難點解析-滬科版9年級下冊期末測試卷含完整答案詳解【網(wǎng)校專用】_第1頁
難點解析-滬科版9年級下冊期末測試卷含完整答案詳解【網(wǎng)校專用】_第2頁
難點解析-滬科版9年級下冊期末測試卷含完整答案詳解【網(wǎng)校專用】_第3頁
難點解析-滬科版9年級下冊期末測試卷含完整答案詳解【網(wǎng)校專用】_第4頁
難點解析-滬科版9年級下冊期末測試卷含完整答案詳解【網(wǎng)校專用】_第5頁
已閱讀5頁,還剩37頁未讀, 繼續(xù)免費閱讀

付費下載

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

滬科版9年級下冊期末測試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計16分)1、如圖,在中,,,,將繞原點O逆時針旋轉(zhuǎn)90°,則旋轉(zhuǎn)后點A的對應(yīng)點的坐標是()A. B. C. D.2、如圖,幾何體的左視圖是()A. B. C. D.3、如圖,在△ABC中,∠CAB=64°,將△ABC在平面內(nèi)繞點A旋轉(zhuǎn)到△AB′C′的位置,使CC′AB,則旋轉(zhuǎn)角的度數(shù)為()A.64° B.52° C.42° D.36°4、下列事件是必然發(fā)生的事件是()A.在地球上,上拋的籃球一定會下落B.明天的氣溫一定比今天高C.中秋節(jié)晚上一定能看到月亮D.某彩票中獎率是1%,買100張彩票一定中獎一張5、如圖,為正六邊形邊上一動點,點從點出發(fā),沿六邊形的邊以1cm/s的速度按逆時針方向運動,運動到點停止.設(shè)點的運動時間為,以點、、為頂點的三角形的面積是,則下列圖像能大致反映與的函數(shù)關(guān)系的是()A. B.C. D.6、如圖,AB為的直徑,,,劣弧BC的長是劣弧BD長的2倍,則AC的長為()A. B. C.3 D.7、如圖,在中,,,將繞點C逆時針旋轉(zhuǎn)90°得到,則的度數(shù)為()A.105° B.120° C.135° D.150°8、如圖,與的兩邊分別相切,其中OA邊與相切于點P.若,,則OC的長為()A.8 B. C. D.第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計14分)1、斛是中國古代的一種量器.據(jù)《漢書.律歷志》記載:“斛底,方而圜(huán)其外,旁有庣(tiāo)焉”.意思是說:“斛的底面為:正方形外接一個圓,此圓外是一個同心圓”.如圖所示,問題:現(xiàn)有一斛,其底面的外圓直徑為兩尺五寸(即2.5尺),“庣旁”為兩寸五分(即兩同心圓的外圓與內(nèi)圓的半徑之差為0.25尺),則此斛底面的正方形的邊長為________尺.2、圖①所示,平整的地面上有一個不規(guī)則圖案(圖中陰影部分),小明想了解該圖案的面積是多少,他采取了以下辦法:用一個長為6m,寬為4m的長方形,將不規(guī)則圖案圍起來,然后在適當位置隨機地朝長方形區(qū)域扔小球,并記錄小球落在不規(guī)則圖案上的次數(shù)(球扔在界線上或長方形區(qū)域外不計實驗結(jié)果),他將若干次有效實驗的結(jié)果繪制成了②所示的折線統(tǒng)計圖,由此他估計不規(guī)則圖案的面積大約為_____m2.3、在一個不透明的袋子里,有2個白球和2個紅球,它們只有顏色上的區(qū)別,從袋子里隨機摸出兩個球,則摸到兩個都是紅球的概率是_______.4、為了落實“雙減”政策,朝陽區(qū)一些學校在課后服務(wù)時段開設(shè)了與冬奧會項目冰壺有關(guān)的選修課.如圖,在冰壺比賽場地的一端畫有一些同心圓作為營壘,其中有兩個圓的半徑分別約為60cm和180cm,小明擲出一球恰好沿著小圓的切線滑行出界,則該球在大圓內(nèi)滑行的路徑MN的長度為______cm.5、如圖,與x軸交于、兩點,,點P是y軸上的一個動點,PD切于點D,則△ABD的面積的最大值是________;線段PD的最小值是________.6、如圖,半圓O中,直徑AB=30,弦CD∥AB,長為6π,則由與AC,AD圍成的陰影部分面積為_______.7、如圖AB為⊙O的直徑,點P為AB延長線上的點,過點P作⊙O的切線PE,切點為M,過A、B兩點分別作PE垂線AC、BD,垂足分別為C、D,連接AM,則下列結(jié)論正確的是______(寫所有正確論的號)①AM平分∠CAB;②;③若AB=4,∠APE=30°,則的長為;④若AC=3BD,則有tan∠MAP=.三、解答題(7小題,每小題0分,共計0分)1、在△ABC與△DEF中,∠BAC=∠EDF=90°,且AB=AC,DE=DF.(1)如圖1,若點D與A重合,AC與EF交于P,且∠CAE=30°,CE,求EP的長;(2)如圖2,若點D與C重合,EF與BC交于點M,且BM=CM,連接AE,且∠CAE=∠MCE,求證:AE+MF=CE;(3)如圖3,若點D與A重合,連接BE,且∠ABE∠ABC,連接BF,CE,當BF+CE最小時,直接出的值.2、太原是國家歷史文化名城,有很多旅游的好去處,周末哥哥計劃帶弟弟出去玩,放假前他收集了太原動物園、晉祠公園、森林公園、汾河濕地公園四個景點的旅游宣傳卡片,這些卡片的大小、形狀及背面完全相同,分別用D,J,S,F(xiàn)表示,如圖所示,請用列表或畫樹狀圖的方法,求下列事件發(fā)生的概率.(1)把這四張卡片背面朝上洗勻后,弟弟從中隨機抽取一張,作好記錄后,將卡片放回洗勻,哥哥再抽取一張,求兩人抽到同一景點的概率;(2)把這四張卡片背面朝上洗勻后,弟弟和哥哥從中各隨機抽取一張(不放回),求兩人抽到動物園和森林公園的概率.3、一個不透明的口袋中有四個分別標號為1,2,3,4的完全相同的小球,從中隨機摸取兩個小球.(1)請列舉出所有可能結(jié)果;(2)求取出的兩個小球標號和等于5的概率.4、如圖,已知線段,點A在線段上,且,點B為線段上的一個動點.以A為中心順時針旋轉(zhuǎn)點M,以B為中心逆時針旋轉(zhuǎn)點N,旋轉(zhuǎn)角分別為和.若旋轉(zhuǎn)后M、N兩點重合成一點C(即構(gòu)成),設(shè).(1)的周長為_______;(2)若,求x的值.5、為了引導青少年學黨史,某中學舉行了“獻禮建黨百年”黨史知識競賽活動,將成績劃分為四個等級:A(優(yōu)秀)、B(優(yōu)良)、C(合格)、D(不合格).小李隨機調(diào)查了部分同學的競賽成績,繪制成了如下統(tǒng)計圖(部分信息未給出):(1)小李共抽取了名學生的成績進行統(tǒng)計分析,扇形統(tǒng)計圖中“優(yōu)秀”等級對應(yīng)的扇形圓心角度數(shù)為,請補全條形統(tǒng)計圖;(2)該校共有2000名學生,請你估計該校競賽成績“優(yōu)秀”的學生人數(shù);(3)已知調(diào)查對象中只有兩位女生競賽成績不合格,小李準備隨機回訪兩位競賽成績不合格的同學,請用樹狀圖或列表法求出恰好回訪到一男一女的概率.6、如圖,在直角坐標平面內(nèi),已知點A的坐標(﹣2,0).(1)圖中點B的坐標是______;(2)點B關(guān)于原點對稱的點C的坐標是_____;點A關(guān)于y軸對稱的點D的坐標是______;(3)四邊形ABDC的面積是______;(4)在y軸上找一點F,使,那么點F的所有可能位置是______.7、如圖,在6×6的方格紙中,每個小正方形的頂點稱為格點,每個小正方形的邊長均為1,A,B兩點均在格點上.請按要求在圖①,圖②,圖③中畫圖:(1)在圖①中,畫等腰△ABC,使AB為腰,點C在格點上.(2)在圖②中,畫面積為8的四邊形ABCD,使其為中心對稱圖形,但不是軸對稱圖形,C,D兩點均在格點上.(3)在圖③中,畫△ABC,使∠ACB=90°,面積為5,點C在格點上.-參考答案-一、單選題1、C【分析】過點A作AC⊥x軸于點C,設(shè),則,根據(jù)勾股定理,可得,從而得到,進而得到∴,可得到點,再根據(jù)旋轉(zhuǎn)的性質(zhì),即可求解.【詳解】解:如圖,過點A作AC⊥x軸于點C,設(shè),則,∵,,∴,∵,,∴,解得:,∴,∴,∴點,∴將繞原點O順時針旋轉(zhuǎn)90°,則旋轉(zhuǎn)后點A的對應(yīng)點的坐標是,∴將繞原點O逆時針旋轉(zhuǎn)90°,則旋轉(zhuǎn)后點A的對應(yīng)點的坐標是.故選:C【點睛】本題考查坐標與圖形變化一旋轉(zhuǎn),解直角三角形等知識,解題的關(guān)鍵是求出點A的坐標,屬于中考??碱}型.2、D【分析】根據(jù)從左邊看得到的圖形是左視圖,可得答案.【詳解】根據(jù)左視圖的定義可知,這個幾何體的左視圖是選項D,故選:D.【點睛】本題考查簡單組合體的三視圖,解題的關(guān)鍵是理解三視圖的定義.3、B【分析】先根據(jù)平行線的性質(zhì)得∠ACC′=∠CAB=64°,再根據(jù)旋轉(zhuǎn)的性質(zhì)得∠CAC′等于旋轉(zhuǎn)角,AC=AC′,則利用等腰三角形的性質(zhì)得∠ACC′=∠AC′C=64°,然后根據(jù)三角形內(nèi)角和定理可計算出∠CAC′的度數(shù),從而得到旋轉(zhuǎn)角的度數(shù).【詳解】解:∵CC′∥AB,∴∠ACC′=∠CAB=64°∵△ABC在平面內(nèi)繞點A旋轉(zhuǎn)到△AB′C′的位置,∴∠CAC′等于旋轉(zhuǎn)角,AC=AC′,∴∠ACC′=∠AC′C=64°,∴∠CAC′=180°-∠ACC′-∠AC′C=180°-2×64°=52°,∴旋轉(zhuǎn)角為52°.故選:B.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì):對應(yīng)點到旋轉(zhuǎn)中心的距離相等;對應(yīng)點與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;旋轉(zhuǎn)前、后的圖形全等.4、A【分析】根據(jù)必然事件的概念(必然事件指在一定條件下一定發(fā)生的事件)可判斷正確答案.【詳解】解:A、在地球上,上拋的籃球一定會下落是必然事件,符合題意;B、明天的氣溫一定比今天的高,是隨機事件,不符合題意;C、中秋節(jié)晚上一定能看到月亮,是隨機事件,不符合題意;D、某彩票中獎率是1%,買100張彩票一定中獎一張,是隨機事件,不符合題意.故選:A.【點睛】本題考查了必然事件的概念,解決本題需要正確理解必然事件、不可能事件、隨機事件的概念.關(guān)鍵是理解必然事件指在一定條件下一定發(fā)生的事件.5、A【分析】設(shè)正六邊形的邊長為1,當在上時,過作于而求解此時的函數(shù)解析式,當在上時,延長交于點過作于并求解此時的函數(shù)解析式,當在上時,連接并求解此時的函數(shù)解析式,由正六邊形的對稱性可得:在上的圖象與在上的圖象是對稱的,在上的圖象與在上的圖象是對稱的,從而可得答案.【詳解】解:設(shè)正六邊形的邊長為1,當在上時,過作于而當在上時,延長交于點過作于同理:則為等邊三角形,當在上時,連接由正六邊形的性質(zhì)可得:由正六邊形的對稱性可得:而由正六邊形的對稱性可得:在上的圖象與在上的圖象是對稱的,在上的圖象與在上的圖象是對稱的,所以符合題意的是A,故選A【點睛】本題考查的是動點問題的函數(shù)圖象,銳角三角函數(shù)的應(yīng)用,正多邊形的性質(zhì),清晰的分類討論是解本題的關(guān)鍵.6、D【分析】連接,根據(jù)求得半徑,進而根據(jù)的長,勾股定理的逆定理證明,根據(jù)弧長關(guān)系可得,即可證明是等邊三角形,求得,進而由勾股定理即可求得【詳解】如圖,連接,,是直角三角形,且是等邊三角形是直徑,故選D【點睛】本題考查了弧與圓心角的關(guān)系,直徑所對的圓周角是90度,勾股定理,等邊三角形的判定,求得的長是解題的關(guān)鍵.7、B【分析】由題意易得,然后根據(jù)三角形外角的性質(zhì)可求解.【詳解】解:由旋轉(zhuǎn)的性質(zhì)可得:,∴;故選B.【點睛】本題主要考查旋轉(zhuǎn)的性質(zhì)及三角形外角的性質(zhì),熟練掌握旋轉(zhuǎn)的性質(zhì)及三角形外角的性質(zhì)是解題的關(guān)鍵.8、C【分析】如圖所示,連接CP,由切線的性質(zhì)和切線長定理得到∠CPO=90°,∠COP=45°,由此推出CP=OP=4,再根據(jù)勾股定理求解即可.【詳解】解:如圖所示,連接CP,∵OA,OB都是圓C的切線,∠AOB=90°,P為切點,∴∠CPO=90°,∠COP=45°,∴∠PCO=∠COP=45°,∴CP=OP=4,∴,故選C.【點睛】本題主要考查了切線的性質(zhì),切線長定理,等腰直角三角形的性質(zhì)與判定,勾股定理,熟知切線長定理是解題的關(guān)鍵.二、填空題1、【分析】如圖,根據(jù)四邊形CDEF為正方形,可得∠D=90°,CD=DE,從而得到CE是直徑,∠ECD=45°,然后利用勾股定理,即可求解.【詳解】解:如圖,∵四邊形CDEF為正方形,∴∠D=90°,CD=DE,∴CE是直徑,∠ECD=45°,根據(jù)題意得:AB=2.5,,∴,∴,即此斛底面的正方形的邊長為尺.故答案為:【點睛】本題主要考查了圓內(nèi)接四邊形,勾股定理,熟練掌握圓內(nèi)接四邊形的性質(zhì),勾股定理是解題的關(guān)鍵.2、8.4【分析】首先假設(shè)不規(guī)則圖案面積為x,根據(jù)幾何概率知識求解不規(guī)則圖案占長方形的面積大?。焕^而根據(jù)折線圖用頻率估計概率,綜合以上列方程求解.【詳解】解:假設(shè)不規(guī)則圖案面積為xm2,由已知得:長方形面積為24m2,根據(jù)幾何概率公式小球落在不規(guī)則圖案的概率為:,當事件A試驗次數(shù)足夠多,即樣本足夠大時,其頻率可作為事件A發(fā)生的概率估計值,故由折線圖可知,小球落在不規(guī)則圖案的概率大約為0.35,綜上有:=0.35,解得x=8.4.估計不規(guī)則圖案的面積大約為8.4m2.故答案為:8.4.【點睛】本題考查幾何概率以及用頻率估計概率,并在此基礎(chǔ)上進行了題目創(chuàng)新,解題關(guān)鍵在于清晰理解題意,能從復(fù)雜的題目背景當中找到考點化繁為簡,創(chuàng)新題目對基礎(chǔ)知識要求極高.3、【分析】先用列表法分析所有等可能的結(jié)果和摸到兩個都是紅球的結(jié)果數(shù),然后根據(jù)概率公式求解即可.【詳解】解:記紅球為,白球為,列表得:∵一共有12種情況,摸到兩個都是紅球有2種,∴P(兩個球都是紅球),故答案是.【點睛】本題主要考查了用列表法或畫樹狀圖法求概率,列表法或畫樹狀圖法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,適合于兩步完成的事件.4、【分析】如圖,設(shè)小圓的切線MN與小圓相切于點D,與大圓交于M、N,連接OD、OM,根據(jù)切線的性質(zhì)定理和垂徑定理求解即可.【詳解】解:如圖,設(shè)小圓的切線MN與小圓相切于點D,與大圓交于M、N,連接OD、OM,則OD⊥MN,∴MD=DN,在Rt△ODM中,OM=180cm,OD=60cm,∴cm,∴cm,即該球在大圓內(nèi)滑行的路徑MN的長度為cm,故答案為:.【點睛】本題考查切線的性質(zhì)定理、垂徑定理、勾股定理,熟練掌握切線的性質(zhì)和垂徑定理是解答的關(guān)鍵.5、【分析】根據(jù)題中點的坐標可得圓的直徑,半徑為1,分析以AB定長為底,點D在圓上,高最大為圓的半徑,即可得出三角形最大的面積;連接AP,設(shè)點,根據(jù)切線的性質(zhì)及勾股定理可得,由其非負性即可得.【詳解】解:如圖所示:當點P到如圖位置時,的面積最大,∵、,∴圓的直徑,半徑為1,∴以AB定長為底,點D在圓上,高最大為圓的半徑,如圖所示:此時面積的最大值為:;如圖所示:連接AP,∵PD切于點D,∴,∴,設(shè)點,在中,,,∴,在中,,∴,則,當時,PD取得最小值,最小值為,故答案為:①;②.【點睛】題目主要考查切線的性質(zhì)及勾股定理的應(yīng)用,理解題意,作出相應(yīng)圖形求出解析式是解題關(guān)鍵.6、45【分析】連接OC,OD,根據(jù)同底等高可知S△ACD=S△OCD,把陰影部分的面積轉(zhuǎn)化為扇形OCD的面積,利用扇形的面積公式S=來求解.【詳解】解:連接OC,OD,∵直徑AB=30,∴OC=OD=,∴CD∥AB,∴S△ACD=S△OCD,∵長為6π,∴陰影部分的面積為S陰影=S扇形OCD=,故答案為:45π.【點睛】本題主要考查了扇形的面積公式,正確理解陰影部分的面積=扇形COD的面積是解題的關(guān)鍵.7、①②④【分析】連接OM,由切線的性質(zhì)可得,繼而得,再根據(jù)平行線的性質(zhì)以及等邊對等角即可求得,由此可判斷①;通過證明,根據(jù)相似三角形的對應(yīng)邊成比例可判斷②;求出,利用弧長公式求得的長可判斷③;由,,,可得,繼而可得,,進而有,在中,利用勾股定理求出PD的長,可得,由此可判斷④.【詳解】解:連接OM,∵PE為的切線,∴,∵,∴,∴,∵,,∴,即AM平分,故①正確;∵AB為的直徑,∴,∵,,∴,∴,∴,故②正確;∵,∴,∵,∴,∴的長為,故③錯誤;∵,,,∴,∴,∴,∴,又∵,,,∴,又∵,∴,設(shè),則,∴,在中,,∴,∴,由①可得,,故④正確,故答案為:①②④.【點睛】本題考查了切線的性質(zhì),平行線分線段成比例定理,相似三角形的判定與性質(zhì),勾股定理等,正確添加輔助線,熟練掌握和靈活運用相關(guān)知識是解題的關(guān)鍵.三、解答題1、(1);(2)證明見詳解;(3).【分析】(1)過點P作PG⊥EC于G,根據(jù)等腰直角三角形得出∠B=∠C=45°,根據(jù)PG⊥EC,可取∠GPC=90°-∠C=45°,可得PG=GC,根據(jù)三角形外角性質(zhì)∠EPC=75°,可求∠EPG=30°,根據(jù)30°直角三角形性質(zhì)得出EP=2EG,根據(jù)勾股定理根據(jù)EC=EG+GC=EG+,可求EG=即可;(2)連結(jié)AE,在CE上截取EJ=AE,連結(jié)AJ,根據(jù)∠MAH=45°=∠HEC,可得點A、M、C、E四點共圓,得出∠AEM=∠ACM=45°=∠HEC,∠AME=∠ACE,可得△AEJ為等腰直角三角形,根據(jù)根據(jù)勾股定理AJ=,得出∠CAE=∠MCE,可證∠JAC=∠JCA,可得AJ=JC=,先證△CHM∽△ECM,再證△AEM≌△HEC(AAS),得出EM=EC,再證△AME≌△MCF(AAS),得出AE=MF即可;(3)分兩種情況,當BE在∠ABC的平分線上時,與BE在△ABC外部時,當BE在∠ABC的平分線上時,作∠ABC的平分線交AC于O,將△AEC逆時針旋轉(zhuǎn)90°得到△AFC′,過點O作OP⊥BC于P,則點E在BO上,有∠ABE=∠ABC,先證B、A、C′三點共線,根據(jù)兩點之交線段最短可得BF+CE=BF+C′F≥BC′,當點F在BC′上時,BF+CE最短=BC′,此時點E在AC上與點O重合,然后利用勾股定理EC=,BF=AB+AF=AC+AF=(1+)AF+AF=(2+)AF在Rt△ABE中,根據(jù)勾股定理,當BE在△ABC外部時,∠EBA=,將△EAC逆時針旋轉(zhuǎn)90°得到△FAC′,先證B、A、C′三點共線,根據(jù)兩點之間線段最短可得BF+CE=BF+FC′≥BC′,當點F在BC′上時,BF+CE最短=BC′,再證EF=BF,然后根據(jù)勾股定理BF=CE=AE+AC=AF+AB=在Rt△EAB中,根據(jù)勾股定理即可.【詳解】解:(1)過點P作PG⊥EC于G,∵∠BAC=90°,AB=AC,∴∠B=∠C=45°,∵PG⊥EC,∴∠GPC=90°-∠C=45°,∴PG=GC,∵∠EAC=30°,∠EDF=90°,DE=DF,∴∠DEF=∠F=45°,∴∠EPC=∠AEF+∠EAC=30°+45°=75°,∴∠EPG=∠EPC-∠GPC=75°-45°=30°,∴EP=2EG,在Rt△EPG中,根據(jù)勾股定理∴GC=PG=∴EC=EG+GC=EG+,∴EG=,∴EP=2EG=;(2)連結(jié)AE,在CE上截取EJ=AE,連結(jié)AJ,∵BM=CM,AB=AC,∠BAC=90°,∴AM⊥BC,AM=BM=CM,∴∠MAH=45°=∠HEC,∴點A、M、C、E四點共圓,∴∠AEM=∠ACM=45°=∠HEC,∠AME=∠ACE,∴∠AEJ=∠AEM+∠HEC=45°+45°=90°,∵AE=JE,∴∠EAJ=∠EJA=45°,在Rt△AEJ中,根據(jù)勾股定理AJ=,∵∠CAE=∠MCE,∴∠JAC+45°=∠JCA+45°,∴∠JAC=∠JCA,∴AJ=JC=,∵∠HCM=∠CEM=45°,∠HMC=∠CME,∴△CHM∽△ECM,∴∠MHC=∠MCE,∵∠EHA=∠MHC=∠MCE=∠EAH∴AE=HE,在△AEM和△HEC中,,∴△AEM≌△HEC(AAS),∴EM=EC,∴∠EMC=∠ECM,∵∠AME+∠EMC=∠ECM+∠MCF=90°,∴∠AME=∠MCF,在△AME和△MCF中,∴△AME≌△MCF(AAS),∴AE=MF,∴CE=EJ+JC=MF+AE;(3)分兩種情況,當BE在∠ABC的平分線上時,與BE在△ABC外部時,當當BE在∠ABC的平分線上時,作∠ABC的平分線交AC于O,將△AEC逆時針旋轉(zhuǎn)90°得到△AFC′,過點O作OP⊥BC于P,則點E在BO上,有∠ABE=∠ABC,∵△AEC≌△AFC′,∴∠CAE=∠C′AF,∵∠BAC′=∠BAC+∠OAC′=∠BAC+∠FAC′+∠OAF=∠BAC+∠EAC+∠OAF=∠BAC+∠EAF=180°,∴B、A、C′三點共線,∴BF+CE=BF+C′F≥BC′,當點F在BC′上時,BF+CE最短=BC′,此時點E在AC上與點O重合,∵BO為∠ABC的平分線,OA⊥AB,OP⊥BC,∴OP=AO=AF,∵AB=AC,∠BAC=90°,∴∠ABC=∠C=45°,∴∠PEC=180°-∠EPC-∠C=45°,∴PC=EP=AF,∴EC=,∴AC=AE+EC=AF+=(1+)AF,∴BF=AB+AF=AC+AF=(1+)AF+AF=(2+)AF,在Rt△ABE中,根據(jù)勾股定理,∴;當BE在△ABC外部時,∠EBA=,將△EAC逆時針旋轉(zhuǎn)90°得到△FAC′,則△EAC≌△FAC′,∴AC′=AC,EC=FC′,∠EAC=∠FAC′,∵∠FEB+∠EAC=360°-∠EAF-∠BAC=360°-90°-90°=180°,∴∠FAB+∠FAC′=∠FAB+∠EAC=180°,∴B、A、C′三點共線,∴BF+CE=BF+FC′≥BC′,∴點F在BC′上時,BF+CE最短=BC′,∵∠EBA=,∠EFA=45°,∴∠EFA=∠EBA+∠BEF=45°,∴∠BEF=45°-∠EBA=45°-22.5°=22.5°,∴EF=BF,在Rt△EAF中,,∴BF=,∴AB=BF+AF=+AF=,∴CE=AE+AC=AF+AB=,在Rt△EAB中,根據(jù)勾股定理,∴.綜合.【點睛】本題考查等腰直角三角形性質(zhì),三角形外角性質(zhì),30°直角三角形性質(zhì),勾股定理,三角形全等判定與性質(zhì),四點共圓,同弧所對圓周角性質(zhì),三角形相似判定與性質(zhì),圖形旋轉(zhuǎn)性質(zhì),最短路徑問題,角平分線性質(zhì),分類討論思想,本題難度大,應(yīng)用知識多,是中考壓軸題,利用輔助線作出正確圖形是解題關(guān)鍵.2、(1);(2).【分析】(1)根據(jù)題意列表可得共有16種等可能的結(jié)果,其中兩人抽到同一景點的結(jié)果有4種,進而由概率公式求解即可;(2)根據(jù)題意列表可得共有12種等可能的結(jié)果,其中兩人抽到動物園和森林公園的結(jié)果有2種,進而由概率公式求解即可.【詳解】解:(1)列表如下:DJSFD(D,D)(J,D)(S,D)(F,D)J(D,J)(J,J)(S,J)(F,J)S(D,S)(J,S)(S,S)(F,S)F(D,F)(J,F)(S,F)(F,F)所有等可能的情況數(shù)為16種,兩人抽到同一景點的結(jié)果有4種,所以兩人抽到同一景點的概率為.(2)列表如下:DJSFD(J,D)(S,D)(F,D)J(D,J)(S,J)(F,J)S(D,S)(J,S)(F,S)F(D,F)(J,F)(S,F)所有等可能的情況數(shù)為12種,其中兩人抽到動物園和森林公園的結(jié)果有2種,所以兩人抽到動物園和森林公園的概率為.【點睛】本題考查列表法與樹狀圖法:利用列表法或樹狀圖法展示所有等可能的結(jié)果n,再從中選出符合事件A或B的結(jié)果數(shù)目m,然后利用概率公式計算事件A或事件B的概率.3、(1)見詳解;(2).【分析】(1)根據(jù)題意通過列出相應(yīng)的表格,即可得出所有可能結(jié)果;(2)由題意利用取出的兩個小球標號和等于5的結(jié)果數(shù)除以所有可能結(jié)果數(shù)即可得出答案.【詳解】解:(1)由題意列表得:12341---(2,1)(3,1)(4,1)2(1,2)---(3,2)(4,2)3(1,3)(2,3)---(4,3)4(1,4)(2,4)(3,4)---所有可能的結(jié)果有12種;(2)由(1)表格可知取出的兩個小球標號和等于5的結(jié)果有(1,4)、(2,3)、(3,2)、(4,1)共4種,而所有可能的結(jié)果有12種,所以取出的兩個小球標號和等于5的概率.【點睛】本題考查的是用列表法或樹狀圖法求概率.列表法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;解題時要注意此題是放回實驗還是不放回實驗.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.4、(1)4(2)【分析】(1)由旋轉(zhuǎn)知:AM=AC=1,BN=BC,將△ABC的周長轉(zhuǎn)化為MN;(2)由α+β=270°,得∠ACB=90°,利用勾股定理列方程即可.(1)解:由旋轉(zhuǎn)知:AM=AC=1,BN=BC=3-x,∴△ABC的周長為:AC+AB+BC=MN=4;故答案為:4;(2)解:∵α+β=270°,∴∠CAB+∠CBA=360°-270°=90°,∴∠ACB=180°-(∠CAB+∠CBA)=180°-90°=90°,∴AC2+BC2=AB2,即12+(3-x)2=x2,解得.【點睛】本題主要考查了旋轉(zhuǎn)的性質(zhì),勾股定理等知識,證明∠ACB=90°是解題的關(guān)鍵.5、(1)100,126°,條形統(tǒng)計圖見解析;(2)700;(3)【分析】(1)根據(jù)C等級的人數(shù)和所占比可求出抽取的總?cè)藬?shù),用A等級的人數(shù)除以抽取的總?cè)藬?shù)乘以360°可得A等級對應(yīng)扇形圓心角的度數(shù),用抽取的總?cè)藬?shù)乘以B等級所占的百分比得B等級的人數(shù),用抽取的總?cè)藬?shù)減去A、B、C等級的人數(shù)得出D等級人數(shù),即可補全條形統(tǒng)計圖;(2)用2000乘以A等級所占的百

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論