下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
站名:站名:年級(jí)專業(yè):姓名:學(xué)號(hào):凡年級(jí)專業(yè)、姓名、學(xué)號(hào)錯(cuò)寫、漏寫或字跡不清者,成績(jī)按零分記?!堋狻€…………第1頁,共2頁山東理工大學(xué)《品牌設(shè)計(jì)》2024-2025學(xué)年第一學(xué)期期末試卷題號(hào)一二三四總分得分批閱人一、單選題(本大題共25個(gè)小題,每小題1分,共25分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、計(jì)算機(jī)視覺中的虛擬現(xiàn)實(shí)(VR)和增強(qiáng)現(xiàn)實(shí)(AR)應(yīng)用需要實(shí)時(shí)生成逼真的視覺效果。假設(shè)要在一個(gè)VR游戲中為玩家提供沉浸式的視覺體驗(yàn),或者在AR應(yīng)用中準(zhǔn)確地將虛擬物體與現(xiàn)實(shí)場(chǎng)景融合。以下哪種計(jì)算機(jī)視覺技術(shù)在實(shí)現(xiàn)這些效果時(shí)至關(guān)重要?()A.實(shí)時(shí)渲染技術(shù)B.空間定位與追蹤技術(shù)C.三維重建與建模技術(shù)D.以上技術(shù)綜合應(yīng)用2、計(jì)算機(jī)視覺中的目標(biāo)計(jì)數(shù)任務(wù),例如統(tǒng)計(jì)圖像中物體的數(shù)量。假設(shè)要計(jì)算一張果園圖片中蘋果的數(shù)量,以下關(guān)于目標(biāo)計(jì)數(shù)方法的描述,正確的是:()A.基于傳統(tǒng)的圖像分割和對(duì)象識(shí)別方法可以準(zhǔn)確快速地完成目標(biāo)計(jì)數(shù)B.深度學(xué)習(xí)中的回歸模型不適合用于目標(biāo)計(jì)數(shù)任務(wù)C.目標(biāo)的大小、形狀和分布對(duì)計(jì)數(shù)結(jié)果沒有影響D.結(jié)合深度學(xué)習(xí)的密度估計(jì)方法能夠有效地實(shí)現(xiàn)目標(biāo)計(jì)數(shù)3、在計(jì)算機(jī)視覺的目標(biāo)跟蹤任務(wù)中,需要在視頻序列中持續(xù)跟蹤特定的目標(biāo)。假設(shè)我們要跟蹤一個(gè)在人群中快速移動(dòng)的人物,以下哪種目標(biāo)跟蹤算法能夠更好地處理目標(biāo)的外觀變化和遮擋情況?()A.基于卡爾曼濾波的跟蹤算法B.基于粒子濾波的跟蹤算法C.基于深度學(xué)習(xí)的跟蹤算法,如Siamese網(wǎng)絡(luò)D.基于均值漂移的跟蹤算法4、在計(jì)算機(jī)視覺的圖像去噪任務(wù)中,假設(shè)要去除一張受到嚴(yán)重噪聲污染的圖像中的噪聲,同時(shí)盡可能保留圖像的細(xì)節(jié)和邊緣信息。以下哪種去噪方法可能更適合?()A.中值濾波,用鄰域中值代替像素值B.均值濾波,用鄰域平均值代替像素值C.基于深度學(xué)習(xí)的圖像去噪模型,如DnCNND.不進(jìn)行任何去噪處理,保留原始噪聲圖像5、在計(jì)算機(jī)視覺的圖像修復(fù)任務(wù)中,假設(shè)要修復(fù)一張有部分缺失的圖像。以下關(guān)于圖像修復(fù)方法的描述,正確的是:()A.基于擴(kuò)散的圖像修復(fù)方法能夠自然地填充缺失區(qū)域,但修復(fù)速度慢B.基于樣本的圖像修復(fù)方法可以快速生成修復(fù)結(jié)果,但容易出現(xiàn)重復(fù)紋理C.深度學(xué)習(xí)中的生成對(duì)抗網(wǎng)絡(luò)(GAN)在圖像修復(fù)中無法保證修復(fù)內(nèi)容與周圍區(qū)域的一致性D.所有的圖像修復(fù)方法都能夠完美地恢復(fù)出圖像缺失部分的真實(shí)內(nèi)容6、在計(jì)算機(jī)視覺的視覺跟蹤與監(jiān)控應(yīng)用中,需要對(duì)特定目標(biāo)進(jìn)行持續(xù)的跟蹤和監(jiān)測(cè)。假設(shè)要對(duì)一個(gè)在大型商場(chǎng)中移動(dòng)的可疑人員進(jìn)行跟蹤,同時(shí)要應(yīng)對(duì)人群遮擋和環(huán)境變化。以下哪種視覺跟蹤與監(jiān)控技術(shù)在這種情況下能夠提供更可靠的跟蹤結(jié)果?()A.多目標(biāo)跟蹤算法B.基于深度學(xué)習(xí)的單目標(biāo)跟蹤C(jī).基于粒子濾波的跟蹤D.基于特征匹配的跟蹤7、在計(jì)算機(jī)視覺的圖像配準(zhǔn)任務(wù)中,需要將不同視角或時(shí)間拍攝的圖像進(jìn)行對(duì)齊。假設(shè)要將兩張具有一定旋轉(zhuǎn)和平移差異的圖像進(jìn)行配準(zhǔn),以下關(guān)于圖像配準(zhǔn)方法的描述,正確的是:()A.基于特征點(diǎn)匹配的圖像配準(zhǔn)方法對(duì)圖像的變形和光照變化不敏感B.直接使用像素值的相似性度量就能實(shí)現(xiàn)準(zhǔn)確的圖像配準(zhǔn)C.圖像配準(zhǔn)不需要考慮圖像的分辨率和比例尺差異D.深度學(xué)習(xí)在圖像配準(zhǔn)中的應(yīng)用還不成熟,不如傳統(tǒng)方法有效8、在計(jì)算機(jī)視覺的人臉識(shí)別任務(wù)中,假設(shè)要實(shí)現(xiàn)一個(gè)能夠在不同光照和表情下準(zhǔn)確識(shí)別的系統(tǒng)。以下關(guān)于數(shù)據(jù)預(yù)處理的步驟,哪一項(xiàng)是最重要的?()A.對(duì)人臉圖像進(jìn)行歸一化處理,統(tǒng)一大小和亮度B.對(duì)圖像進(jìn)行銳化處理,增強(qiáng)面部特征C.給圖像添加藝術(shù)效果,提高美觀度D.隨機(jī)裁剪圖像,增加數(shù)據(jù)多樣性9、計(jì)算機(jī)視覺在自動(dòng)駕駛領(lǐng)域發(fā)揮著重要作用。假設(shè)一輛自動(dòng)駕駛汽車正在道路上行駛,需要識(shí)別各種交通標(biāo)志、車輛和行人。以下關(guān)于自動(dòng)駕駛中計(jì)算機(jī)視覺的描述,哪一項(xiàng)是不正確的?()A.計(jì)算機(jī)視覺可以通過攝像頭實(shí)時(shí)獲取道路信息,為車輛的決策和控制提供依據(jù)B.它能夠準(zhǔn)確識(shí)別不同光照和天氣條件下的交通對(duì)象,不受任何干擾C.深度學(xué)習(xí)算法在自動(dòng)駕駛的計(jì)算機(jī)視覺中被廣泛應(yīng)用,用于目標(biāo)檢測(cè)和語義分割D.計(jì)算機(jī)視覺需要與其他傳感器(如雷達(dá)、激光雷達(dá))的數(shù)據(jù)融合,以提高感知的可靠性10、計(jì)算機(jī)視覺中的姿態(tài)估計(jì)是指確定物體在三維空間中的位置和方向。以下關(guān)于姿態(tài)估計(jì)的說法,錯(cuò)誤的是()A.姿態(tài)估計(jì)可以通過單目相機(jī)、雙目相機(jī)或深度相機(jī)來實(shí)現(xiàn)B.基于深度學(xué)習(xí)的方法在姿態(tài)估計(jì)任務(wù)中表現(xiàn)出了較高的精度C.姿態(tài)估計(jì)在機(jī)器人操作、增強(qiáng)現(xiàn)實(shí)等領(lǐng)域有著重要的應(yīng)用價(jià)值D.姿態(tài)估計(jì)的結(jié)果總是非常精確,不受物體形狀和遮擋的影響11、在一個(gè)基于計(jì)算機(jī)視覺的智能交通監(jiān)控系統(tǒng)中,需要對(duì)車輛的類型、速度和行駛軌跡進(jìn)行分析。以下哪種技術(shù)在車輛分析方面可能發(fā)揮關(guān)鍵作用?()A.目標(biāo)檢測(cè)和跟蹤B.車牌識(shí)別C.軌跡預(yù)測(cè)D.以上都是12、圖像分類是計(jì)算機(jī)視覺的基礎(chǔ)任務(wù)之一。假設(shè)要對(duì)大量的自然風(fēng)景圖片進(jìn)行分類,包括山脈、森林、海灘等不同類型,同時(shí)圖片可能存在不同的拍攝角度、光照條件和季節(jié)變化。為了能夠準(zhǔn)確地對(duì)這些圖片進(jìn)行分類,以下哪種特征提取方法與分類算法的組合最為有效?()A.SIFT特征+支持向量機(jī)B.HOG特征+決策樹C.卷積神經(jīng)網(wǎng)絡(luò)自動(dòng)提取特征+深度學(xué)習(xí)分類器D.顏色直方圖特征+樸素貝葉斯13、在計(jì)算機(jī)視覺的視頻目標(biāo)跟蹤中,假設(shè)目標(biāo)在視頻中被短暫遮擋。以下關(guān)于處理遮擋情況的方法,哪一項(xiàng)是不太有效的?()A.利用目標(biāo)在遮擋前的運(yùn)動(dòng)軌跡預(yù)測(cè)其位置B.完全放棄對(duì)被遮擋目標(biāo)的跟蹤,等待其重新出現(xiàn)C.結(jié)合目標(biāo)的外觀特征和運(yùn)動(dòng)信息進(jìn)行跟蹤D.借助周圍背景和其他相關(guān)物體的信息輔助跟蹤14、圖像分類是計(jì)算機(jī)視覺的常見任務(wù)之一。假設(shè)要對(duì)大量的自然風(fēng)景圖片進(jìn)行分類,如山脈、森林、海灘等。在進(jìn)行圖像分類時(shí),以下關(guān)于數(shù)據(jù)增強(qiáng)的方法,哪一項(xiàng)可能不太有效?()A.對(duì)圖像進(jìn)行隨機(jī)裁剪和旋轉(zhuǎn),增加數(shù)據(jù)的多樣性B.改變圖像的色彩和對(duì)比度,模擬不同的拍攝條件C.直接復(fù)制原圖像,增加數(shù)據(jù)量D.給圖像添加隨機(jī)噪聲,增強(qiáng)模型的魯棒性15、計(jì)算機(jī)視覺中的表情識(shí)別旨在識(shí)別圖像或視頻中人物的表情。假設(shè)要在一個(gè)情感分析系統(tǒng)中準(zhǔn)確識(shí)別表情,以下關(guān)于表情識(shí)別方法的描述,正確的是:()A.基于幾何特征的表情識(shí)別方法對(duì)表情的細(xì)微變化不敏感,識(shí)別準(zhǔn)確率低B.基于紋理特征的表情識(shí)別方法能夠很好地捕捉表情的局部特征,但容易受到光照影響C.深度學(xué)習(xí)中的卷積神經(jīng)網(wǎng)絡(luò)在表情識(shí)別中能夠?qū)W習(xí)到全局和局部的特征,但對(duì)大規(guī)模數(shù)據(jù)集依賴嚴(yán)重D.表情識(shí)別系統(tǒng)只適用于正面清晰的人臉表情,對(duì)于側(cè)臉和遮擋的表情無法識(shí)別16、在計(jì)算機(jī)視覺的圖像修復(fù)任務(wù)中,假設(shè)要填補(bǔ)圖像中缺失或損壞的部分。以下哪種方法可能更有效地恢復(fù)圖像的完整性和真實(shí)性?()A.基于擴(kuò)散的修復(fù)方法B.基于深度學(xué)習(xí)的圖像修復(fù)模型,如ContextEncoderC.用固定的圖案或顏色填充缺失部分D.不進(jìn)行修復(fù),保留圖像的缺失部分17、在計(jì)算機(jī)視覺的文本檢測(cè)和識(shí)別任務(wù)中,假設(shè)要從一張圖片中提取并識(shí)別其中的文字信息。以下關(guān)于文本檢測(cè)和識(shí)別的描述,哪一項(xiàng)是不正確的?()A.可以先通過文本檢測(cè)算法定位圖片中的文本區(qū)域,然后進(jìn)行識(shí)別B.深度學(xué)習(xí)中的卷積神經(jīng)網(wǎng)絡(luò)在文本識(shí)別中表現(xiàn)出色,能夠準(zhǔn)確識(shí)別各種字體和風(fēng)格的文字C.文本檢測(cè)和識(shí)別對(duì)于彎曲、傾斜和模糊的文字能夠輕松應(yīng)對(duì),沒有任何困難D.可以結(jié)合光學(xué)字符識(shí)別(OCR)技術(shù),將圖片中的文字轉(zhuǎn)換為可編輯的文本18、視頻理解是計(jì)算機(jī)視覺中的一個(gè)具有挑戰(zhàn)性的任務(wù)。以下關(guān)于視頻理解的敘述,不準(zhǔn)確的是()A.視頻理解不僅需要分析每一幀圖像的內(nèi)容,還需要考慮幀之間的時(shí)間關(guān)系B.循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)和長(zhǎng)短期記憶網(wǎng)絡(luò)(LSTM)在處理視頻序列數(shù)據(jù)時(shí)具有優(yōu)勢(shì)C.視頻理解在視頻監(jiān)控、行為分析和內(nèi)容推薦等方面具有廣泛的應(yīng)用前景D.目前的視頻理解技術(shù)已經(jīng)能夠完全理解復(fù)雜場(chǎng)景下的視頻內(nèi)容,不存在任何挑戰(zhàn)19、在計(jì)算機(jī)視覺的圖像檢索任務(wù)中,假設(shè)要從一個(gè)大型圖像數(shù)據(jù)庫中快速找到與給定查詢圖像相似的圖像。這些圖像可能在內(nèi)容、風(fēng)格和主題上存在差異。為了提高檢索的效率和準(zhǔn)確性,以下哪種方法通常被采用?()A.基于全局特征的圖像表示和相似性度量B.只對(duì)圖像的標(biāo)簽進(jìn)行文本匹配,忽略圖像內(nèi)容C.隨機(jī)選擇數(shù)據(jù)庫中的圖像作為檢索結(jié)果D.不進(jìn)行任何預(yù)處理,直接在原始圖像上進(jìn)行檢索20、在一個(gè)基于計(jì)算機(jī)視覺的農(nóng)業(yè)監(jiān)測(cè)系統(tǒng)中,需要對(duì)農(nóng)作物的生長(zhǎng)狀況進(jìn)行評(píng)估,例如判斷葉片的顏色、形狀和病蟲害情況。以下哪種圖像分析方法可能對(duì)農(nóng)作物監(jiān)測(cè)較為有效?()A.顏色空間轉(zhuǎn)換B.形態(tài)學(xué)分析C.紋理分析D.以上都是21、計(jì)算機(jī)視覺在自動(dòng)駕駛領(lǐng)域有重要應(yīng)用。假設(shè)車輛需要根據(jù)攝像頭采集的圖像來識(shí)別道路上的交通標(biāo)志,并且要在不同天氣和光照條件下都能準(zhǔn)確識(shí)別。以下哪種方法可能有助于提高交通標(biāo)志識(shí)別的魯棒性?()A.使用多個(gè)不同類型的攝像頭獲取圖像B.僅依賴顏色特征進(jìn)行識(shí)別C.采用簡(jiǎn)單的線性分類器進(jìn)行標(biāo)志分類D.減少訓(xùn)練數(shù)據(jù)中的交通標(biāo)志種類22、計(jì)算機(jī)視覺中的視頻目標(biāo)跟蹤中,假設(shè)目標(biāo)在跟蹤過程中發(fā)生了嚴(yán)重的形變。以下關(guān)于處理目標(biāo)形變的方法描述,正確的是:()A.基于模板匹配的跟蹤方法能夠自適應(yīng)地處理目標(biāo)形變,保持跟蹤的準(zhǔn)確性B.特征點(diǎn)跟蹤方法對(duì)目標(biāo)形變不敏感,在這種情況下仍然能夠可靠跟蹤C(jī).深度學(xué)習(xí)中的孿生網(wǎng)絡(luò)在目標(biāo)形變時(shí)容易丟失目標(biāo),無法繼續(xù)跟蹤D.結(jié)合多種特征和模型更新策略可以提高對(duì)目標(biāo)形變的跟蹤魯棒性23、計(jì)算機(jī)視覺中的圖像分割任務(wù)旨在將圖像分割成不同的區(qū)域。假設(shè)要對(duì)一張風(fēng)景圖片進(jìn)行分割,區(qū)分天空、陸地和水面。以下關(guān)于圖像分割方法的描述,哪一項(xiàng)是錯(cuò)誤的?()A.基于閾值的分割方法簡(jiǎn)單快速,但對(duì)于復(fù)雜圖像效果不佳B.區(qū)域生長(zhǎng)法從種子點(diǎn)開始,逐步合并相似的區(qū)域C.深度學(xué)習(xí)中的全卷積網(wǎng)絡(luò)(FCN)在圖像分割中表現(xiàn)出色,能夠生成精確的分割結(jié)果D.圖像分割的結(jié)果總是清晰明確,不存在模糊或錯(cuò)誤的邊界24、在計(jì)算機(jī)視覺的視頻壓縮中,為了在保證視覺質(zhì)量的同時(shí)減少數(shù)據(jù)量,以下哪種技術(shù)可能被廣泛應(yīng)用?()A.運(yùn)動(dòng)估計(jì)和補(bǔ)償B.圖像分割C.特征點(diǎn)檢測(cè)D.邊緣檢測(cè)25、在計(jì)算機(jī)視覺的場(chǎng)景理解任務(wù)中,需要對(duì)整個(gè)圖像場(chǎng)景進(jìn)行分析和解釋。假設(shè)我們有一張城市街道的圖像,要理解其中的道路、建筑物、車輛和行人之間的關(guān)系。以下哪種方法能夠提供更全面和深入的場(chǎng)景理解?()A.基于對(duì)象檢測(cè)和分類的方法B.基于語義分割和圖模型的方法C.基于深度學(xué)習(xí)的場(chǎng)景解析網(wǎng)絡(luò)D.基于特征匹配和聚類的方法二、簡(jiǎn)答題(本大題共4個(gè)小題,共20分)1、(本題5分)描述計(jì)算機(jī)視覺在影視制作中的應(yīng)用。2、(本題5分)說明計(jì)算機(jī)視覺在知識(shí)產(chǎn)權(quán)服務(wù)中的綜合應(yīng)用。3、(本題5分)解釋計(jì)算機(jī)視覺中的目標(biāo)檢測(cè)與圖像分類的區(qū)別。4、(本題5分)說明計(jì)算機(jī)視覺在海洋牧場(chǎng)監(jiān)測(cè)中的應(yīng)用。三、分析題(本大題共5個(gè)小題,共25分)1、(本題5分)以可口可樂的節(jié)日廣告為例,分析其如何通過特殊的設(shè)計(jì)和創(chuàng)意,營造節(jié)日氛圍,提升品牌的親和力和影響力。2、(本題5分)以麥當(dāng)勞的炸雞廣告為例,分析其如何通過視覺元素吸引消費(fèi)者品嘗炸雞。討論品牌標(biāo)志、色彩和食品造型的作用。3、(本題5分)以一個(gè)時(shí)尚品牌的品牌故事視頻設(shè)計(jì)為例,分析其視覺效果、故事敘述和情感表達(dá),討論如何塑造品牌的形象和吸引消費(fèi)者的共鳴。4、(本題5分)分析某品
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 下屬違反財(cái)務(wù)制度
- 藝術(shù)團(tuán)財(cái)務(wù)制度
- 健身房公司財(cái)務(wù)制度
- 社會(huì)社團(tuán)財(cái)務(wù)制度
- 分析蘇寧易購財(cái)務(wù)制度
- 農(nóng)村集體經(jīng)濟(jì)組織會(huì)計(jì)稽核制度
- 景區(qū)商戶日常管理制度范本(3篇)
- 烤年糕活動(dòng)方案策劃(3篇)
- 江北管道施工方案(3篇)
- 羊水栓塞不同治療方案的成本效果分析
- 大數(shù)據(jù)安全技術(shù)與管理
- 2026青島海發(fā)國有資本投資運(yùn)營集團(tuán)有限公司招聘計(jì)劃筆試備考試題及答案解析
- 2026年北大拉丁語標(biāo)準(zhǔn)考試試題
- 鼻飼技術(shù)操作課件
- 2025年酒店總經(jīng)理年度工作總結(jié)暨戰(zhàn)略規(guī)劃
- 置景服務(wù)合同范本
- 隧道掛防水板及架設(shè)鋼筋臺(tái)車施工方案
- 2025年國家市場(chǎng)監(jiān)管總局公開遴選公務(wù)員面試題及答案
- 肌骨康復(fù)腰椎課件
- 碼頭租賃意向協(xié)議書
- 初一語文2025年上學(xué)期現(xiàn)代文閱讀真題(附答案)
評(píng)論
0/150
提交評(píng)論