從而求解.【詳解】(1)如圖1,∵AB=AC,∠BAC=90°,∴∠B=∠C=45°,∵D為BC中點,∴AD⊥BC,∠BAD=∠CAD=45°,AD=BD=CD,∴∠ADB=∠ADF+∠BDF=90°,∵∠EDF=∠ADE+∠ADF=90°,∴∠BDF=∠ADE,∵BD=AD,∠B=∠CAD=45°,∴△BDF≌△ADE(ASA),∴BF=AE,∴AB=AF+BF=AF+AE;故答案為:AB=AF+AE;(2)AE+AF=AB.理由是:如圖2,取AB中點G,連接DG,∵點G是斜邊中點,∴DG=AG=BG=AB,∵AB=AC,∠BAC=120°,點D為BC的中點,∴∠BAD=∠CAD=60°,∴∠GDA=∠BAD=60°,即∠GDF+∠FDA=60°,又∵∠FAD+∠ADE=∠FDE=60°,∴∠GDF=∠ADE,∵DG=AG,∠BAD=60°,∴△ADG為等邊三角形,∴∠AGD=∠CAD=60°,GD=AD,∴△GDF≌△ADE(ASA),∴GF=AE,∴AG=AB=AF+FG=AE+AF,∴AE+AF=AB;(3)當點E在線段AC上時,如圖3,取AC的中點H,連接DH,當AB=AC=5,CE=1,∠EDF=60°時,AE=4,此時F在BA的延長線上,同(2)可得:△ADF≌△HDE(ASA),∴AF=HE,∵AH=CH=AC=,CE=1,∴,當點E在AC延長線上時,如圖4,同理可得:;綜上:AF的長為或.【點睛】本題考查三角形綜合問題,掌握全等三角形的判定與性質(zhì)是解題的關(guān)鍵2、(1)證明見解析;(2)BD=CD+2AF,理由見解析【分析】(1)延長BA與CD的延長線交于點G,先證明△ABE≌△ACG得到BE=CG,由BD是∠ABC的角平分線,得到∠GBD=∠CBD,即可證明△BDG≌△BDC得到CD=GD,則;(2)如圖所示,連接AD,取BE中點H,連接AH,由直角三角形斜邊上的中線等于斜邊的一半可得,,則,再由∠BAC=90°,AB=AC,得到∠ABC=45°,根據(jù)BD平分∠ABC,即可推出∠AHF=∠ABH+∠BAH=45°,從而得到AF=HF,則DH=2AF,由此即可推出BD=BH+HD=BH+2AF=CD+2AF.【詳解】解:(1)如圖所示,延長BA與CD的延長線交于點G,∵∠BAC=90°,∴∠CAG=90°,∵CD⊥BE,∴∠EDC=∠GDB=∠BAE=90°,又∵∠AEB=∠DEC,∴∠ABE=∠DCE,在△ABE和△ACG中,,∴△ABE≌△ACG(ASA),∴BE=CG,∵BD是∠ABC的角平分線,∴∠GBD=∠CBD,在△BDG和△BDC中,,∴△BDG≌△BDC(ASA),∴CD=GD,∴;(2)BD=CD+2AF,理由如下:如圖所示,連接AD,取BE中點H,連接AH,由(1)得CD=GD,,∵△BAE和△CAG都是直角三角形,H為BE中點,D為CG中點,∴,,∴,∴∠ABH=∠BAH,∵∠BAC=90°,AB=AC,∴∠ABC=45°,又∵BD平分∠ABC,∴∠ABH=∠BAH=22.5°,∴∠AHF=∠ABH+∠BAH=45°,∵AF⊥DH,∴HF=DF,∠AFH=90°,∴∠HAF=45°,∴AF=HF,∴DH=2AF,∴BD=BH+HD=BH+2AF=CD+2AF.【點睛】.本題主要考查了全等三角形的性質(zhì)與判定,角平分線的性質(zhì),等腰三角形的性質(zhì)與判定,直角三角形斜邊上的中線,解題的關(guān)鍵在于能夠熟練掌握全等三角形的性質(zhì)與判定條件.3、(1)3秒后平行于軸;(2)或.【分析】(1)設(shè)秒后平行于軸,先求出的長,再根據(jù)矩形的判定與性質(zhì)可得,由此建立方程,解方程即可得;(2)分①點在點右側(cè),②點在點左側(cè)兩種情況,分別根據(jù)建立方程,解方程即可得.【詳解】解:(1),,設(shè)秒后平行于軸,,垂直于軸,垂直于軸,平行于軸,四邊形是矩形,,即,解得,即3秒后平行于軸;(2)由題意得:經(jīng)過秒后,,垂直于軸,點在直線上,且點的坐標為,點的縱坐標為4,①當點在點右側(cè)時,,由得:,解得,,此時點的坐標為;②當點在點左側(cè)時,,由得:,解得,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 高中生基于地理模型研究海岸帶旅游開發(fā)與生態(tài)保護的平衡課題報告教學研究課題報告
- 初中物理實驗教學中學生實驗數(shù)據(jù)處理與分析能力的培養(yǎng)教學研究課題報告
- 初中體育籃球運動中運動營養(yǎng)參數(shù)干預(yù)策略課題報告教學研究課題報告
- 2026年新能源電氣安全檢測技術(shù)
- 2026秋招:吉林農(nóng)業(yè)投資集團筆試題及答案
- 做賬實操-美妝護膚商貿(mào)公司會計賬務(wù)處理分錄
- 生物八年級《生物進化的學說》公開課教學設(shè)計
- 2026年數(shù)字經(jīng)濟對土木工程的影響
- 2026年建筑科技行業(yè)設(shè)計報告及未來五至十年綠色建筑報告
- 2026年施工中的環(huán)境監(jiān)測與智能應(yīng)對
- 云南師大附中2026屆高三高考適應(yīng)性月考卷(六)思想政治試卷(含答案及解析)
- 建筑安全風險辨識與防范措施
- CNG天然氣加氣站反恐應(yīng)急處置預(yù)案
- 培訓教師合同范本
- 2026年黑龍江單招職業(yè)技能案例分析專項含答案健康養(yǎng)老智慧服務(wù)
- 2025年5年級期末復(fù)習-25秋《王朝霞期末活頁卷》語文5上A3
- (2025)70周歲以上老年人換長久駕照三力測試題庫(附答案)
- 醫(yī)院外科主任職責說明書
- 零售行業(yè)采購經(jīng)理商品采購與庫存管理績效考核表
- 理解當代中國 大學英語綜合教程1(拓展版)課件 B1U3 Into the green
評論
0/150
提交評論