版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
一、解答題1.在平面直角坐標(biāo)系中,點(diǎn),滿足關(guān)系式.(1)求,的值;(2)若點(diǎn)滿足的面積等于,求的值;(3)線段與軸交于點(diǎn),動(dòng)點(diǎn)從點(diǎn)出發(fā),在軸上以每秒個(gè)單位長(zhǎng)度的速度向下運(yùn)動(dòng),動(dòng)點(diǎn)從點(diǎn)出發(fā),以每秒個(gè)單位長(zhǎng)度的速度向右運(yùn)動(dòng),問(wèn)為何值時(shí)有,請(qǐng)直接寫出的值.解析:(1),;(2)或;(3)或【分析】(1)根據(jù)一個(gè)數(shù)的平方與絕對(duì)值均非負(fù),且其和為0,則可得它們都為0,從而可求得a和b的值;(2)過(guò)點(diǎn)P作直線l垂直于x軸,延長(zhǎng)交直線于點(diǎn),設(shè)點(diǎn)坐標(biāo)為,過(guò)作交直線于點(diǎn),根據(jù)面積關(guān)系求出Q點(diǎn)坐標(biāo),再求出PQ的長(zhǎng)度,即可求出n的值;(3)先根據(jù)求出C點(diǎn)坐標(biāo),再根據(jù)求出D點(diǎn)坐標(biāo),根據(jù)題意可得F點(diǎn)坐標(biāo),由得關(guān)于t的方程,求出t值即可.【詳解】(1),,且,,(2)過(guò)作直線垂直于軸,延長(zhǎng)交直線于點(diǎn),設(shè)點(diǎn)坐標(biāo)為,過(guò)作交直線于點(diǎn),如圖所示∵∴解得,點(diǎn)坐標(biāo)為∵∴解得:或(3)當(dāng)或時(shí),有.如圖,延長(zhǎng)BA交x軸于點(diǎn)D,過(guò)A點(diǎn)作AG⊥x軸于點(diǎn)G,過(guò)B點(diǎn)作BN⊥x軸于點(diǎn)N,∵∴解得:∴∵∴解得:∵∴當(dāng)運(yùn)動(dòng)t秒時(shí),∴∵CE=t∴,∵∴解得:或.【點(diǎn)睛】本題主要考查三角形的面積,含絕對(duì)值方程解法,熟練掌握直角坐標(biāo)系的知識(shí),三角形的面積,梯形的面積等知識(shí)是解題的關(guān)鍵,難點(diǎn)在于對(duì)圖形進(jìn)行割補(bǔ)轉(zhuǎn)化為易求面積的圖形.2.在平面直角坐標(biāo)系中,已知點(diǎn),,連接,將向下平移6個(gè)單位得線段,其中點(diǎn)的對(duì)應(yīng)點(diǎn)為點(diǎn).(1)填空:點(diǎn)的坐標(biāo)為_(kāi)_____,線段平移到掃過(guò)的面積為_(kāi)_____.(2)若點(diǎn)是軸上的動(dòng)點(diǎn),連接.①如圖,當(dāng)點(diǎn)在軸正半軸時(shí),線段與線段相交于點(diǎn),用等式表示三角形的面積與三角形的面積之間的關(guān)系,并說(shuō)明理由.②當(dāng)將四邊形的面積分成1∶3兩部分時(shí),求點(diǎn)的坐標(biāo).解析:(1);24;(2)①;見(jiàn)解析;②或【分析】(1)由平移的性質(zhì)得出點(diǎn)C坐標(biāo),AC=6,再求出AB,即可得出結(jié)論;(2)①過(guò)點(diǎn)作交于,分別用CE表示出兩個(gè)三角形的面積,即可得到答案;②根據(jù)題意,可分為兩種情況進(jìn)行討論分析:(i)當(dāng)交線段于,且將四邊形分成面積為兩部分時(shí);當(dāng)交于點(diǎn),將四邊形分成面積為兩部分時(shí);分別求出點(diǎn)P的坐標(biāo)即可.【詳解】解:(1)∵點(diǎn)A(3,5),將AB向下平移6個(gè)單位得線段CD,∴C(3,56),即:C(3,1),由平移得,AC=6,四邊形ABDC是矩形,∵A(3,5),B(7,5),∴AB=73=4,∴CD=4,∴點(diǎn)D的坐標(biāo)為:;∴S四邊形ABDC=AB?AC=4×6=24,即:線段AB平移到CD掃過(guò)的面積為24;故答案為:;24;(2)①過(guò)點(diǎn)作交于,則,如圖:∴,又∵,∴.②(i)當(dāng)交線段于,且將四邊形分成面積為兩部分時(shí),連接,延長(zhǎng)交軸于點(diǎn),則,∵,又∵,∴,∴,即,∵,∴,∴,∴.(ii)當(dāng)交于點(diǎn),將四邊形分成面積為兩部分時(shí),連接,延長(zhǎng)交軸于點(diǎn),則.過(guò)點(diǎn)作交的延長(zhǎng)線于點(diǎn),則,∴,,即,∵,∴,又∵,即,∴,∴,∴.綜上所述,或.【點(diǎn)睛】此題是幾何變換綜合題,主要考查了平移的性質(zhì),矩形的判定,三角形的面積公式,用分類討論的思想是解本題的關(guān)鍵.3.如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),點(diǎn),其中滿足,D為直線AB與軸的交點(diǎn),C為線段AB上一點(diǎn),其縱坐標(biāo)為.(1)求的值;(2)當(dāng)為何值時(shí),和面積的相等;(3)若點(diǎn)C坐標(biāo)為(-2,1),點(diǎn)M(m,-3)在第三象限內(nèi),滿足,求m的取值范圍.(注:表示的面積)解析:(1);(2)當(dāng)時(shí),和面積的相等;(3)m的取值范圍是【分析】(1)利用非負(fù)數(shù)的性質(zhì)求出a,b,c即可.(2)設(shè)點(diǎn)D的坐標(biāo)為(0,y),根據(jù)面積關(guān)系,構(gòu)建方程求出y,再根據(jù)△BOC和△AOD面積的相等,構(gòu)建方程求出t即可.(3)分兩種情形:①當(dāng)-2<m<0時(shí),如圖1中,②當(dāng)m≤-2時(shí),如圖2中,根據(jù)S△MOC≥5,構(gòu)建不等式求解即可.【詳解】解:(1)∵|a-2|+(b-3)2+=0,又∵|a-2|≥0,(b-3)2≥0,≥0,∴,∴a=2,b=3,c=-4;(2)設(shè)點(diǎn)D的坐標(biāo)為(0,y),則S△BOD=×BO×OD=×4×y=2y,S△AOD=xA?OD=×2y=y,S△AOB=×OB?yA=×4×3=6,∵S△BOD+S△AOD=S△AOB,即2y+y=6,解得y=2,即點(diǎn)D的坐標(biāo)為(0,2),∴S△BOC=BO?yc=×4t=2t,S△AOD=xA?OD=×2×2=2,∵△BOC和△AOD面積的相等,即2t=2,解得t=1,∴當(dāng)t=1時(shí),△BOC和△AOD面積的相等;(3)①當(dāng)-2<m<0時(shí),如圖1中,過(guò)點(diǎn)C作CF⊥軸于點(diǎn)F,過(guò)點(diǎn)M作GE⊥軸于點(diǎn)E,過(guò)點(diǎn)C作CG⊥軸交GE于點(diǎn)G,則四邊形CGEF為矩形,∵SCGEF=2×4=8,S△CFO=×2×1=1,S△EMO=×(0?m)×3=?m,S△CMG=×(m+2)×4=2(m+2),∴S△MOC=SCGEF-S△CFO-S△EMO-S△CMG=8?1?(?m)?2(m+2)=3?m,∵S△MOC≥5,即3?m≥5,解得m≤-4,這與-2<m<0矛盾.②當(dāng)m≤-2時(shí),如圖2中,過(guò)點(diǎn)C作GF⊥軸于點(diǎn)F,過(guò)點(diǎn)M作ME⊥軸于點(diǎn)E,過(guò)點(diǎn)M作MG⊥軸交GF于點(diǎn)G,則四邊形MEFG為矩形,∵SGMEF=(0-m)×4=-4m,S△CFO=×2×1=1,S△EMO=×(0?m)×3=?m,S△CMG=×(?2?m)×4=?2(m+2),∴S△MOC=SCGEF-S△CFO-S△EMO-S△CMG=?4m?1?(?m)?[?2(m+2)]=3?m,∵S△MOC≥5,即3?m≥5,解得m≤-4,綜上所述,m的取值范圍是m≤-4.【點(diǎn)睛】本題考查了坐標(biāo)與圖形的性質(zhì),三角形的面積,非負(fù)數(shù)的性質(zhì)等知識(shí),解題的關(guān)鍵是學(xué)會(huì)利用參數(shù),構(gòu)建方程解決問(wèn)題,屬于中考?jí)狠S題.4.如圖,在平面直角坐標(biāo)系中,點(diǎn)的坐標(biāo)分別是,現(xiàn)同時(shí)將點(diǎn)分別向上平移2個(gè)單位長(zhǎng)度,再向右平移2個(gè)單位長(zhǎng)度,得到的對(duì)應(yīng)點(diǎn).連接.(1)寫出點(diǎn)的坐標(biāo)并求出四邊形的面積.(2)在軸上是否存在一點(diǎn),使得的面積是面積的2倍?若存在,請(qǐng)求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.(3)若點(diǎn)是直線上一個(gè)動(dòng)點(diǎn),連接,當(dāng)點(diǎn)在直線上運(yùn)動(dòng)時(shí),請(qǐng)直接寫出與的數(shù)量關(guān)系.解析:(1)點(diǎn),點(diǎn);12;(2)存在,點(diǎn)的坐標(biāo)為和;(3)∠OFC=∠FOB-∠FCD,見(jiàn)解析.【解析】【分析】(1)根據(jù)點(diǎn)平移的規(guī)律易得點(diǎn)C的坐標(biāo)為(0,2),點(diǎn)D的坐標(biāo)為(6,2);(2)設(shè)點(diǎn)E的坐標(biāo)為(x,0),根據(jù)△DEC的面積是△DEB面積的2倍和三角形面積公式得到,解得x=1或x=7,然后寫出點(diǎn)E的坐標(biāo);(3)分類討論:當(dāng)點(diǎn)F在線段BD上,作FM∥AB,根據(jù)平行線的性質(zhì)由MF∥AB得∠2=∠FOB,由CD∥AB得到CD∥MF,則∠1=∠FCD,所以∠OFC=∠FOB+∠FCD;同樣得到當(dāng)點(diǎn)F在線段DB的延長(zhǎng)線上,∠OFC=∠FCD-∠FOB;當(dāng)點(diǎn)F在線段BD的延長(zhǎng)線上,得到∠OFC=∠FOB-∠FCD.【詳解】解:(1)∵點(diǎn)A,B的坐標(biāo)分別是(-2,0),(4,0),現(xiàn)同時(shí)將點(diǎn)A、B分別向上平移2個(gè)單位長(zhǎng)度,再向右平移2個(gè)單位長(zhǎng)度得到A,B的對(duì)應(yīng)點(diǎn)C,D,∴點(diǎn)C的坐標(biāo)為(0,2),點(diǎn)D的坐標(biāo)為(6,2);四邊形ABDC的面積=2×(4+2)=12;(2)存在.設(shè)點(diǎn)E的坐標(biāo)為(x,0),∵△DEC的面積是△DEB面積的2倍,,解得x=1或x=7,∴點(diǎn)E的坐標(biāo)為(1,0)和(7,0);(3)當(dāng)點(diǎn)F在線段BD上,作FM∥AB,如圖1,∵M(jìn)F∥AB,∴∠2=∠FOB,∵CD∥AB,∴CD∥MF,∴∠1=∠FCD,∴∠OFC=∠1+∠2=∠FOB+∠FCD;當(dāng)點(diǎn)F在線段DB的延長(zhǎng)線上,作FN∥AB,如圖2,∵FN∥AB,∴∠NFO=∠FOB,∵CD∥AB,∴CD∥FN,∴∠NFC=∠FCD,∴∠OFC=∠NFC-∠NFO=∠FCD-∠FOB;同樣得到當(dāng)點(diǎn)F在線段BD的延長(zhǎng)線上,得到∠OFC=∠FOB-∠FCD.【點(diǎn)睛】本題考查了坐標(biāo)與圖形性質(zhì):利用點(diǎn)的坐標(biāo)得到線段的長(zhǎng)和線段與坐標(biāo)軸的關(guān)系.也考查了平行線的性質(zhì)和分類討論的思想.5.如圖,在平面直角坐標(biāo)系中,已知,,,,滿足.平移線段得到線段,使點(diǎn)與點(diǎn)對(duì)應(yīng),點(diǎn)與點(diǎn)對(duì)應(yīng),連接,.(1)求,的值,并直接寫出點(diǎn)的坐標(biāo);(2)點(diǎn)在射線(不與點(diǎn),重合)上,連接,.①若三角形的面積是三角形的面積的2倍,求點(diǎn)的坐標(biāo);②設(shè),,.求,,滿足的關(guān)系式.解析:(1);(2)①或;②點(diǎn)在B點(diǎn)左側(cè)時(shí),;點(diǎn)在B點(diǎn)右側(cè)時(shí),.【分析】(1)根據(jù)非負(fù)數(shù)的性質(zhì)分別求出、,根據(jù)平移規(guī)律得到平移方式,再由平移的坐標(biāo)變化規(guī)律求出點(diǎn)的坐標(biāo);(2)①設(shè),根據(jù)三角形的面積公式列出方程,解方程求出,得到點(diǎn)P的坐標(biāo);②分點(diǎn)點(diǎn)在B點(diǎn)左側(cè)、點(diǎn)在B點(diǎn)右側(cè)時(shí),過(guò)點(diǎn)P作,根據(jù)平行線的性質(zhì)解答.【詳解】解:(1),,,,解得,,.,,平移線段得到線段,使點(diǎn)與點(diǎn)對(duì)應(yīng),∴平移線段向上平移4個(gè)單位,再向右平移2個(gè)單位得到線段,∴,即;(2)①設(shè),∵線段平移得到線段,∴,∵,∵,∴,∵,∴解得,當(dāng)P在B點(diǎn)左側(cè)時(shí),坐標(biāo)為(1,0),當(dāng)P在B點(diǎn)右側(cè)時(shí),坐標(biāo)為(7,0),或;②I、點(diǎn)在射線(不與點(diǎn),重合)上,點(diǎn)在B點(diǎn)左側(cè)時(shí),,,滿足的關(guān)系式是.理由如下:如圖1,過(guò)點(diǎn)作,,∴,由平移得到,點(diǎn)與點(diǎn)對(duì)應(yīng),點(diǎn)與點(diǎn)對(duì)應(yīng),,∴∴,;即,II、如圖2,點(diǎn)在射線(不與點(diǎn),重合)上,點(diǎn)在B點(diǎn)右側(cè)時(shí),,,滿足的關(guān)系式是.同①的方法得,,,;即:綜上所述:點(diǎn)在B點(diǎn)左側(cè)時(shí),.點(diǎn)在B點(diǎn)右側(cè)時(shí),.【點(diǎn)睛】本題考查了坐標(biāo)與圖形平移的關(guān)系,坐標(biāo)與平行四邊形性質(zhì)的關(guān)系,平行線的性質(zhì)及三角形、平行四邊形的面積公式.關(guān)鍵是理解平移規(guī)律,作平行線將相關(guān)角進(jìn)行轉(zhuǎn)化.6.如圖,在長(zhǎng)方形中,為平面直角坐標(biāo)系的原點(diǎn),點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為且、滿足,點(diǎn)在第一象限內(nèi),點(diǎn)從原點(diǎn)出發(fā),以每秒2個(gè)單位長(zhǎng)度的速度沿著的線路移動(dòng).(1)點(diǎn)的坐標(biāo)為_(kāi)__________;當(dāng)點(diǎn)移動(dòng)5秒時(shí),點(diǎn)的坐標(biāo)為_(kāi)__________;(2)在移動(dòng)過(guò)程中,當(dāng)點(diǎn)到軸的距離為4個(gè)單位長(zhǎng)度時(shí),求點(diǎn)移動(dòng)的時(shí)間;(3)在的線路移動(dòng)過(guò)程中,是否存在點(diǎn)使的面積是20,若存在直接寫出點(diǎn)移動(dòng)的時(shí)間;若不存在,請(qǐng)說(shuō)明理由.解析:(1)(8,12),(0,10);(2)2秒或14秒;(3)存在,t=2.5s或【分析】(1)由非負(fù)數(shù)的性質(zhì)可得a、b的值,據(jù)此可得點(diǎn)B的坐標(biāo);由點(diǎn)P運(yùn)動(dòng)速度和時(shí)間可得其運(yùn)動(dòng)5秒的路程,得到OP=10,從而得出其坐標(biāo);(2)先根據(jù)點(diǎn)P運(yùn)動(dòng)11秒判斷出點(diǎn)P的位置,再根據(jù)三角形的面積公式求解可得;(3)分為點(diǎn)P在OC、BC上分類計(jì)算即可.【詳解】解:(1)∵a,b滿足,∴a=8,b=12,∴點(diǎn)B(8,12);當(dāng)點(diǎn)P移動(dòng)5秒時(shí),其運(yùn)動(dòng)路程為5×2=10,∴OP=10,則點(diǎn)P坐標(biāo)為(0,10),故答案為:(8,12)、(0,10);(2)由題意可得,第一種情況,當(dāng)點(diǎn)P在OC上時(shí),點(diǎn)P移動(dòng)的時(shí)間是:4÷2=2秒,第二種情況,當(dāng)點(diǎn)P在BA上時(shí).點(diǎn)P移動(dòng)的時(shí)間是:(12+8+8)÷2=14秒,所以在移動(dòng)過(guò)程中,當(dāng)點(diǎn)P到x軸的距離為4個(gè)單位長(zhǎng)度時(shí),點(diǎn)P移動(dòng)的時(shí)間是2秒或14秒.(3)如圖1所示:∵△OBP的面積=20,∴OP?BC=20,即×8×OP=20.解得:OP=5.∴此時(shí)t=2.5s如圖2所示;∵△OBP的面積=20,∴PB?OC=20,即×12×PB=20.解得:BP=.∴CP=.∴此時(shí)t=,綜上所述,滿足條件的時(shí)間t=2.5s或【點(diǎn)睛】本題考查矩形的性質(zhì),三角形的面積,坐標(biāo)與圖形的性質(zhì),解題的關(guān)鍵是明確題意,找出所求問(wèn)題需要的條件,利用數(shù)形結(jié)合的思想解答問(wèn)題.7.已知:ABCD.點(diǎn)E在CD上,點(diǎn)F,H在AB上,點(diǎn)G在AB,CD之間,連接FG,EH,GE,∠GFB=∠CEH.(1)如圖1,求證:GFEH;(2)如圖2,若∠GEH=α,F(xiàn)M平分∠AFG,EM平分∠GEC,試問(wèn)∠M與α之間有怎樣的數(shù)量關(guān)系(用含α的式子表示∠M)?請(qǐng)寫出你的猜想,并加以證明.解析:(1)見(jiàn)解析;(2),證明見(jiàn)解析.【分析】(1)由平行線的性質(zhì)得到,等量代換得出,即可根據(jù)“同位角相等,兩直線平行”得解;(2)過(guò)點(diǎn)作,過(guò)點(diǎn)作,根據(jù)平行線的性質(zhì)及角平分線的定義求解即可.【詳解】(1)證明:,,,,;(2)解:,理由如下:如圖2,過(guò)點(diǎn)作,過(guò)點(diǎn)作,,,,,,同理,,平分,平分,,,,由(1)知,,,,,,.【點(diǎn)睛】此題考查了平行線的判定與性質(zhì),熟記平行線的判定與性質(zhì)及作出合理的輔助線是解題的關(guān)鍵.8.已知直線AB//CD,點(diǎn)P、Q分別在AB、CD上,如圖所示,射線PB按逆時(shí)針?lè)较蛞悦棵?2°的速度旋轉(zhuǎn)至PA便立即回轉(zhuǎn),并不斷往返旋轉(zhuǎn);射線QC按逆時(shí)針?lè)较蛎棵?°旋轉(zhuǎn)至QD停止,此時(shí)射線PB也停止旋轉(zhuǎn).(1)若射線PB、QC同時(shí)開(kāi)始旋轉(zhuǎn),當(dāng)旋轉(zhuǎn)時(shí)間10秒時(shí),PB'與QC'的位置關(guān)系為;(2)若射線QC先轉(zhuǎn)15秒,射線PB才開(kāi)始轉(zhuǎn)動(dòng),當(dāng)射線PB旋轉(zhuǎn)的時(shí)間為多少秒時(shí),PB′//QC′.解析:(1)PB′⊥QC′;(2)當(dāng)射線PB旋轉(zhuǎn)的時(shí)間為5秒或25秒或45秒時(shí),PB′∥QC′【分析】(1)求出旋轉(zhuǎn)10秒時(shí),∠BPB′和∠CQC′的度數(shù),設(shè)PB′與QC′交于O,過(guò)O作OE∥AB,根據(jù)平行線的性質(zhì)求得∠POE和∠QOE的度數(shù),進(jìn)而得結(jié)論;(2)分三種情況:①當(dāng)0<t≤15時(shí),②當(dāng)15<t≤30時(shí),③當(dāng)30<t<45時(shí),根據(jù)平行線的性質(zhì),得出角的關(guān)系,列出t的方程便可求得旋轉(zhuǎn)時(shí)間.【詳解】解:(1)如圖1,當(dāng)旋轉(zhuǎn)時(shí)間30秒時(shí),由已知得∠BPB′=10°×12=120°,∠CQC′=3°×10=30°,過(guò)O作OE∥AB,∵AB∥CD,∴AB∥OE∥CD,∴∠POE=180°﹣∠BPB′=60°,∠QOE=∠CQC′=30°,∴∠POQ=90°,∴PB′⊥QC′,故答案為:PB′⊥QC′;(2)①當(dāng)0<t≤15時(shí),如圖,則∠BPB′=12t°,∠CQC′=45°+3t°,∵AB∥CD,PB′∥QC′,∴∠BPB′=∠PEC=∠CQC′,即12t=45+3t,解得,t=5;②當(dāng)15<t≤30時(shí),如圖,則∠APB′=12t﹣180°,∠CQC'=3t+45°,∵AB∥CD,PB′∥QC′,∴∠BPB′=∠BEQ=∠CQC′,即12t﹣180=45+3t,解得,t=25;③當(dāng)30<t≤45時(shí),如圖,則∠BPB′=12t﹣360°,∠CQC′=3t+45°,∵AB∥CD,PB′∥QC′,∴∠BPB′=∠BEQ=∠CQC′,即12t﹣360=45+3t,解得,t=45;綜上,當(dāng)射線PB旋轉(zhuǎn)的時(shí)間為5秒或25秒或45秒時(shí),PB′∥QC′.【點(diǎn)睛】本題主要考查了平行線的性質(zhì),第(1)題關(guān)鍵是作平行線,第(2)題關(guān)鍵是分情況討論,運(yùn)用方程思想解決幾何問(wèn)題.9.綜合與實(shí)踐背景閱讀:在同一平面內(nèi),兩條不重合的直線的位置關(guān)系有相交、平行,若兩條不重合的直線只有一個(gè)公共點(diǎn),我們就說(shuō)這兩條直線相交,若兩條直線不相交,我們就說(shuō)這兩條直線互相平行兩條直線的位置關(guān)系的性質(zhì)和判定是幾何的重要知識(shí),是初中階段幾何合情推理的基礎(chǔ).已知:AM∥CN,點(diǎn)B為平面內(nèi)一點(diǎn),AB⊥BC于B.問(wèn)題解決:(1)如圖1,直接寫出∠A和∠C之間的數(shù)量關(guān)系;(2)如圖2,過(guò)點(diǎn)B作BD⊥AM于點(diǎn)D,求證:∠ABD=∠C;(3)如圖3,在(2)問(wèn)的條件下,點(diǎn)E、F在DM上,連接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,則∠EBC=.解析:(1);(2)見(jiàn)解析;(3)105°【分析】(1)通過(guò)平行線性質(zhì)和直角三角形內(nèi)角關(guān)系即可求解.(2)過(guò)點(diǎn)B作BG∥DM,根據(jù)平行線找角的聯(lián)系即可求解.(3)利用(2)的結(jié)論,結(jié)合角平分線性質(zhì)即可求解.【詳解】解:(1)如圖1,設(shè)AM與BC交于點(diǎn)O,∵AM∥CN,∴∠C=∠AOB,∵AB⊥BC,∴∠ABC=90°,∴∠A+∠AOB=90°,∠A+∠C=90°,故答案為:∠A+∠C=90°;(2)證明:如圖2,過(guò)點(diǎn)B作BG∥DM,∵BD⊥AM,∴DB⊥BG,∴∠DBG=90°,∴∠ABD+∠ABG=90°,∵AB⊥BC,∴∠CBG+∠ABG=90°,∴∠ABD=∠CBG,∵AM∥CN,∴∠C=∠CBG,∴∠ABD=∠C;(3)如圖3,過(guò)點(diǎn)B作BG∥DM,∵BF平分∠DBC,BE平分∠ABD,∴∠DBF=∠CBF,∠DBE=∠ABE,由(2)知∠ABD=∠CBG,∴∠ABF=∠GBF,設(shè)∠DBE=α,∠ABF=β,則∠ABE=α,∠ABD=2α=∠CBG,∠GBF=∠AFB=β,∠BFC=3∠DBE=3α,∴∠AFC=3α+β,∵∠AFC+∠NCF=180°,∠FCB+∠NCF=180°,∴∠FCB=∠AFC=3α+β,△BCF中,由∠CBF+∠BFC+∠BCF=180°得:2α+β+3α+3α+β=180°,∵AB⊥BC,∴β+β+2α=90°,∴α=15°,∴∠ABE=15°,∴∠EBC=∠ABE+∠ABC=15°+90°=105°.故答案為:105°.【點(diǎn)睛】本題考查平行線性質(zhì),畫輔助線,找到角的和差倍分關(guān)系是求解本題的關(guān)鍵.10.已知AB∥CD,∠ABE與∠CDE的角分線相交于點(diǎn)F.(1)如圖1,若BM、DM分別是∠ABF和∠CDF的角平分線,且∠BED=100°,求∠M的度數(shù);(2)如圖2,若∠ABM=∠ABF,∠CDM=∠CDF,∠BED=α°,求∠M的度數(shù);(3)若∠ABM=∠ABF,∠CDM=∠CDF,請(qǐng)直接寫出∠M與∠BED之間的數(shù)量關(guān)系解析:(1)65°;(2);(3)2n∠M+∠BED=360°【分析】(1)首先作EG∥AB,F(xiàn)H∥AB,連結(jié)MF,利用平行線的性質(zhì)可得∠ABE+∠CDE=260°,再利用角平分線的定義得到∠ABF+∠CDF=130°,從而得到∠BFD的度數(shù),再根據(jù)角平分線的定義和三角形外角的性質(zhì)可求∠M的度數(shù);(2)先由已知得到∠ABE=6∠ABM,∠CDE=6∠CDM,由(1)得∠ABE+∠CDE=360°-∠BED,∠M=∠ABM+∠CDM,等量代換即可求解;(3)由(2)的方法可得到2n∠M+∠BED=360°.【詳解】解:(1)如圖1,作,,連結(jié),,,,,,,,,,和的角平分線相交于,,,、分別是和的角平分線,,,,;(2)如圖1,,,,,與兩個(gè)角的角平分線相交于點(diǎn),,,,,,;(3)由(2)結(jié)論可得,,,則.【點(diǎn)睛】本題主要考查了平行線的性質(zhì)和四邊形的內(nèi)角和,關(guān)鍵在于掌握兩直線平行同位角相等,內(nèi)錯(cuò)角相等,同旁內(nèi)角互補(bǔ)的性質(zhì).11.如圖1,//,點(diǎn)、分別在、上,點(diǎn)在直線、之間,且.(1)求的值;(2)如圖2,直線分別交、的角平分線于點(diǎn)、,直接寫出的值;(3)如圖3,在內(nèi),;在內(nèi),,直線分別交、分別于點(diǎn)、,且,直接寫出的值.解析:(1);(2)的值為40°;(3).【分析】(1)過(guò)點(diǎn)O作OG∥AB,可得AB∥OG∥CD,利用平行線的性質(zhì)可求解;(2)過(guò)點(diǎn)M作MK∥AB,過(guò)點(diǎn)N作NH∥CD,由角平分線的定義可設(shè)∠BEM=∠OEM=x,∠CFN=∠OFN=y,由∠BEO+∠DFO=260°可求x-y=40°,進(jìn)而求解;(3)設(shè)直線FK與EG交于點(diǎn)H,F(xiàn)K與AB交于點(diǎn)K,根據(jù)平行線的性質(zhì)即三角形外角的性質(zhì)及,可得,結(jié)合,可得即可得關(guān)于n的方程,計(jì)算可求解n值.【詳解】證明:過(guò)點(diǎn)O作OG∥AB,∵AB∥CD,∴AB∥OG∥CD,∴∴即∵∠EOF=100°,∴∠;(2)解:過(guò)點(diǎn)M作MK∥AB,過(guò)點(diǎn)N作NH∥CD,∵EM平分∠BEO,F(xiàn)N平分∠CFO,設(shè)∵∴∴x-y=40°,∵M(jìn)K∥AB,NH∥CD,AB∥CD,∴AB∥MK∥NH∥CD,∴∴=x-y=40°,的值為40°;(3)如圖,設(shè)直線FK與EG交于點(diǎn)H,F(xiàn)K與AB交于點(diǎn)K,∵AB∥CD,∴∵∴∵∴即∵FK在∠DFO內(nèi),∴,∵∴∴即∴解得.經(jīng)檢驗(yàn),符合題意,故答案為:.【點(diǎn)睛】本題主要考查平行線的性質(zhì),角平分線的定義,靈活運(yùn)用平行線的性質(zhì)是解題的關(guān)鍵.12.已知點(diǎn)C在射線OA上.(1)如圖①,CDOE,若∠AOB=90°,∠OCD=120°,求∠BOE的度數(shù);(2)在①中,將射線OE沿射線OB平移得O′E'(如圖②),若∠AOB=α,探究∠OCD與∠BO′E′的關(guān)系(用含α的代數(shù)式表示)(3)在②中,過(guò)點(diǎn)O′作OB的垂線,與∠OCD的平分線交于點(diǎn)P(如圖③),若∠CPO′=90°,探究∠AOB與∠BO′E′的關(guān)系.解析:(1)150°;(2)∠OCD+∠BO′E′=360°-α;(3)∠AOB=∠BO′E′【分析】(1)先根據(jù)平行線的性質(zhì)得到∠AOE的度數(shù),再根據(jù)直角、周角的定義即可求得∠BOE的度數(shù);(2)如圖②,過(guò)O點(diǎn)作OF∥CD,根據(jù)平行線的判定和性質(zhì)可得∠OCD、∠BO′E′的數(shù)量關(guān)系;(3)由已知推出CP∥OB,得到∠AOB+∠PCO=180°,結(jié)合角平分線的定義可推出∠OCD=2∠PCO=360°-2∠AOB,根據(jù)(2)∠OCD+∠BO′E′=360°-∠AOB,進(jìn)而推出∠AOB=∠BO′E′.【詳解】解:(1)∵CD∥OE,∴∠AOE=∠OCD=120°,∴∠BOE=360°-∠AOE-∠AOB=360°-90°-120°=150°;(2)∠OCD+∠BO′E′=360°-α.證明:如圖②,過(guò)O點(diǎn)作OF∥CD,∵CD∥O′E′,∴OF∥O′E′,∴∠AOF=180°-∠OCD,∠BOF=∠E′O′O=180°-∠BO′E′,∴∠AOB=∠AOF+∠BOF=180°-∠OCD+180°-∠BO′E′=360°-(∠OCD+∠BO′E′)=α,∴∠OCD+∠BO′E′=360°-α;(3)∠AOB=∠BO′E′.證明:∵∠CPO′=90°,∴PO′⊥CP,∵PO′⊥OB,∴CP∥OB,∴∠PCO+∠AOB=180°,∴2∠PCO=360°-2∠AOB,∵CP是∠OCD的平分線,∴∠OCD=2∠PCO=360°-2∠AOB,∵由(2)知,∠OCD+∠BO′E′=360°-α=360°-∠AOB,∴360°-2∠AOB+∠BO′E′=360°-∠AOB,∴∠AOB=∠BO′E′.【點(diǎn)睛】此題考查了平行線的判定和性質(zhì),平移的性質(zhì),直角的定義,角平分線的定義,正確作出輔助線是解決問(wèn)題的關(guān)鍵.13.綜合與實(shí)踐課上,同學(xué)們以“一個(gè)直角三角形和兩條平行線”為背景開(kāi)展數(shù)學(xué)活動(dòng),如圖,已知兩直線,且是直角三角形,,操作發(fā)現(xiàn):(1)如圖1.若,求的度數(shù);(2)如圖2,若的度數(shù)不確定,同學(xué)們把直線向上平移,并把的位置改變,發(fā)現(xiàn),請(qǐng)說(shuō)明理由.(3)如圖3,若∠A=30°,平分,此時(shí)發(fā)現(xiàn)與又存在新的數(shù)量關(guān)系,請(qǐng)寫出與的數(shù)量關(guān)系并說(shuō)明理由.解析:(1)42°;(2)見(jiàn)解析;(3)∠1=∠2,理由見(jiàn)解析【分析】(1)由平角定義求出∠3=42°,再由平行線的性質(zhì)即可得出答案;(2)過(guò)點(diǎn)B作BD∥a.由平行線的性質(zhì)得∠2+∠ABD=180°,∠1=∠DBC,則∠ABD=∠ABC-∠DBC=60°-∠1,進(jìn)而得出結(jié)論;(3)過(guò)點(diǎn)C
作CP∥a,由角平分線定義得∠CAM=∠BAC=30°,∠BAM=2∠BAC=60°,由平行線的性質(zhì)得∠1=∠BAM=60°,∠PCA=∠CAM=30°,∠2=∠BCP=60°,即可得出結(jié)論.【詳解】解:(1)∵∠1=48°,∠BCA=90°,∴∠3=180°-∠BCA-∠1=180°-90°-48°=42°,∵a∥b,∴∠2=∠3=42°;(2)理由如下:過(guò)點(diǎn)B作BD∥a.如圖2所示:則∠2+∠ABD=180°,∵a∥b,∴b∥BD,∴∠1=∠DBC,∴∠ABD=∠ABC-∠DBC=60°-∠1,∴∠2+60°-∠1=180°,∴∠2-∠1=120°;(3)∠1=∠2,理由如下:過(guò)點(diǎn)C
作CP∥a,如圖3所示:∵AC平分∠BAM∴∠CAM=∠BAC=30°,∠BAM=2∠BAC=60°,又∵a∥b,∴CP∥b,∠1=∠BAM=60°,∴∠PCA=∠CAM=30°,∴∠BCP=∠BCA-∠PCA=90°-30°=60°,又∵CP∥a,∴∠2=∠BCP=60°,∴∠1=∠2.【點(diǎn)睛】本題是三角形綜合題目,考查了平移的性質(zhì)、直角三角形的性質(zhì)、平行線的判定與性質(zhì)、角平分線定義、平角的定義等知識(shí);本題綜合性強(qiáng),熟練掌握平移的性質(zhì)和平行線的性質(zhì)是解題的關(guān)鍵.14.如圖,已知//,點(diǎn)是射線上一動(dòng)點(diǎn)(與點(diǎn)不重合),分別平分和,分別交射線于點(diǎn).(1)當(dāng)時(shí),的度數(shù)是_______;(2)當(dāng),求的度數(shù)(用的代數(shù)式表示);(3)當(dāng)點(diǎn)運(yùn)動(dòng)時(shí),與的度數(shù)之比是否隨點(diǎn)的運(yùn)動(dòng)而發(fā)生變化?若不變化,請(qǐng)求出這個(gè)比值;若變化,請(qǐng)寫出變化規(guī)律.(4)當(dāng)點(diǎn)運(yùn)動(dòng)到使時(shí),請(qǐng)直接寫出的度數(shù).解析:(1)120°;(2)90°-x°;(3)不變,;(4)45°【分析】(1)由平行線的性質(zhì):兩直線平行同旁內(nèi)角互補(bǔ)可得;(2)由平行線的性質(zhì)可得∠ABN=180°-x°,根據(jù)角平分線的定義知∠ABP=2∠CBP、∠PBN=2∠DBP,可得2∠CBP+2∠DBP=180°-x°,即∠CBD=∠CBP+∠DBP=90°-x°;(3)由AM∥BN得∠APB=∠PBN、∠ADB=∠DBN,根據(jù)BD平分∠PBN知∠PBN=2∠DBN,從而可得∠APB:∠ADB=2:1;(4)由AM∥BN得∠ACB=∠CBN,當(dāng)∠ACB=∠ABD時(shí)有∠CBN=∠ABD,得∠ABC+∠CBD=∠CBD+∠DBN,即∠ABC=∠DBN,根據(jù)角平分線的定義可得∠ABP=∠PBN=∠ABN=2∠DBN,由平行線的性質(zhì)可得∠A+∠ABN=90°,即可得出答案.【詳解】解:(1)∵AM∥BN,∠A=60°,∴∠A+∠ABN=1
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年新聞傳播專業(yè)考試新聞采訪與寫作技巧預(yù)測(cè)模擬題
- 阜陽(yáng)2025年安徽阜陽(yáng)界首市引進(jìn)(調(diào)入)市外在編在崗教師筆試歷年參考題庫(kù)附帶答案詳解
- 贛州2025年江西贛州市崇義縣總醫(yī)院招聘27人筆試歷年參考題庫(kù)附帶答案詳解
- 紹興2025年浙江紹興越城區(qū)民政局編外人員招聘7人筆試歷年參考題庫(kù)附帶答案詳解
- 溫州浙江溫州瑞安市委統(tǒng)戰(zhàn)部招聘編外人員筆試歷年參考題庫(kù)附帶答案詳解
- 滄州河北滄州高新區(qū)招聘聘用制教師16人筆試歷年參考題庫(kù)附帶答案詳解
- 無(wú)錫2025年江蘇無(wú)錫宜興市交通運(yùn)輸局下屬事業(yè)單位招聘10人筆試歷年參考題庫(kù)附帶答案詳解
- 廣州廣東廣州市黃埔區(qū)委社會(huì)工作部選聘廣州市黃埔區(qū)社會(huì)建設(shè)觀察員筆試歷年參考題庫(kù)附帶答案詳解
- 安康2025年陜西安康市紫陽(yáng)縣招聘高層次及緊缺特殊專業(yè)人才12人筆試歷年參考題庫(kù)附帶答案詳解
- 呂梁2025年山西呂梁市殯葬服務(wù)機(jī)構(gòu)招聘34人筆試歷年參考題庫(kù)附帶答案詳解
- 《筑牢安全防線 歡度平安寒假》2026年寒假安全教育主題班會(huì)課件
- 2026國(guó)家國(guó)防科技工業(yè)局所屬事業(yè)單位第一批招聘62人備考題庫(kù)及答案詳解(新)
- 信息技術(shù)應(yīng)用創(chuàng)新軟件適配測(cè)評(píng)技術(shù)規(guī)范
- 2026版安全隱患排查治理
- 道路施工安全管理課件
- 肉瘤的課件教學(xué)課件
- VTE患者并發(fā)癥預(yù)防與處理
- 車輛救援合同協(xié)議書
- 貴州省遵義市匯川區(qū)2024-2025學(xué)年八年級(jí)上學(xué)期12月期末數(shù)學(xué)試題
- UWB定位是什么協(xié)議書
- 第三終端藥品銷售技巧
評(píng)論
0/150
提交評(píng)論