版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
京改版數(shù)學(xué)9年級上冊期中試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題26分)一、單選題(6小題,每小題2分,共計12分)1、如圖所示,雙曲線y=上有一動點A,連接OA,以O(shè)為頂點、OA為直角邊,構(gòu)造等腰直角三角形OAB,則△OAB面積的最小值為(
)A. B. C.2 D.22、如圖,點在反比例函數(shù)圖象上,軸于點,是的中點,連接,,若的面積為2,則(
)A.4 B.8 C.12 D.163、已知兩個直角三角形的三邊長分別為3,4,和6,8,,且這兩個直角三角形不相似,則的值為(
)A.或 B.15 C. D.4、如圖,在RtABC中,∠C=90°,AC=3cm,BC=4cm,D從A出發(fā)沿AC方向以1cm/s向終點C勻速運動,過點D作DEAB交BC于點E,過點E作EF⊥BC交AB于點F,當(dāng)四邊形ADEF為菱形時,點D運動的時間為()sA. B. C. D.5、向空中發(fā)射一枚炮彈,第秒時的高度為米,且高度與時間的關(guān)系為,若此炮彈在第秒與第秒時的高度相等,則在下列時間中炮彈所在高度最高的是()A.第秒 B.第秒 C.第秒 D.第秒6、如圖,點A與點B關(guān)于原點對稱,點C在第四象限,∠ACB=90°.點D是軸正半軸上一點,AC平分∠BAD,E是AD的中點,反比例函數(shù)()的圖象經(jīng)過點A,E.若△ACE的面積為6,則的值為(
)A. B. C. D.二、多選題(7小題,每小題2分,共計14分)1、如圖,在△ABC中,中線BE,CD相交于點O,連接DE,下列結(jié)論,正確的有(
).A.B.C.D.2、如圖,將繞正方形ABCD的頂點A順時針旋轉(zhuǎn)90°得,連結(jié)EF交AB于H,則下列結(jié)論正確的是(
)A.AE⊥AF B.EF∶AF=∶1 C.AF2=FH·FE D.FB∶FC=HB∶EC3、如圖,在△ABC中,點P為AB上一點,給出下列四個條件中能滿足△APC和△ACB相似的條件是(
)A.∠ACP=∠B B.∠APC=∠ACB C.AC2=AP·AB D.AB·CP=AP·CB4、如圖,正方形ABCD,點E在邊AB上,且AE:EB=2:3,過點A作DE的垂線,垂足為I,交BC于點F,交BD于點H,延長DC至G,使CG=DC,連接GI,EH.下列結(jié)論正確的是(
)A. B. C. D.5、已知Rt△ABC中,∠C=90°,AC=2,BC=3,則下列各式中,不正確的是()A.sinB= B.cosB= C.tanB= D.以上都不對6、如圖,在菱形中,按以下步驟作圖:①分別以點和點為圓心,大于為半徑作弧,兩弧交于點,;②作直線,且恰好經(jīng)過點,與交于點,連接.則下列說法正確的是(
)A. B.C.若,則 D.7、若二次函數(shù)(a是不為0的常數(shù))的圖象與x軸交于A、B兩點.則以下結(jié)論正確的有(
)A.B.當(dāng)時,y隨x的增大而增大C.無論a取任何不為0的數(shù),該函數(shù)的圖象必經(jīng)過定點D.若線段AB上有且只有5個橫坐標(biāo)為整數(shù)的點,則a的取值范圍是第Ⅱ卷(非選擇題74分)三、填空題(7小題,每小題2分,共計14分)1、已知二次函數(shù)y=x2+bx+c的頂點在x軸上,點A(m﹣1,n)和點B(m+3,n)均在二次函數(shù)圖象上,求n的值為____.2、如果A為銳角,且則_____.3、如圖,,點在上,與交于點,,,則的長為.4、如圖,在平面直角坐標(biāo)系中,矩形的頂點O落在坐標(biāo)原點,點A、點C分別位于x軸,y軸的正半軸,G為線段上一點,將沿翻折,O點恰好落在對角線上的點P處,反比例函數(shù)經(jīng)過點B.二次函數(shù)的圖象經(jīng)過、G、A三點,則該二次函數(shù)的解析式為_______.(填一般式)5、如圖,點O是正方形ABCD的對稱中心,射線OM,ON分別交正方形的邊AD,CD于E,F(xiàn)兩點,連接EF,已知,.(1)以點E,O,F(xiàn),D為頂點的圖形的面積為_________;(2)線段EF的最小值是_________.6、如圖,已知在平面直角坐標(biāo)系中,直線分別交軸,軸于點和點,分別交反比例函數(shù),的圖象于點和點,過點作軸于點,連結(jié).若的面積與的面積相等,則的值是_____.7、如圖,點D,E分別在△ABC的邊AC,AB上,△ADE∽△ABC,M,N分別是DE,BC的中點,若=,則=__.四、解答題(6小題,每小題10分,共計60分)1、已知,如圖,二次函數(shù)的圖象與軸交于A,兩點,與軸交于點,且經(jīng)過點(1)求該拋物線的解析式;(2)求該拋物線的頂點坐標(biāo)和對稱軸.(3)求的面積,寫出時的取值范圍.2、某校舉行田徑運動會,學(xué)校準(zhǔn)備了某種氣球,這些氣球內(nèi)充滿了一定質(zhì)量的氣體,當(dāng)溫度不變時,氣球內(nèi)氣體的氣壓是氣體體積的反比例函數(shù),其圖象如圖所示.(1)求這一函數(shù)的解析式.(2)當(dāng)氣體的體積為時,氣壓是多少?(3)當(dāng)氣球內(nèi)的氣壓大于時,氣球會將爆炸,為了安全起見,氣體的體積應(yīng)不小于多少?3、某廠家生產(chǎn)一批遮陽傘,每個遮陽傘的成本價是20元,試銷售時發(fā)現(xiàn):遮陽傘每天的銷售量y(個)與銷售單價x(元)之間是一次函數(shù)關(guān)系,當(dāng)銷售單價為28元時,每天的銷售量為260個;當(dāng)銷售單價為30元時,每天的銷售量為240個.(1)求遮陽傘每天的銷出量y(個)與銷售單價x(元)之間的函數(shù)關(guān)系式;(2)設(shè)遮陽傘每天的銷售利潤為w(元),當(dāng)銷售單價定為多少元時,才能使每天的銷售利潤最大?最大利潤是多少元?4、如圖,在平面直角坐標(biāo)系中,點為坐標(biāo)原點.拋物線交軸于、兩點,交軸于點,直線經(jīng)過、兩點.(1)求拋物線的解析式;(2)過點作直線軸交拋物線于另一點,過點作軸于點,連接,求的值.5、(1)證明推斷:如圖(1),在正方形中,點,分別在邊,上,于點,點,分別在邊,上,.求證:;(2)類比探究:如圖(2),在矩形中,將矩形沿折疊,使點落在邊上的點處,得到四邊形,交于點,連接交于點.試探究與之間的數(shù)量關(guān)系,并說明理由;(3)拓展應(yīng)用:在(2)的條件下,連接,若,,求的長.6、(1)計算×cos45°﹣()﹣1+20180;(2)解方程組-參考答案-一、單選題1、C【解析】【分析】根據(jù)等腰直角三角形性質(zhì)得出S△OAB=OA?OB=OA2,先求得OA取最小值時A的坐標(biāo),即可求得OA的長,從而求得△OAB面積的最小值.【詳解】解:∵△AOB是等腰直角三角形,∴OA=OB,∴S△OAB=OA?OB=OA2,∴OA取最小值時,△OAB面積的值最小,∵當(dāng)直線OA為y=x時,OA最小,解得或,∴此時A的坐標(biāo)為(,),∴OA=2,∴,∴△OAB面積的最小值為2,故選:C.【考點】本題考查了反比例函數(shù)圖象上點的坐標(biāo)特征,等腰直角三角形的性質(zhì),三角形的面積,求得OA取最小值時A的坐標(biāo)是解題的關(guān)鍵.2、B【解析】【分析】根據(jù)三角形中線的性質(zhì)得出,然后根據(jù)反比例函數(shù)的幾何意義得解.【詳解】解:∵點C是OB的中點,的面積為2,∴,∵軸于點,∴,∴,∴,故選:B.【考點】本題考查了反比例函數(shù)的幾何意義以及三角形中線的性質(zhì),熟知反比例函數(shù)的幾何意義是解本題的關(guān)鍵.3、A【解析】【分析】判斷未知邊m、n是直角三角形的直角邊還是斜邊,再根據(jù)勾股定理計算出m、n的值,最后根據(jù)題目中兩個三角形不相似,對應(yīng)邊的比值不同進行判斷.【詳解】解:在第一個直接三角形中,若m是直角邊,則,若m是斜邊,則;在第二個直接三角形中,若n是直角邊,則,若n是斜邊,則;又因為兩個直角三角形不相似,故m=5和n=10,m=和n=不能同時取,即當(dāng)m=5,,,當(dāng),n=10,,故選:A.【考點】本題主要考查了勾股定理以及相似三角形的性質(zhì),在直角三角形中對未知邊是直角邊還是斜邊進行不同情況的討論是解題的關(guān)鍵.4、D【解析】【分析】由勾股定理可求AB的長,由銳角三角函數(shù)可得,即可求解.【詳解】解:設(shè)經(jīng)過t秒后,四邊形ADEF是菱形,∴AD=DE=t,DE∥AB,∴CD=(3-t)(cm),∠ABC=∠DEC,∵∠C=90°,AC=3cm,BC=4cm,∴(cm),∵sin∠DEC=sin∠ABC=,∴,∴,故選:D.【考點】本題考查了菱形的性質(zhì),勾股定理,銳角三角函數(shù)等知識,靈活運用這些性質(zhì)解決問題是本題的關(guān)鍵.5、C【解析】【分析】根據(jù)二次函數(shù)圖像的對稱性,求出對稱軸,即可得到答案.【詳解】解:根據(jù)題意,炮彈在第秒與第秒時的高度相等,∴拋物線的對稱軸為:秒,∵第12秒距離對稱軸最近,∴上述時間中,第12秒時炮彈高度最高;故選:C.【考點】本題考查了二次函數(shù)的性質(zhì)和對稱性,解題的關(guān)鍵是掌握二次函數(shù)的對稱性進行解題.6、C【解析】【分析】過A作,連接OC、OE,根據(jù)點A與點B關(guān)于原點對稱,∠ACB=90°,AC平分∠BAD得出,從而得出三角形AEC的面積與三角形AOE的面積相等,設(shè),根據(jù)E是AD的中點得出得出三角形OAE的面積等于四邊形AFGE的面積建立等量關(guān)系求解.【詳解】解:過A作,連接OC,連接OE:∵點A與點B關(guān)于原點對稱,∠ACB=90°∴又∵AC平分∠BAD∴∴∴設(shè),根據(jù)E是AD的中點得出:∴解得:故答案選:C.【考點】本題考查反比例函數(shù)與幾何綜合,有一定的難度.將三角形AEC的面積轉(zhuǎn)化與三角形AOE的面積相等是解題關(guān)鍵.二、多選題1、AC【解析】【分析】由中線BE和中線CD得DE是△ABC的中位線,由中位線的性質(zhì)判斷A,B;由中位線得證△DOE∽△COB,從而判斷C;求得△ODE與△ABC的面積關(guān)系,由中線CD得△ADC和△ABC的面積關(guān)系,從而判斷D.【詳解】解:∵BE和CD是△ABC的中線,∴DE是△ABC的中位線,點O是△ABC的重心,∴DE:BC=1:2,故選項A正確,符合題意;AD:AB=1:2,DE∥BC,∴∠OED=∠OBC,∠ODE=∠OCB,∴△OED∽△OBC,∴,故選項B錯誤,不符合題意;∴OE:OB=ED:BC=1:2,∴AD:AB=OE:OB,故選項C正確,符合題意;∵CD是△ABC的中線,∴,∵OE:OB=OD:OC=1:2∴OC:DC=2:3∴,∴∴,故選項D錯誤,不符合題意;故答案為:A、C.【考點】此題考查了中位線的性質(zhì),涉及了比例線段和相似三角形的性質(zhì),熟練掌握相關(guān)基本性質(zhì)是解題的關(guān)鍵.2、ABD【解析】【分析】由旋轉(zhuǎn)得到,進而可得,根據(jù)等腰直角三角形的性質(zhì)以及勾股定理可得EF∶AF=∶1,根據(jù)相似三角對應(yīng)邊的比等于相似比可得FB∶FC=HB∶EC,而根據(jù)題意無法證明AF2=FH·FE,由此即可求得答案.【詳解】解:∵四邊形ABCD是正方形,∴,,∵旋轉(zhuǎn),∴,,,∴,即.,故A正確;是等腰直角三角形,,,(舍負(fù)),∴,故B正確;,,,故D正確.與不相似,∴無法證得,即無法證得,故C不正確.故選:ABD.【考點】本題考查了正方形的性質(zhì),等腰直角三角形的性質(zhì),勾股定理,相似三角形的判定和性質(zhì)等相關(guān)知識,熟練掌握相似三角形的判定與性質(zhì)是解決本題的關(guān)鍵.3、ABC【解析】【分析】根據(jù)相似三角形的判定定理逐項判斷即可.【詳解】解:A、∵∠ACP=∠B,∠A=∠A,∴△APC∽△ACB,故選項A符合題意;B、∵∠APC=∠ACB,∠A=∠A,∴△APC∽△ACB,故選項B符合題意;C、∵AC2=AP·AB,∠A=∠A,∴△APC∽△ACB,故選項C符合題意;D、AB·CP=AP·CB不是兩個對應(yīng)邊成比例,不能證明△APC和△ACB相似,故選項D不符合條件,故選:ABC.【考點】本題考查相似三角形的判定,熟練掌握相似三角形的判定方法是解答的關(guān)鍵.4、ABD【解析】【分析】證明△BAF≌△ADE,可判斷選項A和選項B,設(shè)AE=2a,則EB=3a,正方形ABCD的邊長為5a,求得BH=a,DH=a,利用反證法判斷選項C;利用相似三角形的性質(zhì)以及三角函數(shù)求得IG=a,即可判斷選項D.【詳解】解:∵AE:EB=2:3,∴設(shè)AE=2a,則EB=3a,正方形ABCD的邊長為5a,∵四邊形ABCD是正方形,AI⊥DE,∴AD=AB,∠DAB=∠ABF=∠AID=90°,∴∠BAF=90°-∠DAI=∠ADE,∴△BAF≌△ADE,∴BF=AE,故選項A正確;∴S△BAF=S△ADE,∴S△BAF-S△AEI=S△ADE-S△AEI,即S△ADI=S四邊形BFIE,故選項B正確;∵四邊形ABCD是正方形,邊長為5a,∴BD=5a,BF∥AD,∴,∴BH=a,DH=a,假設(shè)EH⊥BD,則△BHE是等腰直角三角形,則BE=BH=3a,∴假設(shè)EH⊥BD不成立,故選項C錯誤;過點I作IM⊥AD于點M,過點I作IN⊥DC于點N,∵四邊形ABCD是正方形,∴∠ADC=90°,∴四邊形IMDN是矩形,∵DE=a,AE×AD=DE×AI,∴AI=a,∴DI==a,∵sin∠ADI=,cos∠ADI=,∴IM=a,DM=a,∵CG=DC,∴DG=a,∴NG=a,IN=DM=a,∴IG=a,∴IG=DG.故選項D正確;故選:ABD.【考點】本題考查了正方形的性質(zhì),全等三角形的判定和性質(zhì),相似三角形的判定和性質(zhì),解直角三角形,解題的關(guān)鍵是靈活運用所學(xué)知識解決問題,5、ABD【解析】【分析】根據(jù)勾股定理求出AB的值,再根據(jù)銳角三角函數(shù)定義求出的三個函數(shù)值,進行判斷即可得.【詳解】解:如圖所示,在中,AC=2,BC=3,根據(jù)勾股定理,,A、,選項說法錯誤,符合題意;B、,選項說法錯誤,符合題意;C、,選項說法正確,不符合題意;D、選項C說法正確,選項說法錯誤,符合題意;故選ABD.【考點】本題考查了銳角三角形函數(shù)的定義,解題的關(guān)鍵是掌握勾股定理和銳角三角函數(shù)的定義.6、ABD【解析】【分析】A選項:由作法可得AE是CD的垂直平分線,然后結(jié)合菱形的性質(zhì)得出AD=2CE=2DE,得出∠D=60°,即可求出∠ABC的度數(shù);B選項:由題意可得AB是DE的兩倍,然后結(jié)合三角形面積的求法即可判斷出;C選項:由題意求出DE的長度,然后根據(jù)30°角直角三角形的性質(zhì)求出AE的長度,然后在△ABE中利用勾股定理即可求出BE的長度;D選項:作EH⊥BC交BC的延長線于H,設(shè)AB的長度為4a,然后根據(jù)題意表示出EH和BH的長度,即可求出的值.【詳解】解:由作法得AE垂直平分CD,即CE=DE,AE⊥CD,∵四邊形ABCD為菱形,∴AD=CD=2DE,AB∥DE,在Rt△ADE中,cosD=,∴∠D=60°,∴∠ABC=60°,∴A選項的結(jié)論正確,符合題意;∵S△ABE=AB?AE,S△ADE=DE?AE,而AB=2DE,∴S△ABE=2S△ADE,∴B選項的結(jié)論正確,符合題意;若AB=4,則DE=2,∴AE=2,在Rt△ABE中,BE=,∴C選項的結(jié)論錯誤,不符合題意;作EH⊥BC交BC的延長線于H,如圖,設(shè)AB=4a,則CE=2a,BC=4a,BE=a,在△CHE中,∠ECH=∠D=60°,∴CH=a,EH=a,∴sin∠CBE=,∴D選項的結(jié)論正確,符合題意.故選:ABD.【考點】此題考查了菱形的性質(zhì),勾股定理,垂直平分線的性質(zhì)等知識,解題的關(guān)鍵是熟練掌握菱形的性質(zhì),勾股定理,垂直平分線的性質(zhì)等知識.7、ACD【解析】【分析】求得頂點坐標(biāo),根據(jù)題意即可判斷①正確;根據(jù)二次函數(shù)的性質(zhì)即可判斷②錯誤;二次函數(shù)是不為0的常數(shù))的頂點,即可判斷③錯誤;根據(jù)題意時,時,即可判斷④正確.【詳解】解:二次函數(shù),頂點為,在軸的下方,∵函數(shù)的圖象與軸交于、兩點,拋物線開口向上,,故①正確;時,隨的增大而增大,故②錯誤;由題意可知當(dāng),二次函數(shù)是不為0的常數(shù))的圖象一定經(jīng)過點,故③正確;線段上有且只有5個橫坐標(biāo)為整數(shù)的點,且對稱軸為直線,∴當(dāng)時,,當(dāng)時,,,解得,故④正確;故選:ACD.【考點】本題考查了二次函數(shù)的性質(zhì),二次函數(shù)圖象與系數(shù)的關(guān)系,二次函數(shù)圖象上點的坐標(biāo)特征,能夠理解題意,利用二次函數(shù)的性質(zhì)解答是解題的關(guān)鍵.三、填空題1、4【解析】【分析】由A、B坐標(biāo)可得對稱軸,由頂點在x軸上可得,求得b=﹣2(m+1),c=(m+1)2,即可得出y=x2﹣2(m+1)x+(m+1)2,把A的坐標(biāo)代入即可求得n的值.【詳解】解:∵點A(m﹣1,n)和點B(m+3,n)均在二次函數(shù)y=x2+bx+c圖象上,∴,∴b=﹣2(m+1),∵二次函數(shù)y=x2+bx+c的頂點在x軸上,∴,∴b2﹣4c=0,∴[﹣2(m+1)]2﹣4c=0,∴c=(m+1)2,∴y=x2﹣2(m+1)x+(m+1)2,把A的坐標(biāo)代入得,n=(m﹣1)2﹣2(m+1)(m﹣1)+(m+1)2=4,故答案為:4.【考點】本題考查了二次函數(shù)的性質(zhì),二次函數(shù)的頂點坐標(biāo),表示出b、c的值是解題的關(guān)鍵.2、【解析】【分析】將已知等式兩邊平方,利用完全平方公式及同角三角函數(shù)間的基本關(guān)系化簡求出2sinAcosA的值,即可求出sinAcosA的值.【詳解】解:sinA+cosA=,兩邊平方得:(sinA+cosA)2=,(sinA)2+2sinAcosA+(cosA)2=則1+2sinAcosA=,解得sinAcosA=.故答案為:.【考點】此題考查了同角三角函數(shù)關(guān)系,熟練掌握同角三角函數(shù)的基本關(guān)系是解本題的關(guān)鍵.3、【解析】【分析】根據(jù)平行線分線段成比例定理,由AB∥GH,得出,由GH∥CD,得出,將兩個式子相加,即可求出GH的長.【詳解】解:,,即①,,,即②,①②,得,,,解得.故答案為:【考點】本題考查了平行線分線段成比例定理,熟練運用等式的性質(zhì)進行計算.本題難度適中.4、【解析】【分析】先由題意得到,再設(shè)設(shè),由勾股定理得到,解得x的值,最后將點C、G、A坐標(biāo)代入二次函數(shù)表達式,即可得到答案.【詳解】解:點,反比例函數(shù)經(jīng)過點B,則點,則,,∴,設(shè),則,,由勾股定理得:,解得:,故點,將點C、G、A坐標(biāo)代入二次函數(shù)表達式得:,解得:,故答案為.【考點】本題考查求二次函數(shù)解析式,解題的關(guān)鍵是熟練掌握待定系數(shù)法.5、
1
【解析】【分析】(1)連接AO,DO,證明,可得,求出即可求解;(2)設(shè),則,由勾股定理可得,即可求EF的最小值.【詳解】解:(1)連接AO,DO,∵,∴,∵四邊形ABCD是正方形,O是中心,∴,,,∴,∴,∴,∴,∵,∴,∴故答案為:1;(2)設(shè),則,,在中,,∴當(dāng)時,EF有最小值,故答案為:.【考點】本題考查正方形的性質(zhì),全等三角形的判定與性質(zhì),二次函數(shù)的性質(zhì),熟練掌握二次函數(shù)求最值的方法是解題的關(guān)鍵.6、2.【解析】【分析】過點作軸于.根據(jù)k的幾何意義,結(jié)合三角形面積之間的關(guān)系,求出交點D的坐標(biāo),代入即可求得k的值.【詳解】如圖,過點作軸于.把y=0代入得:x=2,故OA=2由反比例函數(shù)比例系數(shù)的幾何意義,可得,.∵,
∴,∴.易證,從而,即的橫坐標(biāo)為,而在直線上,∴∴.故答案為2【考點】本題是一次函數(shù)與反比例函數(shù)的交點問題,主要考查了一次函數(shù)和反比例函數(shù)的圖象與性質(zhì),反比例函數(shù)“k“的幾何意義,一次函數(shù)圖象與反比例函數(shù)圖象的交點問題,關(guān)鍵是根據(jù)兩個三角形的面積相等列出k的方程.7、【解析】【分析】根據(jù)相似三角形對應(yīng)中線的比等于相似比求出,根據(jù)相似三角形面積的比等于相似比的平方解答即可.【詳解】解:∵M,N分別是DE,BC的中點,∴AM、AN分別為△ADE、△ABC的中線,∵△ADE∽△ABC,∴==,∴=()2=,故答案為:.【考點】本題考查了相似三角形的性質(zhì),掌握相似三角形面積的比等于相似比的平方、相似三角形對應(yīng)中線的比等于相似比是解題的關(guān)鍵.四、解答題1、(1);(2)頂點坐標(biāo)是,對稱軸是;(3)的面積為21,時,的取值范圍是.【解析】【分析】(1)直接利用待定系數(shù)法將已知點代入得出方程組求出答案;(2)直接利用配方法求出拋物線頂點坐標(biāo)和對稱軸即可;(3)首先求出拋物線與x軸的交點坐標(biāo),然后利用三角形面積公式和圖像得出答案.【詳解】(1)∵二次函數(shù)的圖象經(jīng)過點、,∴,解這個方程組,得,∴該二次函數(shù)的解析式是;(2),∴頂點坐標(biāo)是;對稱軸是;(3)∵二次函數(shù)的圖象與軸交于,兩點,∴,解這個方程得:,,即二次函數(shù)與軸的兩個交點的坐標(biāo)為,.∴的面積.由圖像可得,當(dāng)時,,故時,的取值范圍是.【考點】本題主要考查了待定系數(shù)法求函數(shù)表達式,求三角形面積,圖像法求自變量求職范圍,用配方法求拋物線頂點坐標(biāo)和對稱軸,求出函數(shù)表達式是解決問題的關(guān)鍵.2、(1);(2)60KPa;(3)【解析】【分析】(1)設(shè),A(0.5,120)在反比例函數(shù)上,即可求得反比例函數(shù)解析式;(2)把V=1代入(1)中的函數(shù)關(guān)系式求P即可;(3)依題意P≤150,即,解不等式即可.【詳解】(1)設(shè),∵A(0.5,120)在反比例函數(shù)上∴∴k=60∴;故答案為:(2)當(dāng)V=1m3時,=60(KPa);故答案為:60KPa(3)當(dāng)P>150KPa時,氣球?qū)⒈?,∴P≤150,∴,解得V0.4(m3).故答案為:為了安全起見,氣體的體積應(yīng)不小于0.4(m3).【考點】本題考查了反比例函數(shù)的應(yīng)用,將實際的問題轉(zhuǎn)化為數(shù)學(xué)問題,建立反比例函數(shù)的數(shù)學(xué)模型.要熟練掌握物理或化學(xué)學(xué)科中的一些具有反比例函數(shù)關(guān)系的公式.同時體會數(shù)學(xué)中的轉(zhuǎn)化思想.3、(1)y=﹣10x+540;(2)當(dāng)銷售單價定為37元時,才能使每天的銷售利潤最大,最大利潤是2890元【解析】【分析】(1)設(shè)函數(shù)關(guān)系式為y=kx+b,由銷售單價為28元時,每天的銷售量為260個;銷售單價為30元時,每天的銷量為240個;列方程組求解即可;(2)由每天銷售利潤=每個遮陽傘的利潤×銷售量,列出函數(shù)關(guān)系式,再由二次函數(shù)的性質(zhì)求解即可;(1)解:設(shè)一次函數(shù)關(guān)系式為y=kx+b,由題意可得:,解得:,∴函數(shù)關(guān)系式為y=﹣10x+540;(2)解:由題意可得:w=(x﹣20)y=(x﹣20)(﹣10x+540)=﹣10(x﹣37)2+2890,∵﹣10<0,二次函數(shù)開口向下,∴當(dāng)x=37時,w有最大值為2890,答:當(dāng)銷售單價定為37元時,才能使每天的銷售利潤最大,最大利潤是2890元.【考點】本題考查了一次函數(shù)和二次函數(shù)的實際應(yīng)用,待定系數(shù)法求解析式,掌握二次函數(shù)的性質(zhì)是解題的關(guān)鍵.4、(1);(2)【解析】【分析】(1)首先求出點B、C的坐標(biāo),然后利用待定系數(shù)法求出拋物線的解析式;(2)如圖,過點C作直線CD⊥y軸交拋物線于點D,過點D作DE⊥x軸于點E,連接BD,構(gòu)造Rt△DEB,欲求銳角三角函數(shù)定義tan∠BDE=,先求線段BE,DE的長度即可.【詳解】(1)解:∵直線經(jīng)過、兩點,易得點,,代入拋物線中,得解之得∴拋物線的解析式為.(2)解:如圖,過點作直線軸交拋物線于點,過點作軸于點,連接.∵拋物線的對稱軸為,點為,∴點為,從而得,.∵點為∴,在中,,∴.【考點】本題考查了拋物線與x軸的交點坐標(biāo),二次函數(shù)的圖象與性質(zhì)、一次函數(shù)的圖象與性質(zhì)以及三角函數(shù)等知識點,解題時,注意輔助線的作法.5、(1)見解析;(2);見解析;(3)【解析】【分析】(1)先△ABE≌△DAQ,可得AE=DQ;再證明四邊形DQFG是平行四邊形即可解決問題;(2)如圖2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 混合動力電動汽車結(jié)構(gòu)原理與檢修 第2版 課件 學(xué)習(xí)情境3:混合動力電動汽車動力蓄電池認(rèn)知與檢查
- 廣發(fā)銀行薪酬管理制度規(guī)范(3篇)
- 電器出游活動方案策劃(3篇)
- 獸藥經(jīng)營法規(guī)培訓(xùn)
- 自備車安全管理制度(3篇)
- 獸藥電銷培訓(xùn)課件
- 獸藥殘留檢測技術(shù)緒論
- 集團公司管理制度封面(3篇)
- 獸腳類恐龍科普
- 養(yǎng)老院檔案信息管理制度
- 護理學(xué)第三章 第四節(jié) 人體力學(xué)在護理工作的應(yīng)用
- 人性秘籍-絕密人性系列
- GB 1886.18-2015食品安全國家標(biāo)準(zhǔn)食品添加劑糖精鈉
- 世界地理第八章非洲
- 反滲透EDI超濾設(shè)計計算
- 油管保護蓋板涵專項施工方案
- 高考英語一輪復(fù)習(xí)廣東聽說考試故事復(fù)述模擬訓(xùn)練(三)課件
- 點心部各崗位職責(zé)
- 中考歷史第一輪復(fù)習(xí)教案
- 中國郵政《國際及臺港澳郵件處理規(guī)則》
- 植物病害發(fā)生發(fā)展
評論
0/150
提交評論