版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
江蘇省溧陽市中考數(shù)學(xué)真題分類(平行線的證明)匯編章節(jié)練習(xí)考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計16分)1、下列命題:①對頂角相等;②同位角相等,兩直線平行;③若|a|=|b|,則a=b;④若x=2,則2|x|-1=3.以上命題是真命題的有(
).A.①②③④ B.①④ C.②④ D.①②④2、如圖:∠B=∠C=90°,E是BC的中點,DE平分∠ADC,則下列說法正確的有幾個(
)(1)AE平分∠DAB;(2)△EBA≌△DCE;(3)AB+CD=AD;
(4)AE⊥DE.(5)DE=AEA.2個 B.3個 C.4個 D.53、如圖7,AB⊥BC,AE平分∠BAD交BC于E,AE⊥DE,∠1+∠2=90°,M,N分別是BA,CD延長線上的點,∠EAM和∠EDN的平分線交于點F.下列結(jié)論:①AB∥CD;②∠AEB+∠ADC=180°;③DE平分∠ADC;④∠F=135°,其中正確的有()A.1個 B.2個 C.3個 D.4個4、如圖,直線,等邊三角形的頂點、分別在直線和上,邊與直線所夾的銳角為,則的度數(shù)為(
)A. B. C. D.5、在中,若一個內(nèi)角等于另外兩個角的差,則(
)A.必有一個角等于 B.必有一個角等于C.必有一個角等于 D.必有一個角等于6、如圖,下列推理正確的是(
)A.∵,∴ B.∵,∴C.∵,∴ D.∵,∴7、如圖,已知△ABC中,BD、CE分別是△ABC的角平分線,BD與CE交于點O,如果設(shè)∠BAC=n°(0<n<180),那么∠BOE的度數(shù)是()A.90°n° B.90°n° C.45°+n° D.180°﹣n°8、如圖,把△ABC沿EF對折,折疊后的圖形如圖所示,,,則的度數(shù)為(
)A. B. C. D.第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計14分)1、如圖,點O是△ABC的三條角平分線的交點,連結(jié)AO并延長交BC于點D,BM、CM分別平分∠ABC和∠ACB的外角,直線MC和直線BO交于點N,OH⊥BC于點H,有下列結(jié)論:①∠BOC+∠BMC=180°;②∠N=∠DOH;③∠BOD=∠COH;④若∠CBA=∠CAB,則MN∥AB;其中正確的有_____.(填序號)2、一副三角板按如圖所示疊放在一起,其中點B、D重合,若固定三角形AOB,改變?nèi)前錋CD的位置(其中A點位置始終不變),下列條件①∠BAD=30°;②∠BAD=60°;③∠BAD=120°;④∠BAD=150°中,能得到的CD∥AB的有__________.(填序號)3、如圖,下列條件:①∠1=∠3,②∠2+∠4=180°,③∠4=∠5,④∠2=∠3,⑤∠6=∠2+∠3中能判斷直線的有_________(只填序號).4、“兩條直線被第三條直線所截,內(nèi)錯角相等”是___命題.(填“真”或“假”)5、如圖,已知l1∥l2,直線l分別與l1,l2相交于點C,D,把一塊含30°角的三角尺按如圖位置擺放,若∠1=130°,則∠2=___.6、如圖,直線AB、CD相交于點O,∠BOC=α,點F在直線AB上且在點O的右側(cè),點E在射線OC上,連接EF,直線EM、FN交于點G.若∠MEF=n∠CEF,∠NFE=(1﹣2n)∠AFE,且∠EGF的度數(shù)與∠AFE的度數(shù)無關(guān),則∠EGF=__.(用含有α的代數(shù)式表示)7、如圖,在中,,,,則x=______.三、解答題(7小題,每小題10分,共計70分)1、【教材呈現(xiàn)】如圖是華師版七年級下冊數(shù)學(xué)教材第76頁的部分內(nèi)容.請根據(jù)教材提示,結(jié)合圖①,將證明過程補(bǔ)充完整.【結(jié)論應(yīng)用】(1)如圖②,在△中,∠=60°,平分∠,平分∠,求∠的度數(shù).(2)如圖③,將△的∠折疊,使點落在△外的點處,折痕為.若∠=,∠=,∠=,則、、滿足的等量關(guān)系為(用、、的代數(shù)式表示).2、如圖,在△ABC中,∠ABC的平分線BD交∠ACB的平分線CE于點O.(1)求證:.(2)如圖1,若∠A=60°,請直接寫出BE,CD,BC的數(shù)量關(guān)系.(3)如圖2,∠A=90°,F(xiàn)是ED的中點,連接FO.①求證:BC?BE?CD=2OF.②延長FO交BC于點G,若OF=2,△DEO的面積為10,直接寫出OG的長.3、在①DE=BC,②,③AE=AC這三個條件中選擇其中一個,補(bǔ)充在下面的問題中,并完成問題的解答.問題:如圖,AC平分,D是AC上的一點,.若______,求證:.4、如圖,在△ABC中,∠A=∠DBC=36°,∠C=72°.求∠1,∠2的度數(shù).5、已知:如圖,點B、C在線段AD的異側(cè),點E、F分別是線段AB、CD上的點,∠AEG=∠AGE,∠C=∠DGC.(1)求證:AB//CD;(2)若∠AGE+∠AHF=180°,求證:∠B=∠C;(3)在(2)的條件下,若∠BFC=4∠C,求∠D的度數(shù).6、如圖,已知,垂足為點N,與交于點M.求證:.(用反證法證明)7、如圖,△ABC中,E是AB上一點,過D作DEBC交AB于E點,F(xiàn)是BC上一點,連接DF.若∠AED=∠1.(1)求證:ABDF.(2)若∠1=52°,DF平分∠CDE,求∠C的度數(shù).-參考答案-一、單選題1、D【解析】【分析】對于①,根據(jù)對頂角的性質(zhì)即可判斷命題正誤;對于②,根據(jù)平行線的判定定理判斷命題的正誤;對于③,根據(jù)絕對值的性質(zhì)知a=b,據(jù)此判斷命題③的正誤;對于④,把x=2代入2|x|-1可得2|x|-1=3,據(jù)此判斷命題的正誤,綜上可選出正確答案.【詳解】解:對于①,由對頂角的性質(zhì)知,對頂角相等,故命題①為真命題;對于②,同位角相等,兩直線平行,故命題②為真命題;對于③,如果|a|=|b|,則a=b,故命題③為假命題;對于④,若x=2,則2|x|-1=3,故④為真命題.綜上可知,命題是真命題的有①②④.故選D.【考點】本題主要考查命題,熟知平行線及絕對值等各知識是解題的關(guān)鍵.2、B【解析】【分析】過點E作EF⊥AD垂足為點F,證明△DEF≌△DEC(AAS);得出CE=EF,DC=DF,∠CED=∠FED,證明Rt△AFE≌Rt△ABE(HL);得出AF=AB,∠FAE=∠BAE,∠AEF=∠AEB,即可得出答案.【詳解】解:如圖,過點E作EF⊥AD,垂足為點F,可得∠DFE=90°,則∠DFE=∠C,∵DE平分∠ADC,∴∠FDE=∠CDE,在△DCE和△DFE中,,∴△DEF≌△DEC(AAS);∴CE=EF,DC=DF,∠CED=∠FED,∵E是BC的中點,∴CE=EB,∴EF=EB,在Rt△ABE和Rt△AFE中,,∴Rt△AFE≌Rt△ABE(HL);∴AF=AB,∠FAE=∠BAE,∠AEF=∠AEB,∴AE平分∠DAB,故結(jié)論(1)正確,則AD=AF+DF=AB+CD,故結(jié)論(3)正確;可得∠AED=∠FED+AEF=∠FEC+∠BEF=90°,即AE⊥DE故結(jié)論(4)正確.∵AB≠CD,AE≠DE,(5)錯誤,∴△EBA≌△DCE不可能成立,故結(jié)論(2)錯誤.綜上所知正確的結(jié)論有3個.故答案為:B.【考點】本題考查全等三角形的判定與性質(zhì)、平行線的判定等內(nèi)容,作出輔助線是解題的關(guān)鍵.3、C【解析】【分析】先根據(jù)AB⊥BC,AE平分∠BAD交BC于點E,AE⊥DE,∠1+∠2=90°,∠EAM和∠EDN的平分線交于點F,由三角形內(nèi)角和定理以及平行線的性質(zhì)即可得出結(jié)論.【詳解】解:標(biāo)注角度如圖所示:∵AB⊥BC,AE⊥DE,∴∠1+∠AEB=90°,∠DEC+∠AEB=90°,∴∠1=∠DEC,又∵∠1+∠2=90°,∴∠DEC+∠2=90°,∴∠C=90°,∴∠B+∠C=180°,∴AB∥CD,故①正確;∴∠ADN=∠BAD,∵∠ADC+∠ADN=180°,∴∠BAD+∠ADC=180°,又∵∠AEB≠∠BAD,∴AEB+∠ADC≠180°,故②錯誤;∵∠4+∠3=90°,∠2+∠1=90°,而∠3=∠1,∴∠2=∠4,∴ED平分∠ADC,故③正確;∵∠1+∠2=90°,∴∠EAM+∠EDN=360°-90°=270°.∵∠EAM和∠EDN的平分線交于點F,∴∠EAF+∠EDF=×270°=135°.∵AE⊥DE,∴∠3+∠4=90°,∴∠FAD+∠FDA=135°-90°=45°,∴∠F=180°-(∠FAD+∠FDA)=180-45°=135°,故④正確.故選:C.【考點】本題主要考查了平行線的性質(zhì)與判定、三角形內(nèi)角和定理、直角三角形的性質(zhì)及角平分線的計算,解題的關(guān)鍵是熟知三角形的內(nèi)角和等于180°.4、C【解析】【分析】根據(jù),可以得到,,再根據(jù)等邊三角形可以計算出的度數(shù).【詳解】解:如圖所示:根據(jù)∴,又∵是等邊三角形∴∴∴故選:C.【考點】本題主要考查了平行線的性質(zhì),即兩直線平行內(nèi)錯角相等以及兩直線平行同位角相等;明確平行線的性質(zhì)是解題的關(guān)鍵.5、D【解析】【分析】先設(shè)三角形的兩個內(nèi)角分別為x,y,則可得第三個角(180°-x-y),再分三種情況討論,即可得到答案.【詳解】設(shè)三角形的一個內(nèi)角為x,另一個角為y,則第三個角為(180°-x-y),則有三種情況:①②③綜上所述,必有一個角等于90°故選D.【考點】本題考查三角形內(nèi)角和的性質(zhì),解題的關(guān)鍵是熟練掌握三角形內(nèi)角和的性質(zhì),分情況討論.6、B【解析】【分析】根據(jù)平行線的判定判斷即可.【詳解】解:A、由∠2=∠4不能推出AD∥BC,故本選項錯誤;B、∵∠1=∠3,∴AD∥BC,故本選項正確;C、由∠4+∠D=180°不能推出AD∥BC,故本選項錯誤;D、由∠4+∠B=180°不能推出AD∥BC,故本選項錯誤;故選:B.【考點】本題考查了平行線的判定的應(yīng)用,注意:同旁內(nèi)角互補(bǔ),兩直線平行,內(nèi)錯角相等,兩直線平行.7、A【解析】【分析】根據(jù)BD、CE分別是△ABC的角平分線和三角形的外角,得到,再利用三角形的內(nèi)角和,得到,代入數(shù)據(jù)即可求解.【詳解】解:∵BD、CE分別是△ABC的角平分線,∴,,∴,∵,∴.故答案選:A.【考點】本題考查三角形的內(nèi)角和定理和外角的性質(zhì).涉及角平分線的性質(zhì).三角形的內(nèi)角和定理:三角形的內(nèi)角和等于.三角形的一個外角等于與它不相鄰的兩個內(nèi)角之和.8、B【解析】【分析】由三角形的內(nèi)角和,得,由鄰補(bǔ)角的性質(zhì)得,根據(jù)折疊的性質(zhì)得,即,所以,.【詳解】解:∵,∴,∴,由折疊的性質(zhì)可得:,∴,∵,∴,即.故選B.【考點】本題考查了三角形的內(nèi)角和定理、鄰補(bǔ)角的性質(zhì)、折疊的性質(zhì),熟悉掌握三角形的內(nèi)角和為,互為鄰補(bǔ)角的兩個角之和為以及折疊的性質(zhì)是本題的解題關(guān)鍵.二、填空題1、①③④【解析】【分析】由平分可知:①∠1=∠2,∠3=∠4,∠5=∠6,∠7=∠8,即∠OBM=90°,∠OCM=90°,可知∠BOC+∠BMC=180°;②利用外角定理,角平分線性質(zhì)進(jìn)行計算分析即可;③根據(jù)∠BOD=∠BAD+∠1=∠BAC+∠ABC=(180°﹣∠ACB)=90°﹣∠ACB,∠COH=90°﹣∠6=90°﹣∠ACB,可知∠BOD=∠COH;④若∠CBA=∠CAB,則∠1=∠2=∠BAC,由于∠N=∠BAC,可知∠1=∠N,即MN∥AB.【詳解】解:如圖所示,延長AC與E,∵點O是△ABC的三條角平分線的交點,BM、CM分別平分∠ABC和∠ACB的外角,∴∠1=∠2,∠3=∠4,∠5=∠6,∠7=∠8,∴∠2+∠3=∠OBM=90°,∠6+∠7=∠OCM=90°,∵∠OBM+∠OCM+∠BOC+∠BMC=360°,∴∠BOC+∠BMC=180°,故①正確;∵BN平分∠ABC,CM平分∠BCE,∠N+∠2=∠7,∴∠N=∠7﹣∠2=∠BCE﹣∠ABC,∵∠BCE=∠ABC+∠BAC,∴∠N=∠BAC,∵∠ODH=∠BAD+∠ABC=∠BAC+∠ABC,OH⊥BC,∴∠DOH=90°﹣∠ODH=90°﹣∠BAC﹣∠ABC,∵∠ABC+∠BAC≠90°,∴90°﹣∠BAC﹣∠ABC≠∠BAC,∴∠N≠∠DOH,故②錯誤;∵∠BOD=∠BAD+∠1=∠BAC+∠ABC=(180°﹣∠ACB)=90°﹣∠ACB,∠COH=90°﹣∠6=90°﹣∠ACB,∴∠BOD=∠COH,故③正確;∵∠CBA=∠CAB,∴∠1=∠2=∠BAC,∵∠N=∠BAC,∴∠1=∠N,∴MN∥AB,故④正確,故答案為:①③④.【考點】本題主要考查的是三角形與角平分線的綜合運(yùn)用,熟練掌握角平分線的性質(zhì)是解題的關(guān)鍵.2、①④【解析】【分析】分兩種情況,根據(jù)CD∥AB,利用平行線的性質(zhì),即可得到∠BAD的度數(shù).【詳解】解:如圖所示:當(dāng)CD∥AB時,∠BAD=∠D=30°;如圖所示,當(dāng)AB∥CD時,∠C=∠BAC=60°,∴∠BAD=60°+90°=150°;∴∠BAD=150°或∠BAD=30°.故答案為:①④.【考點】本題主要考查了平行線的判定,平行線的判定是由角的數(shù)量關(guān)系判斷兩直線的位置關(guān)系,平行線的性質(zhì)是由直線的平行關(guān)系來尋找角的數(shù)量關(guān)系.3、①②③⑤【解析】【詳解】分析:根據(jù)平行線的判定定理對各小題進(jìn)行逐一判斷即可.詳解:①∵∠1=∠3,∴l(xiāng)1∥l2,故本小題正確;②∵,∴l(xiāng)1∥l2,故本小題正確;③∵∠4=∠5,∴l(xiāng)1∥l2,故本小題正確;④∠2=∠3不能判定l1∥l2,故本小題錯誤;⑤∵∠6=∠2+∠3,∴l(xiāng)1∥l2,故本小題正確.故答案為①②③⑤點睛:考查平行線的判定,掌握判定方法是解題的關(guān)鍵.4、假【解析】【分析】由正確的題設(shè)得出正確的結(jié)論是真命題,由正確的題設(shè)不能得出正確結(jié)論是假命題,判定此命題的正誤即可得到答案.【詳解】解:∵當(dāng)兩條平行線被第三條直線所截,內(nèi)錯角相等,∴兩條直線被第三條直線所截,內(nèi)錯角有相等或不相等兩種情況∴原命題錯誤,是假命題,故答案為假.【考點】本題考查了判斷命題的真假的知識,解題的關(guān)鍵是根據(jù)命題作出正確的判斷,必要時可以舉出反例.5、20°【解析】【分析】先根據(jù)平行線的性質(zhì),得到∠BDC=50°,再根據(jù)∠ADB=30°,即可得出∠2=20°.【詳解】解:∵∠1=130°,∴∠3=50°,又∵l1∥l2,∴∠BDC=50°,又∵∠ADB=30°,∴∠2=20°,故答案為:20°.【考點】本題主要考查了平行線的性質(zhì),解題時注意:兩直線平行,內(nèi)錯角相等.6、α##α3【解析】【分析】利用三角形外角的性質(zhì):三角形的一個外角等于和它不相鄰的兩個內(nèi)角和,以及三角形內(nèi)角和定理求解.【詳解】解:∵∠CEF=∠AFE+∠BOC,∠BOC=α,∴∠CEF=α+∠AFE,∵∠MEF=n∠CEF,∴∠MEF=n(α+∠AFE),∵∠EGF=∠MEF﹣∠NFE,∴∠EGF=n(α+∠AFE)﹣(1﹣2n)∠AFE=nα+(3n﹣1)∠AFE,∵∠EGF的度數(shù)與∠AFE的度數(shù)無關(guān),∴3n﹣1=0,即n=,∴∠EGF=α;故答案為:α.【考點】此題考查了三角形外角的性質(zhì)及角度計算,解題的關(guān)鍵是理解∠EGF的度數(shù)與∠AFE的度數(shù)無關(guān)的含義.7、130【解析】【分析】由可得,再由,即可求解;【詳解】解:∵,,∴∵,∴,∴∴故答案為:130.【考點】本題主要考查三角形的內(nèi)角和定理,掌握三角形的內(nèi)角和定理并靈活應(yīng)用是解本題的關(guān)鍵.三、解答題1、教材呈現(xiàn):見解析;(1)120°;(2)【解析】【分析】【教材呈現(xiàn)】利用兩直線平行,同位角相等,內(nèi)錯角相等,把三角形三個內(nèi)角轉(zhuǎn)化成一個平角,從而得證.【結(jié)論應(yīng)用】(1)利用角平分線的性質(zhì)得出兩個底角之和,從而求出∠P度數(shù).(2)根據(jù)四邊形BCFD內(nèi)角和為360°,分別表示出各角得出等式即可.【詳解】解:教材呈現(xiàn):∵CD∥BA,∴∠1=∠ACD.∵∠3+∠ACD+∠DCE=180°,,∴.結(jié)論應(yīng)用:(1)∵BP平分,CP平分,∴,.∵,,∴.∵,∴.(2)∵,∴,在△ABC中,,又四邊形BCDF內(nèi)角和為360°,∴,∴.【考點】本題考查平行線的性質(zhì),角平分線的定義,三角形內(nèi)角和定理,翻折等知識,根據(jù)翻折前后對應(yīng)角相等時解題的關(guān)鍵.2、(1)見解析(2)BE+CD=BC,(3)①見解析;②【解析】【分析】(1)先根據(jù)三角形內(nèi)角和得:∠BOC=180°?(∠OBC+∠OCB),由角平分線定義得:∠OBC=∠ABC,∠OCB=∠ACB,最后由三角形內(nèi)角和可得結(jié)論;(2)在BC上截取BM=BE,證明△BOE≌△BOM,推出∠BOE=∠BOM=60°,再證明△DCO≌△MCO可得結(jié)論;(3)①延長OF到點M,使MF=OF,證明△ODF≌△MEF(SAS),推出OD=EM.過點O作CE,BD的垂線,證明△OBE≌△OBK(AAS)和△ODC≌△OHC,推出EO=OK,OD=OH=EM,BE=BK,CD=CH.據(jù)此即可證明結(jié)論;②利用①的結(jié)論以及三角形面積公式即可求解.(1)證明:∵BD平分∠ABC,CE平分∠ACB,∴∠OBC=∠ABC,∠OCB=∠ACB,∴∠BOC=180°?(∠OBC+∠OCB)=180°?(∠ABC+∠ACB)=180°?(180°?∠A)=∠A+90°;(2)解:BE+CD=BC.在BC上截取BM=BE,連接OM,如圖:∵∠BOC=∠A+90°=120°,∴∠BOE=60°,∵BD平分∠ABC,∴∠EBO=∠MBO,∴△BOE≌△BOM,∴∠BOE=∠BOM=60°,∴∠MOC=∠DOC=60°,∵OC為∠DCM的角平分線,∴∠DCO=∠MCO,在△DCO與△MCO中,,∴△DCO≌△MCO(ASA),∴CM=CD,∴BC=BM+CM=BE+CD;(3)①證明:如圖,延長OF到點M,使MF=OF,連接EM,∴OM=2OF.∵F是ED的中點,∴EF=DF,∵∠DFO=∠EFM,∴△ODF≌△MEF(SAS),∴OD=EM.過點O作CE,BD的垂線,分別交BC于點K,H,∴∠OCK+∠OKC=90°.∵∠A=90°,∴∠ACE+∠AEC=90°∵∠ACE=∠OCK,∴∠AEO=∠OKC,∴∠BEO=∠BKO,∴△OBE≌△OBK(AAS),同理可得△ODC≌△OHC,∴EO=OK,OD=OH=EM,BE=BK,CD=CH.由(1)可知∠DOE=∠BOC=×90°+90°=135°,∴∠BOE=∠COD=45°,∴∠OEM=∠KOH=45°,∴△OME≌△KHO,∴KH=OM,∴KH=2OF.∵BC?BK?CH=KH=2OE,∴BC?BE?CD=KH=2OF;②解:∵△OME≌△KHO,∴∠EOM=∠OKH,∴FG⊥BC.由①可知KH=2OF=4,△ODF≌△MEF,∴S△DEO=S△OME=S△KHO=10,∴KH×OG×=10,∴OG=5.【考點】本題考查了角平分線的定義、三角形內(nèi)角和定理、三角形全等的性質(zhì)和判定.解題的關(guān)鍵是靈活運(yùn)用所學(xué)知識解決問題.3、證明見解析【解析】【分析】選②,根據(jù)角平分線的性質(zhì)可得∠EAD=∠BAC.由三角形的內(nèi)角和定理可得,,即可求解,若選③,證明,即可求解.【詳解】若選②;證明:∵AC平分∠BAE,∴∠EAD=∠BAC.∵∠E=∠C,∴.∵,.∴∠ADE=∠ABC.若選③,證明:∵AC平分∠BAE,∴.在△ABC和△ADE中,∴.∴.【考點】本題考查了三角形的內(nèi)角和定理,三角形求得的性質(zhì)與判定,綜合運(yùn)用以上知識是解題的關(guān)鍵.4、∠1=36°,∠2=72°.【解析】【分析】在△ABC和△BDC中,根據(jù)三角形內(nèi)角和定理,即可得出結(jié)論.【詳解】在△ABC中,∠ABC=180°﹣∠A﹣∠C=180°-36°-72°=72°,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 災(zāi)后飲用水衛(wèi)生監(jiān)督制度
- 煙花廠衛(wèi)生管理制度
- 衛(wèi)生院門診治療管理制度
- 衛(wèi)生標(biāo)準(zhǔn)及管理制度
- 寧夏衛(wèi)生院醫(yī)保管理制度
- 衛(wèi)生院新冠院感制度
- 街道辦事處衛(wèi)生工作制度
- 豬肉店衛(wèi)生管理制度
- 基層醫(yī)院衛(wèi)生制度
- 健身房衛(wèi)生獎罰制度
- 2025年住院醫(yī)師規(guī)范化培訓(xùn)考試(腎臟內(nèi)科)歷年參考題庫含答案詳解(5卷)
- 血液小學(xué)生課件
- 森林消防安全知識課件
- T-CRHA 089-2024 成人床旁心電監(jiān)測護(hù)理規(guī)程
- 燃?xì)夤艿廊毕菪迯?fù)技術(shù)-深度研究
- 刑事訴訟法學(xué)全套課件
- DBJ51-T 040-2021 四川省工程建設(shè)項目招標(biāo)代理操作規(guī)程
- 青鳥消防JBF62E-T1型測溫式電氣火災(zāi)監(jiān)控探測器使用說明書
- 武漢市江岸區(qū)2022-2023學(xué)年七年級上學(xué)期期末地理試題【帶答案】
- 自動駕駛系統(tǒng)關(guān)鍵技術(shù)
- 完整工資表模板(帶公式)
評論
0/150
提交評論