版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
滬科版9年級下冊期末測試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計16分)1、如圖,ABCD是正方形,△CDE繞點C逆時針方向旋轉(zhuǎn)90°后能與△CBF重合,那么△CEF是()A..等腰三角形 B.等邊三角形C..直角三角形 D..等腰直角三角形2、如圖,在中,,,,將繞原點O逆時針旋轉(zhuǎn)90°,則旋轉(zhuǎn)后點A的對應點的坐標是()A. B. C. D.3、如圖,該幾何體的左視圖是()A. B. C. D.4、如圖,DC是⊙O的直徑,弦AB⊥CD于M,則下列結(jié)論不一定成立的是()A.AM=BM B.CM=DM C. D.5、在不透明口袋內(nèi)裝有除顏色外完全相同的5個小球,其中紅球2個,白球3個.攪拌均勻后,隨機抽取一個小球,是紅球的概率為()A. B. C. D.6、在一個不透明的盒子中裝有紅球、白球、黑球共40個,這些球除顏色外無其他差別,在看不見球的條件下,隨機從盒子中摸出一個球記錄顏色后放回.經(jīng)過多次試驗,發(fā)現(xiàn)摸到紅球的頻率穩(wěn)定在30%左右,則盒子中紅球的個數(shù)約為()A.12 B.15 C.18 D.237、如圖,從⊙O外一點P引圓的兩條切線PA,PB,切點分別是A,B,若∠APB=60°,PA=5,則弦AB的長是()A. B. C.5 D.58、下列事件是必然發(fā)生的事件是()A.在地球上,上拋的籃球一定會下落B.明天的氣溫一定比今天高C.中秋節(jié)晚上一定能看到月亮D.某彩票中獎率是1%,買100張彩票一定中獎一張第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計14分)1、在一個不透明的袋子里,有2個白球和2個紅球,它們只有顏色上的區(qū)別,從袋子里隨機摸出兩個球,則摸到兩個都是紅球的概率是_______.2、如圖,正方形ABCD是邊長為2,點E、F是AD邊上的兩個動點,且AE=DF,連接BE、CF,BE與對角線AC交于點G,連接DG交CF于點H,連接BH,則BH的最小值為_______.3、一個五邊形共有__________條對角線.4、若扇形的圓心角為60°,半徑為2,則該扇形的弧長是_____(結(jié)果保留)5、在圓內(nèi)接四邊形ABCD中,,則的度數(shù)為______.6、如圖,在⊙O中,弦AB⊥OC于E點,C在圓上,AB=8,CE=2,則⊙O的半徑AO=___________.7、過年時包了100個餃子,其中有10個餃子包有幸運果,任意挑選一個餃子,正好是包有幸運果餃子的概率是_____.三、解答題(7小題,每小題0分,共計0分)1、如圖,已知AB是的直徑,點D為弦BC中點,過點C作切線,交OD延長線于點E,連結(jié)BE,OC.(1)求證:.(2)求證:BE是的切線.2、如圖,已知AB是⊙O的直徑,,連接OC,弦,直線CD交BA的延長線于點.(1)求證:直線CD是⊙O的切線;(2)若,,求OC的長.3、對于平面直角坐標系xOy中的圖形M,N,給出如下定義:若圖形M和圖形N有且只有一個公共點P,則稱點P是圖形M和圖形N的“關聯(lián)點”.已知點,,,.(1)直線l經(jīng)過點A,的半徑為2,在點A,C,D中,直線l和的“關聯(lián)點”是______;(2)G為線段OA中點,Q為線段DG上一點(不與點D,G重合),若和有“關聯(lián)點”,求半徑r的取值范圍;(3)的圓心為點,半徑為t,直線m過點A且不與x軸重合.若和直線m的“關聯(lián)點”在直線上,請直接寫出b的取值范圍.4、如圖,拋物線y=-+x+2與x軸負半軸交于點A,與y軸交于點B.(1)求A,B兩點的坐標;(2)如圖1,點C在y軸右側(cè)的拋物線上,且AC=BC,求點C的坐標;(3)如圖2,將△ABO繞平面內(nèi)點P順時針旋轉(zhuǎn)90°后,得到△DEF(點A,B,O的對應點分別是點D,E,F(xiàn)),D,E兩點剛好在拋物線上.①求點F的坐標;②直接寫出點P的坐標.5、如圖,在△ABC中,∠ACB=90°,AC=BC,D是AB邊上一點(與A、B不重合),連接CD,將線段CD繞點C按逆時針方向旋轉(zhuǎn)90°得到線段CE,連接DE、BE(1)求證:△ACD≌△BCE;(2)若BE=5,DE=13,求AB的長6、如圖,在直角坐標系中,將△ABC繞點A順時針旋轉(zhuǎn)90°.(1)畫出旋轉(zhuǎn)后的△AB1C1,并寫出B1、C1的坐標;(2)求線段AB在旋轉(zhuǎn)過程中掃過的面積.7、新高考“3+1+2”是指:3,語數(shù)外三科是必考科目;1,物理、歷史兩科中任選一科;2,化學、生物、地理、政治四科中任選兩科.某同學確定選擇“物理”,但他不確定其它兩科選什么,于是他做了一個游戲:他拿來四張不透明的卡片,正面分別寫著“化學、生物、地理、政治”,再將這四張卡片背面朝上并打亂順序,然后從這四張卡片中隨機抽取兩張,請你用畫樹狀圖(或列表)的方法,求該同學抽出的兩張卡片是“化學、政治”的概率.-參考答案-一、單選題1、D【分析】根據(jù)旋轉(zhuǎn)的性質(zhì)推出相等的邊CE=CF,旋轉(zhuǎn)角推出∠ECF=90°,即可得到△CEF為等腰直角三角形.【詳解】解:∵△CDE繞點C逆時針方向旋轉(zhuǎn)90°后能與△CBF重合,∴∠ECF=90°,CE=CF,∴△CEF是等腰直角三角形,故選:D.【點睛】本題主要考查旋轉(zhuǎn)的性質(zhì),掌握圖形旋轉(zhuǎn)前后的大小和形狀不變是解決問題的關鍵.2、C【分析】過點A作AC⊥x軸于點C,設,則,根據(jù)勾股定理,可得,從而得到,進而得到∴,可得到點,再根據(jù)旋轉(zhuǎn)的性質(zhì),即可求解.【詳解】解:如圖,過點A作AC⊥x軸于點C,設,則,∵,,∴,∵,,∴,解得:,∴,∴,∴點,∴將繞原點O順時針旋轉(zhuǎn)90°,則旋轉(zhuǎn)后點A的對應點的坐標是,∴將繞原點O逆時針旋轉(zhuǎn)90°,則旋轉(zhuǎn)后點A的對應點的坐標是.故選:C【點睛】本題考查坐標與圖形變化一旋轉(zhuǎn),解直角三角形等知識,解題的關鍵是求出點A的坐標,屬于中考常考題型.3、C【分析】根據(jù)從左邊看得到的圖形是左視圖解答即可.【詳解】解:從左邊看是一個正方形被水平的分成3部分,中間的兩條分線是虛線,故C正確.故選C.【點睛】本題主要考查了簡單組合體的三視圖,掌握三視圖的定義成為解答本題的關鍵.4、B【分析】根據(jù)垂徑定理“垂直于弦的直徑平分這條弦,并且平分弦所對的兩條弧”進行判斷即可得.【詳解】解:∵弦AB⊥CD,CD過圓心O,∴AM=BM,,,即選項A、C、D選項說法正確,不符合題意,當根據(jù)已知條件得CM和DM不一定相等,故選B.【點睛】本題考查了垂徑定理,解題的關鍵是掌握垂徑定理.5、A【分析】用紅球的個數(shù)除以所有球的個數(shù)即可求得抽到紅球的概率.【詳解】解:∵共有5個球,其中紅球有2個,∴P(摸到紅球)=,故選:A.【點睛】此題主要考查概率的意義及求法.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.6、A【分析】由題意可設盒子中紅球的個數(shù)x,則盒子中球的總個數(shù)x,摸到紅球的頻率穩(wěn)定在30%左右,根據(jù)頻率與概率的關系可得出摸到紅球的概率為30%,再根據(jù)概率的計算公式計算即可.【詳解】解:設盒子中紅球的個數(shù)x,根據(jù)題意,得:解得x=12,所以盒子中紅球的個數(shù)是12,故選:A.【點睛】本題主要考查了利用頻率估計概率以及概率求法的運用,利用概率的求法估計總體個數(shù),利用如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)=;頻率與概率的關系生:一般地,在大量的重復試驗中,隨著試驗次數(shù)的增加,事件A發(fā)生的頻率會穩(wěn)定于某個常數(shù)p,我們稱事件A發(fā)生的概率為p.7、C【分析】先利用切線長定理得到PA=PB,再利用∠APB=60°可判斷△APB為等邊三角形,然后根據(jù)等邊三角形的性質(zhì)求解.【詳解】解:∵PA,PB為⊙O的切線,∴PA=PB,∵∠APB=60°,∴△APB為等邊三角形,∴AB=PA=5.故選:C.【點睛】本題考查了切線長定理以及等邊三角形的判定與性質(zhì).此題比較簡單,注意掌握數(shù)形結(jié)合思想的應用.8、A【分析】根據(jù)必然事件的概念(必然事件指在一定條件下一定發(fā)生的事件)可判斷正確答案.【詳解】解:A、在地球上,上拋的籃球一定會下落是必然事件,符合題意;B、明天的氣溫一定比今天的高,是隨機事件,不符合題意;C、中秋節(jié)晚上一定能看到月亮,是隨機事件,不符合題意;D、某彩票中獎率是1%,買100張彩票一定中獎一張,是隨機事件,不符合題意.故選:A.【點睛】本題考查了必然事件的概念,解決本題需要正確理解必然事件、不可能事件、隨機事件的概念.關鍵是理解必然事件指在一定條件下一定發(fā)生的事件.二、填空題1、【分析】先用列表法分析所有等可能的結(jié)果和摸到兩個都是紅球的結(jié)果數(shù),然后根據(jù)概率公式求解即可.【詳解】解:記紅球為,白球為,列表得:∵一共有12種情況,摸到兩個都是紅球有2種,∴P(兩個球都是紅球),故答案是.【點睛】本題主要考查了用列表法或畫樹狀圖法求概率,列表法或畫樹狀圖法可以不重復不遺漏的列出所有可能的結(jié)果,適合于兩步完成的事件.2、##【分析】延長AG交CD于M,如圖1,可證△ADG≌△DGC可得∠GCD=∠DAM,再證△ADM≌△DFC可得DF=DM=AE,可證△ABE≌△ADM,可得H是以AB為直徑的圓上一點,取AB中點O,連接OD,OH,根據(jù)三角形的三邊關系可得不等式,可解得DH長度的最小值.【詳解】解:延長AG交CD于M,如圖1,∵ABCD是正方形,∴AD=CD=AB,∠BAD=∠ADC=90°,∠ADB=∠BDC,∵AD=CD,∠ADB=∠BDC,DG=DG,∴△ADG≌△DGC,∴∠DAM=∠DCF且AD=CD,∠ADC=∠ADC,∴△ADM≌△CDF,∴FD=DM且AE=DF,∴AE=DM且AB=AD,∠ADM=∠BAD=90°,∴△ABE≌△DAM,∴∠DAM=∠ABE,∵∠DAM+∠BAM=90°,∴∠BAM+∠ABE=90°,即∠AHB=90°,∴點H是以AB為直徑的圓上一點.如圖2,取AB中點O,連接OD,OH,∵AB=AD=2,O是AB中點,∴AO=1=OH,在Rt△AOD中,OD=,∵DH≥OD-OH,∴DH≥-1,∴DH的最小值為-1,故答案為:-1.【點睛】本題考查正方形的性質(zhì),全等三角形的判定和性質(zhì),勾股定理,關鍵是證點H是以AB為直徑的圓上一點.3、5【分析】由n邊形的對角線有:條,再把代入計算即可得.【詳解】解:邊形共有條對角線,五邊形共有條對角線.故答案為:5【點睛】本題考查的是多邊形的對角線的條數(shù),掌握n邊形的對角線的條數(shù)是解題的關鍵.4、【分析】已知扇形的圓心角為,半徑為2,代入弧長公式計算.【詳解】解:依題意,n=,r=2,∴扇形的弧長=.故答案為:.【點睛】本題考查了弧長公式的運用.關鍵是熟悉公式:扇形的弧長=.5、110°【分析】根據(jù)圓內(nèi)接四邊形對角互補,得∠D+∠B=180°,結(jié)合已知求解即可.【詳解】∵圓內(nèi)接四邊形對角互補,∴∠D+∠B=180°,∵∴∠D=110°,故答案為:110°.【點睛】本題考查了圓內(nèi)接四邊形互補的性質(zhì),熟練掌握并運用性質(zhì)是解題的關鍵.6、5【分析】設⊙O的半徑為r,則OA=r,OD=r-2,先由垂徑定理得到AD=BD=AB=4,再由勾股定理得到42+(r-2)2=r2,然后解方程即可.【詳解】解:設⊙O的半徑為r,則OC=OA=r,OE=OC-CE=r-2,∵OC⊥AB,AB=8,∴AE=BE=AB=4,在Rt△OAE中,由勾股定理得:42+(r-2)2=r2,解得:r=5,即⊙O的半徑長為5,故答案為:5.【點睛】本題考查了垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對的兩條?。部疾榱斯垂啥ɡ恚?、【分析】直接利用概率公式進行計算即可.【詳解】解:過年時包了100個餃子,有10個餃子包有幸運果,任意挑選一個餃子,正好是包有幸運果餃子的概率是故答案為:【點睛】本題考查的是簡單隨機事件的概率,熟練的利用概率公式進行計算是解本題的關鍵;概率的含義:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)=.三、解答題1、(1)見解析(2)見解析【分析】(1)由垂徑定理可得OD⊥BC、CD=DB、∠CDE=∠BDE,然后說明Rt△CDE≌Rt△BDE,最后運用全等三角形的性質(zhì)即可證明;(2)由等腰三角形的性質(zhì)可得∠ECB=∠EBC、∠OCB=∠OBC,再根據(jù)CE是切線得到∠OCE=90°,即∠OCB+∠BCE=90°,進而說明BE⊥AB即可證明.(1)證明:∵點D為弦BC中點∴OD⊥BC,CD=DB∴∠CDE=∠BDE在Rt△CDE和Rt△BDECD=BD,∠CDE=∠BDE,DE=DE∴Rt△CDE≌Rt△BDE∴EC=EB.(2)證明:∵EC=EB,OC=OB∴∠ECB=∠EBC,∠OCB=∠OBC,∵CE是切線∴∠OCE=90°,即∠OCB+∠BCE=90°∴∠OBC+∠EBC=90°,即BE⊥AB∴BE是的切線.【點睛】本題主要考查了垂徑定理、全等三角形的判定與性質(zhì)、切線的證明、等腰三角形的性質(zhì)等知識點,掌握垂徑定理是解答本題的關鍵.2、(1)見解析;(2)【分析】(1)連接OD,由AD∥OC及OD=OA,即可得到∠COB=∠DOC,從而可證得△OBC≌△ODC,即可證得CD是⊙O的切線;(2)由AD∥OC可得△EAD∽△EOC,可得,再由△OBC≌△ODC得BC=CD,從而可得,則可求得OC的長.【詳解】(1)連接OD,∵,∴.又∵,∴,∴.在與中,∴,∴.又∵,∴,∴是的切線.(2)∵,∴,∴,∴.又∵,∴,∴,∴,∴,∴,∴OC=15【點睛】本題是圓的綜合,它考查了切線的判定,三角形全等的判定與性質(zhì),相似三角形的判定與性質(zhì)等知識;證明圓的切線時,往往作半徑.3、(1)C(2)(3)【分析】(1)作出圖形,根據(jù)切線的定義結(jié)合“關聯(lián)點”即可求解;(2)根據(jù)題意,為等邊三角形,則僅與相切時,和有“關聯(lián)點”,進而求得半徑r的取值范圍;(3)根據(jù)關聯(lián)點以及切線的性質(zhì),直徑所對的角是直角,找到點的運動軌跡是以為圓心半徑為的半圓在軸上的部分,進而即可求得的值.(1)解:如圖,,,,,,軸,.的半徑為2,直線與相切直線l和的“關聯(lián)點”是點故答案為:(2)如圖,根據(jù)題意與有“關聯(lián)點”,則與相切,且與相離,是等邊三角形為的中點,則當與相切時,則點為的內(nèi)心半徑r的取值范圍為:(3)如圖,設和直線m的“關聯(lián)點”為,,交軸于點,是的切線,的圓心為點,半徑為t,軸是的切線點的運動軌跡是以為圓心半徑為的半圓在軸上的部分,則點,在直線上,當直線與相切時,即當點與點重合時,最大,此時與軸交于點,當點運動到點時,則過點,則解得b的取值范圍為:【點睛】本題考查了切線的性質(zhì)與判定,切線長定理,勾股定理,一次函數(shù)與坐標軸交點問題,等邊三角形的性質(zhì),等邊三角形的內(nèi)心的性質(zhì),掌握以上知識是解題的關鍵.4、(1)A(-1,0),B(0,2);(2)點C的坐標(,);(3)①求點F的坐標(1,2);②點P的坐標(,)【分析】(1)令x=0,求得y值,得點B的坐標;令y=0,求得x的值,取較小的一個即求A點的坐標;(2)設C的坐標為(x,-+x+2),根據(jù)AC=BC,得到,令t=-+x,解方程即可;(3)①根據(jù)題意,得∠BPE=90°,PB=PE即點P在線段BE的垂直平分線上,根據(jù)B,E都在拋物線上,則B,E是對稱點,從而確定點P在拋物線的對稱軸上,點F在BE上,且BE∥x軸,點E(3,2),確定BE=3,根據(jù)旋轉(zhuǎn)性質(zhì),得EF=BO=2,從而確定點F的坐標;②根據(jù)BE=3,∠BPE=90°,PB=PE,確定P到BE的距離,即可寫出點P的坐標.【詳解】(1)令x=0,得y=2,∴點B的坐標為B(0,2);令y=0,得-+x+2=0,解得∵點A在x軸的負半軸;∴A點的坐標(-1,0);(2)設C的坐標為(x,-+x+2),∵AC=BC,A(-1,0),B(0,2),∴,∵A(-1,0),B(0,2),∴,即,設t=-+x,∴,∴,∴,∴,整理,得,解得∵點C在y軸右側(cè)的拋物線上,∴,此時y=,∴點C的坐標(,);(3)①如圖,根據(jù)題意,得∠BPE=90°,PB=PE即點P在線段BE的垂直平分線上,∵B,E都在拋物線上,∴B,E是對稱點,∴點P在拋物線的對稱軸上,點F在BE上,且BE∥x軸,∵拋物線的對稱軸為直線x=,B(0,2),∴點E(3,2),BE=3,∵EF=BO=2,∴BF=1,∴點F的坐標為(1,2);②如圖,設拋物線的對稱軸與BE交于點M,交x軸與點N,∵BE=3,∴BM=,∵∠BPE=90°,PB=PE,∴PM=BM=,∴PM=BM=,∴PN=2-=,∴點P的坐標為(,).【點睛】本題考查了拋物線與坐標軸的交點,旋轉(zhuǎn)的性質(zhì),兩點間的距離公式,一元二次方程的解法,換元法解方程,熟練掌握拋物線的對稱性,靈活理解旋轉(zhuǎn)的意義,熟練解一元二次方程是解題的關鍵.5、(1)見解析;(2)17【分析】(1)由旋轉(zhuǎn)的性質(zhì)可得CD=CE,∠DCE=90°=∠ACB,由
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 中國國際貨運航空股份有限公司西南大區(qū)2026屆高校畢業(yè)生招聘備考題庫及完整答案詳解一套
- 養(yǎng)老院入住老人健康知識普及制度
- 2026年陸軍軍醫(yī)大學江津校區(qū)招聘備考題庫及一套完整答案詳解
- 2026年招聘廣州南沙人力資源發(fā)展有限公司招聘編外工作人員備考題庫政府編外完整參考答案詳解
- 2026年萍鄉(xiāng)市某科技公司委托萍鄉(xiāng)市伯樂人力資源有限公司面向社會公開招聘工作人員備考題庫及一套完整答案詳解
- 會議安全管理與應急預案制度
- 2026年瀘州市部分企事業(yè)單位人才引進88人備考題庫及1套完整答案詳解
- 2026年西安交通大學附屬小學招聘備考題庫及完整答案詳解1套
- 上海市大同初級中學2026年公開招聘教師8人備考題庫及完整答案詳解1套
- 2026年沈陽寶鋼東北貿(mào)易有限公司招聘備考題庫及1套參考答案詳解
- GB/T 4074.7-2024繞組線試驗方法第7部分:測定漆包繞組線溫度指數(shù)的試驗方法
- DB41T 1448-2017 濕式堆存尾礦庫安全技術規(guī)程
- GB/T 22081-2024網(wǎng)絡安全技術信息安全控制
- 江蘇南京市、鹽城市2025屆高二上數(shù)學期末教學質(zhì)量檢測試題含解析
- 江蘇省2021年普通高中學業(yè)水平合格性考試數(shù)學試題(解析版)
- 市場營銷《大數(shù)據(jù)營銷》課程教學大綱
- 4S店總經(jīng)理績效考核方案
- 2024年華能山東發(fā)電有限公司招聘筆試參考題庫含答案解析
- 高三英語定語從句公開課課件
- 學前教育-幼兒園戶外建構(gòu)游戲安全與對策的研究論文
- 門急診病歷質(zhì)控檢查評分標準
評論
0/150
提交評論