版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
吉林省敦化市中考數(shù)學(xué)真題分類(勾股定理)匯編專項訓(xùn)練考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題14分)一、單選題(7小題,每小題2分,共計14分)1、如圖,在中,,,,為邊上一動點,于,于,為中點,則的最小值為(
).A. B. C. D.2、已知直角三角形的兩條邊長分別是3和4,那么這個三角形的第三條邊的長為(
)A.5 B.25 C. D.5或3、如圖所示,將一根長為24cm的筷子,置于底面直徑為5cm,高為12cm的圓柱形水杯中,設(shè)筷子露在外面的長為hcm,則h的取值范圍是()A.0<h≤11 B.11≤h≤12 C.h≥12 D.0<h≤124、在△ABC中,,那么△ABC是(
)A.等腰三角形 B.鈍角三角形 C.直角三角形 D.等腰直角三角形5、《九章算術(shù)》被尊為古代數(shù)學(xué)“群經(jīng)之首”,其卷九勾股定理篇記載:今有圓材埋于壁中,不知大小.以鋸鋸之,深一寸,鋸道長一尺.問徑幾何?如圖,大意是,今有一圓柱形木材,埋在墻壁中,不知其大小,用鋸去鋸這個木材,鋸口深等于1寸,鋸道長1尺,則圓形木材的直徑是(
)(1尺=10寸)A.12寸 B.13寸 C.24寸 D.26寸6、《九章算術(shù)》是我國古代數(shù)學(xué)名著,記載著這樣一個問題:“今有池方一丈,葭生其中央,出水一尺.引葭赴岸,適與岸齊.問水深、葭長各幾何?”大意是:有一個水池,水面是一個邊長為10尺的正方形,在水池正中央有一根蘆葦,它高出水面1尺.如果把這根蘆葦拉向水池一邊的中點,它的頂端恰好到達(dá)池邊的水面.水的深度與這根蘆葦?shù)拈L度分別是多少?設(shè)蘆葦?shù)拈L度為x尺,則可列方程為()A.x2+52=(x+1)2 B.x2+102=(x+1)2C.x2﹣52=(x﹣1)2 D.x2﹣102=(x﹣1)27、下面圖形能夠驗證勾股定理的有()個A.4個 B.3個 C.2個 D.1個第Ⅱ卷(非選擇題86分)二、填空題(8小題,每小題2分,共計16分)1、已知,在中,,,,則的面積為__.2、如圖,折疊直角三角形紙片ABC,使得兩個銳角頂點A、C重合,設(shè)折痕為DE,若AB=4,BC=3,則△ADC的周長是__________
3、已知a、b、c是一個三角形的三邊長,如果滿足,則這個三角形的形狀是_______.4、如圖,在的正方形網(wǎng)格中,每個小正方形的頂點稱為格點,點、、均在格點上,則______.5、在繼承和發(fā)揚(yáng)紅色學(xué)校光榮傳統(tǒng),與時俱進(jìn),把育英學(xué)校建成一所文明的、受社會尊敬的學(xué)校升旗儀式上,如圖所示,一根旗桿的升旗的繩垂直落地后還剩余1米,若將繩子拉直,則繩端離旗桿底端的距離有5米.則旗桿的高度______.6、在平面直角坐標(biāo)系中,點(3,﹣2)到原點的距離是_____.7、如圖,AB⊥CD于B,△ABD和△BCE都是等腰直角三角形,如果CD=17,BE=5,那么AC的長為_______8、等腰△ABC中,AB=AC=10cm,BC=12cm,則BC邊上的高是_______cm.三、解答題(7小題,每小題10分,共計70分)1、如圖,點B,F(xiàn),C,E在同一條直線上,,且.(1)求證:.(2)若,,,求BE的長.2、如圖,煙臺市正政府決定在相距50km的A、B兩村之間的公路旁E點,修建一個大櫻桃批發(fā)市場,且使C、D兩村到E點的距離相等,已知DA⊥AB于A,CB⊥AB于B,DA=30km,CB=20km,那么大櫻桃批發(fā)市場E應(yīng)建什么位置才能符合要求?3、如圖,在△ABC和△DCE中,AC=DE,∠B=∠DCE=90°,點A,C,D依次在同一直線上,且AB∥DE.(1)求證:△ABC≌△DCE;(2)連結(jié)AE,當(dāng)BC=5,AC=12時,求AE的長.4、某海上有一小島,為了測量小島兩端A,B的距離,測量人員設(shè)計了一種測量方法,如圖,已知B是CD的中點,E是BA延長線上的一點,且∠CED=90°,測得AE=16.6海里,DE=60海里,CE=80海里.(1)求小島兩端A,B的距離.(2)過點C作CF⊥AB交AB的延長線于點F,求值.5、如圖,一個長5m的梯子AB,斜靠在一豎直的墻AO上,這時AO的距離為4m,如果梯子的頂端A沿墻下滑1m至C點.(1)求梯子底端B外移距離BD的長度;(2)猜想CE與BE的大小關(guān)系,并證明你的結(jié)論.6、如圖所示,△ABC的兩條高AD,BE相交于點F,AC=BC.(1)求證:△ADC≌△BEC.(2)若CD=1,BE=2,求線段AC的長.7、臺風(fēng)是一種自然災(zāi)害,它以臺風(fēng)中心為圓心在周圍上千米的范圍內(nèi)形成極端氣候,有極強(qiáng)的破壞力,有一臺風(fēng)中心沿東西方向AB由點A行駛向點B,已知點C為一海港,且點C與直線AB上兩點A、B的距離分別為300km和400km,又AB=500km,以臺風(fēng)中心為圓心周圍250km以內(nèi)為受影響區(qū)域.(1)海港C會受臺風(fēng)影響嗎?為什么?(2)若臺風(fēng)的速度為20km/h,臺風(fēng)影響該海港持續(xù)的時間有多長?-參考答案-一、單選題1、D【解析】【分析】先根據(jù)矩形的判定得出AEPF是矩形,再根據(jù)矩形的性質(zhì)得出EF,AP互相平分,且EF=AP,再根據(jù)垂線段最短的性質(zhì)就可以得出AP⊥BC時,AP的值最小,即AM的值最小,根據(jù)面積關(guān)系建立等式求出其解即可.【詳解】解:如圖,連接AP,∵AB=3,AC=4,BC=5,∴∠EAF=90°,∵PE⊥AB于E,PF⊥AC于F,∴四邊形AEPF是矩形,∴EF,AP互相平分.且EF=AP,∴EF,AP的交點就是M點.∵當(dāng)AP的值最小時,AM的值就最小,∴當(dāng)AP⊥BC時,AP的值最小,即AM的值最小.∵AP?BC=AB?AC,∴AP?BC=AB?AC,∵AB=3,AC=4,BC=5,∴5AP=3×4,∴AP=,∴AM=.故選:D.【考點】本題考查了矩形的性質(zhì)的運(yùn)用,勾股定理的運(yùn)用,三角形的面積公式的運(yùn)用,垂線段最短的性質(zhì)的運(yùn)用,解題的關(guān)鍵是求出AP的最小值.2、D【解析】【分析】分情況討論:①當(dāng)邊長為4的邊作斜邊時;②當(dāng)邊長為4的邊作直角邊時,利用勾股定理分別求解即可.【詳解】解:當(dāng)邊長為4的邊作斜邊時,第三條邊的長度為;當(dāng)邊長為4的邊作直角邊時,第三條邊的長度為;綜上分析可知,這個三角形的第三條邊的長為5或,故D正確.故選:D.【考點】本題主要考查了勾股定理,掌握分類討論的思想是解題的關(guān)鍵.3、B【解析】【分析】根據(jù)題意畫出圖形,先找出h的值為最大和最小時筷子的位置,再根據(jù)勾股定理解答即可.【詳解】解:當(dāng)筷子與杯底垂直時h最大,h最大=24﹣12=12cm.當(dāng)筷子與杯底及杯高構(gòu)成直角三角形時h最小,如圖所示:此時,AB===13cm,∴h=24﹣13=11cm.∴h的取值范圍是11cm≤h≤12cm.故選:B.【考點】本題考查了勾股定理的實際應(yīng)用問題,解答此題的關(guān)鍵是根據(jù)題意畫出圖形找出何時h有最大及最小值,同時注意勾股定理的靈活運(yùn)用,有一定難度.4、D【解析】【分析】根據(jù)等腰三角形的判定和勾股定理逆定理得出三角形的形狀即可.【詳解】∵a:b:c=1:1:,∴三角形ABC是等腰三角形.設(shè)三邊長為a,a,∵,∴三角形ABC是直角三角形.綜上所述:△ABC是等腰直角三角形.故選D.【考點】本題考查了等腰三角形的判定和勾股定理逆定理.此題關(guān)鍵是利用勾股定理的逆定理解答.5、D【解析】【分析】連接OA、OC,由垂徑定理得AC=BC=AB=5寸,連接OA,設(shè)圓的半徑為x寸,再在Rt△OAC中,由勾股定理列出方程,解方程可得半徑,進(jìn)而直徑可求.【詳解】解:連接OA、OC,如圖:由題意得:C為AB的中點,則O、C、D三點共線,OC⊥AB,∴AC=BC=AB=5(寸),設(shè)圓的半徑為x寸,則OC=(x﹣1)寸.在Rt△OAC中,由勾股定理得:52+(x﹣1)2=x2,解得:x=13.∴圓材直徑為2×13=26(寸).故選:D【考點】本題主要考查了垂徑定理的應(yīng)用,勾股定理的應(yīng)用,熟練掌握垂徑定理,由勾股定理得出方程是解題的關(guān)鍵.6、C【解析】【分析】首先設(shè)蘆葦長x尺,則水深為(x?1)尺,根據(jù)勾股定理可得方程(x?1)2+52=x2.【詳解】解:設(shè)蘆葦長x尺,由題意得:(x?1)2+52=x2,即x2﹣52=(x﹣1)2故選:C.【考點】此題主要考查了勾股定理的應(yīng)用,解題的關(guān)鍵是讀懂題意,從題中抽象出勾股定理這一數(shù)學(xué)模型.7、A【解析】【分析】分別計算圖形的面積進(jìn)行證明即可.【詳解】解:A、由可得,故該項的圖形能夠驗證勾股定理;B、由可得,故該項的圖形能夠驗證勾股定理;C、由可得,故該項的圖形能夠驗證勾股定理;D、由可得,故該項的圖形能夠驗證勾股定理;故選:A.【考點】此題考查了圖形與勾股定理的推導(dǎo),熟記勾股定理的計算公式及各種圖形面積的計算方法是解題的關(guān)鍵.二、填空題1、2或14#14或2【解析】【分析】過點B作AC邊的高BD,Rt△ABD中,∠A=45°,AB=4,得BD=AD=4,在Rt△BDC中,BC=4,得CD==5,①△ABC是鈍角三角形時,②△ABC是銳角三角形時,分別求出AC的長,即可求解.【詳解】解:過點作邊的高,中,,,,在中,,,①是鈍角三角形時,,;②是銳角三角形時,,,故答案為:2或14.【考點】本題考查了勾股定理,三角形面積求法,解題關(guān)鍵是分類討論思想.2、【解析】【分析】首先根據(jù)勾股定理設(shè),求出AD、CD,再求出AB,相加即可.【詳解】解:∵折疊直角三角形紙片,使兩個銳角頂點、重合,∴,設(shè),則,故,∵,∴,即,解得,∴.則在中,由勾股定理得∴AC=5∴周長為AD+CD+AB=.故答案為:.【考點】本題考查了勾股定理的應(yīng)用以及折疊的性質(zhì),掌握勾股定理和折疊的性質(zhì)是解題的關(guān)鍵.3、直角三角形【解析】【分析】根據(jù)絕對值、完全平方數(shù)和算數(shù)平方根的非負(fù)性,可求解出a、b、c的值,再根據(jù)勾股定理的逆定理判斷即可.【詳解】解:由題意得:,解得:,∵,∴三角形為直角三角形.故答案為直角三角形.【考點】本題主要考查了非負(fù)數(shù)的性質(zhì)和勾股定理的逆定理,運(yùn)用非負(fù)數(shù)的性質(zhì)求出a、b、c的值是解題的關(guān)鍵.4、45°##45度【解析】【分析】取正方形網(wǎng)格中格點Q,連接PQ和BQ,證明∠AQB=90°,由勾股定理計算PQ=QB,進(jìn)而得到△QPB為等腰直角三角形,∠PAB+∠PBA=∠QPF+∠BPF=∠QPB=45°即可求解.【詳解】解:取正方形網(wǎng)格中格點Q,連接PQ和BQ,如下圖所示:∴AE=PF,PE=QF,∠AEP=∠PFQ=90°,∴△APE≌△PQF(SAS),∴∠PAB=∠QPF,∵PF∥BE,∴∠PBA=∠BPF,∴∠PAB+∠PBA=∠QPF+∠BPF=∠QPB,又QA2=22+42=20,QB2=22+12=5,AB2=52=25,∴QA2+QB2=20+5=25=AB2,∴△QAB為直角三角形,∠AQB=90°,∵PQ2=22+12=5=QB2,∴△PQB為等腰直角三角形,∴∠QPB=∠QBP=(180°-90°)÷2=45°,∴∠PAB+∠PBA=∠QPF+∠BPF=∠QPB=45°,故答案為:45°.【考點】本題考查了勾股定理及逆定理、三角形全等的判定等,熟練掌握勾股定理及逆定理是解決本類題的關(guān)鍵.5、12米【解析】【分析】設(shè)旗桿的高度是x米,繩子長為(x+1)米,旗桿,拉直的繩子和BC構(gòu)成直角三角形,根據(jù)勾股定理可求出x的值,從而求出旗桿的高度.【詳解】解:設(shè)旗桿的高度為米,根據(jù)題意可得:,解得:,答:旗桿的高度為12米.故答案為:12米.【考點】本題考查勾股定理的應(yīng)用,關(guān)鍵看到旗桿,拉直的繩子和BC構(gòu)成直角三角形,根據(jù)勾股定理可求解.6、【解析】【分析】根據(jù)兩點的距離公式計算求解即可.【詳解】解:由題意知點(3,﹣2)到原點的距離為故答案為:.【考點】本題考查了用勾股定理求解兩點的距離公式.解題的關(guān)鍵在于熟練掌握距離公式:、兩點間的距離公式為.7、13【解析】【分析】先根據(jù)△BCE等腰直角三角形得出BC的長,進(jìn)而可得出BD的長,根據(jù)△ABD是等腰直角三角形可知AB=BD.在Rt△ABC中利用勾股定理即可求出AC的長.【詳解】∵△BCE等腰直角三角形,BE=5,∴BC=5.∵CD=17,∴DB=CD﹣BE=17﹣5=12.∵△ABD是等腰直角三角形,∴AB=BD=12.在Rt△ABC中,∵AB=12,BC=5,∴AC13.故答案為13.【考點】本題考查了等腰直角三角形的性質(zhì)及勾股定理,熟知等腰三角形兩腰相等的性質(zhì)是解答此題的關(guān)鍵.8、8【解析】【詳解】如圖,AD是BC邊上的高線.∵AB=AC=10cm,BC=12cm,∴BD=CD=6cm,∴在直角△ABD中,由勾股定理得到:AD===(8cm).故答案為8.三、解答題1、(1)見解析(2)6【解析】【分析】(1)根據(jù)已知條件利用證明即可;(2)根據(jù)勾股定理求解即可.(1)證明:∵.∴,∵,∴,又∵,∴(2)解:∵,,且,∴由勾股定理得,∴,∴【考點】本題考查了全等三角形的性質(zhì)與判定,勾股定理解直角三角形,掌握以上知識是解題的關(guān)鍵.2、大櫻桃批發(fā)市場E應(yīng)建在離A站20千米的地方【解析】【分析】由勾股定理兩直角邊的平方和等于斜邊的平方分別求出和,列等式求解即可.【詳解】解:設(shè)大櫻桃批發(fā)市場E應(yīng)建在離A站x千米的地方,則千米.在直角中,根據(jù)勾股定理得:,∴,在直角中,根據(jù)勾股定理得:,∴.又∵C、D兩村到E點的距離相等,∴,∴,所以,解得.∴大櫻桃批發(fā)市場E應(yīng)建在離A站20千米的地方.【考點】本題考查勾股定理的實際應(yīng)用,掌握兩直角邊的平方和等于斜邊的平方是解題的關(guān)鍵.3、(1)見解析;(2)13【解析】【分析】根據(jù)題意可知,本題考查平行的性質(zhì),全等三角形的判定和勾股定理,根據(jù)判定定理,運(yùn)用兩直線平行內(nèi)錯角相等再通過AAS以及勾股定理進(jìn)行求解.【詳解】解:(1)∵∴在△ABC和△DCE中∴△ABC≌△DCE(2)由(1)可得BC=CE=5在直角三角形ACE中【考點】本題考查平行的性質(zhì),全等三角形的判定和勾股定理,熟練掌握判定定理運(yùn)用以及平行的性質(zhì)是解決此類問題的關(guān)鍵.4、(1)33.4海里(2)【解析】【分析】(1)利用勾股定理求出CD,再根據(jù)斜邊的中線等于斜邊的一半求出BE,則AB可求;(2)設(shè)BF=x海里.利用勾股定理先表示出CF2,在Rt△CFE中,∠CFE=90°,利用勾股定理有CF2+EF2=CE2,即,解方程即可得解.(1)在△DCE中,∠CED=90°,DE=60海里,CE=80海里,由勾股定理可得(海里),∵B是CD的中點,∴(海里),∴AB=BE-AE=50-16.6=33.4(海里)答:小島兩端A、B的距離是33.4海里;(2)設(shè)BF=x海里.在Rt△CFB中,∠CFB=90°,∴CF2=CB2-BF2=502-x2=2500-x2,在Rt△CFE中,∠CFE=90°,∴CF2+EF2=CE2,即,解得x=14,∴答:值為.【考點】本題主要考查了勾股定理的實際應(yīng)用的知識,在直角三角形中靈活利用勾股定理是解答本題的關(guān)鍵.5、(1)BD=1m;(2)CE與BE的大小關(guān)系是CE=BE,證明見解析.【解析】【分析】(1)利用勾股定理求出OB,求出OC,再根據(jù)勾股定理求出OD,即可求出答案;(2)求出△AOB和△DOC全等,根據(jù)全等三角形的性質(zhì)得出OC=OB,∠ABO=∠DCO,求出∠OCB=∠OBC,求出∠EBC=∠ECB,根據(jù)等腰三角形的判定得出即可.【詳解】(1)∵AO⊥OD,AO=4m,AB=5m,∴OB==3m,∵梯子的頂端A沿墻下滑1m至C點,∴OC=AO﹣AC=3m,∵CD=AB=5m,∴由勾股定理得:OD=4m,∴BD=OD﹣OB=4m﹣3m=1m;(2)CE與BE的大小關(guān)系是CE=BE,證明如下:連接CB,由(1)知:AO=DO=4m,AB=CD=5m,∵∠AOB=∠DOC=90°,在Rt△AOB和Rt△DOC中,∴Rt△AOB≌Rt△DOC(HL),∴∠ABO=∠DCO,OC=OB,∴∠OCB=∠OBC,∴∠ABO﹣∠OBC=∠DCO﹣∠OCB,∴∠EBC=∠ECB,∴CE=BE.【考點】本題考查了勾股定理,等腰三角形的性質(zhì)和判定,全等
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 大數(shù)據(jù)與技術(shù)圖文介紹
- DNA重組技術(shù)教學(xué)課件
- 2025至2030智能穿戴設(shè)備發(fā)展分析及前景趨勢與投融資發(fā)展機(jī)會研究報告
- 2025至2030中國不飽和聚酯樹脂產(chǎn)品性能改進(jìn)與高端化發(fā)展策略專題研究報告
- 2025-2030中國針狀焦行業(yè)發(fā)展態(tài)勢及戰(zhàn)略規(guī)劃投資可行性研究研究報告
- 2025年區(qū)塊鏈技術(shù)在供應(yīng)鏈管理透明化創(chuàng)新應(yīng)用報告
- 2026華潤集團(tuán)招聘筆試題及答案
- 湖南省長沙市岳麓區(qū)湖南師大附中博才實驗中學(xué)2024-2025學(xué)年七年級上學(xué)期期末道德與法治試題(含答案)
- 文件清掃活動方案策劃(3篇)
- 2026年老舊電梯更新項目可行性研究報告
- 手術(shù)部(室)醫(yī)院感染控制標(biāo)準(zhǔn)WST855-2025解讀課件
- 律師團(tuán)隊合作規(guī)范及管理辦法
- 二氧化硅氣凝膠的制備技術(shù)
- 臨床微生物標(biāo)本采集運(yùn)送及處理
- 軟件系統(tǒng)運(yùn)維操作手冊
- 常規(guī)體檢指標(biāo)講解
- 新人教版高中數(shù)學(xué)必修第二冊-第八章 立體幾何初步 章末復(fù)習(xí)【課件】
- GB/T 157-2025產(chǎn)品幾何技術(shù)規(guī)范(GPS)圓錐的錐度與錐角系列
- TD/T 1041-2013土地整治工程質(zhì)量檢驗與評定規(guī)程
- 2025年上海市崇明區(qū)高考英語一模試卷
- 電子公司生產(chǎn)部年終工作總結(jié)
評論
0/150
提交評論