2022年黑龍江省東寧市中考數(shù)學(xué)每日一練試卷附答案詳解(能力提升)_第1頁
2022年黑龍江省東寧市中考數(shù)學(xué)每日一練試卷附答案詳解(能力提升)_第2頁
2022年黑龍江省東寧市中考數(shù)學(xué)每日一練試卷附答案詳解(能力提升)_第3頁
2022年黑龍江省東寧市中考數(shù)學(xué)每日一練試卷附答案詳解(能力提升)_第4頁
2022年黑龍江省東寧市中考數(shù)學(xué)每日一練試卷附答案詳解(能力提升)_第5頁
已閱讀5頁,還剩24頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

黑龍江省東寧市中考數(shù)學(xué)每日一練試卷考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題25分)一、單選題(5小題,每小題2分,共計(jì)10分)1、如圖,△ABC內(nèi)接于⊙O,∠A=50°.E是邊BC的中點(diǎn),連接OE并延長,交⊙O于點(diǎn)D,連接BD,則∠D的大小為()A.55° B.65° C.60° D.75°2、下列汽車標(biāo)志中既是軸對稱圖形又是中心對稱圖形的是()A. B. C. D.3、以原點(diǎn)O為圓心的圓交x軸于A、B兩點(diǎn),交y軸的正半軸于點(diǎn)C,D為第一象限內(nèi)⊙O上的一點(diǎn),若∠DAB=25°,則∠OCD=(

).A.50° B.40° C.70° D.30°4、如果,那么的結(jié)果是(

)A. B. C. D.5、在某籃球邀請賽中,參賽的每兩個(gè)隊(duì)之間都要比賽一場,共比賽36場,設(shè)有x個(gè)隊(duì)參賽,根據(jù)題意,可列方程為()A. B.C. D.二、多選題(5小題,每小題3分,共計(jì)15分)1、如圖,是半圓的直徑,半徑于點(diǎn),為半圓上一點(diǎn),,與交于點(diǎn),連接,,給出以下四個(gè)結(jié)論,其中正確的是(

)A.平分 B. C. D.2、運(yùn)動(dòng)員將足球沿與地面成一定角度的方向踢出,足球飛行的路線是一條拋物線.不考慮空氣阻力,足球距離地面的高度h(單位:m)與足球被踢出后經(jīng)過的時(shí)間t(單位:s)之間的關(guān)系如下表:t01234567…h(huán)08141820201814…下列結(jié)論正確的是(

)A.足球距離地面的最大高度為20mB.足球飛行路線的對稱軸是直線C.足球被踢出9s時(shí)落地D.足球被踢出1.5s時(shí),距離地面的高度是11m3、如圖在四邊形中,,,,為的中點(diǎn),以點(diǎn)為圓心、長為半徑作圓,恰好使得點(diǎn)在圓上,連接,若,則下列說法中正確的是(

)A.是劣弧的中點(diǎn) B.是圓的切線C. D.4、如果一種變換是將拋物線向右平移2個(gè)單位或向上平移1個(gè)單位,我們把這種變換稱為拋物線的簡單變換.已知拋物線經(jīng)過兩次簡單變換后的一條拋物線是y=x2+1,則原拋物線的解析式可能是()A.y=x2﹣1 B.y=x2+6x+5 C.y=x2+4x+4 D.y=x2+8x+175、如圖,為的直徑延長線上的一點(diǎn),與相切,切點(diǎn)為,是上一點(diǎn),連接.已知,則下列結(jié)論正確的為(

)A.與相切 B.四邊形是菱形C. D.第Ⅱ卷(非選擇題75分)三、填空題(5小題,每小題3分,共計(jì)15分)1、若代數(shù)式有意義,則x的取值范圍是_____.2、一個(gè)圓錐的底面半徑r=6,高h(yuǎn)=8,則這個(gè)圓錐的側(cè)面積是_____.3、背面完全相同的四張卡片,正面分別寫著數(shù)字-4,-1,2,3,背面朝上并洗勻,從中隨機(jī)抽取一張,將卡片上的數(shù)字記為,再從余下的卡片中隨機(jī)抽取一張,將卡片上的數(shù)字記為,則點(diǎn)在第四象限的概率為__________.4、林業(yè)部門要考察某種幼樹在一定條件下的移植成活率,下表是這種幼樹在移植過程中的一組數(shù)據(jù):移植的棵數(shù)n10001500250040008000150002000030000成活的棵數(shù)m8651356222035007056131701758026430成活的頻率0.8650.9040.8880.8750.8820.8780.8790.881估計(jì)該種幼樹在此條件下移植成活的概率為_______.5、如圖,AB為⊙O的弦,∠AOB=90°,AB=a,則OA=______,O點(diǎn)到AB的距離=______.四、簡答題(2小題,每小題10分,共計(jì)20分)1、已知關(guān)于的二次函數(shù).(1)求證:不論為何實(shí)數(shù),該二次函數(shù)的圖象與軸總有兩個(gè)公共點(diǎn);(2)若,兩點(diǎn)在該二次函數(shù)的圖象上,直接寫出與的大小關(guān)系;(3)若將拋物線沿軸翻折得到新拋物線,當(dāng)時(shí),新拋物線對應(yīng)的函數(shù)有最小值3,求的值.2、已知點(diǎn)P(2,2)在反比例函數(shù)y=(k≠0)的圖象上.(1)當(dāng)x=-3時(shí),求y的值;(2)當(dāng)1<x<3時(shí),求y的取值范圍.五、解答題(4小題,每小題10分,共計(jì)40分)1、在一個(gè)不透明的盒子中裝有四個(gè)只有顏色不同的小球,其中兩個(gè)紅球,一個(gè)黃球,一個(gè)藍(lán)球.(1)攪勻后從中任意摸出1個(gè)球,恰好是紅球的概率為_______;恰好是黃球的概率為________.(2)攪勻后從中任意摸出1個(gè)球,記錄下顏色后放回袋子中并攪勻,再從中任意摸出1個(gè)球,用列表法或樹形圖的方法,求兩次都是紅球的概率.2、如圖,正方形ABCD是半徑為R的⊙O內(nèi)接四邊形,R=6,求正方形ABCD的邊長和邊心距.3、已知:Rt△ABC中,∠ACB=90°,∠ABC=60°,將△ABC繞點(diǎn)B按順時(shí)針方向旋轉(zhuǎn).(1)當(dāng)C轉(zhuǎn)到AB邊上點(diǎn)C′位置時(shí),A轉(zhuǎn)到A′,(如圖1所示)直線CC′和AA′相交于點(diǎn)D,試判斷線段AD和線段A′D之間的數(shù)量關(guān)系,并證明你的結(jié)論.(2)將Rt△ABC繼續(xù)旋轉(zhuǎn)到圖2的位置時(shí),(1)中的結(jié)論是否成立?若成立,請證明;若不成立,請說明理由;(3)將Rt△ABC旅轉(zhuǎn)至A、C′、A′三點(diǎn)在一條直線上時(shí),請直接寫出此時(shí)旋轉(zhuǎn)角α的度數(shù).4、2022年冬奧會(huì)即將在北京召開,某網(wǎng)絡(luò)經(jīng)銷商購進(jìn)了一批以冬奧會(huì)為主題的文化衫進(jìn)行銷售,文化衫的進(jìn)價(jià)為每件30元,當(dāng)銷售單價(jià)定為70元時(shí),每天可售出20件,每銷售一件需繳納網(wǎng)絡(luò)平臺管理費(fèi)2元,為了擴(kuò)大銷售,增加盈利,決定采取適當(dāng)?shù)慕祪r(jià)措施,經(jīng)調(diào)查發(fā)現(xiàn):銷售單價(jià)每降低1元,則每天可多售出2件(銷售單價(jià)不低于進(jìn)價(jià)),若設(shè)這款文化衫的銷售單價(jià)為x(元),每天的銷售量為y(件).(1)求每天的銷售量y(件)與銷售單價(jià)x(元)之間的函數(shù)關(guān)系式;(2)當(dāng)銷售單價(jià)為多少元時(shí),銷售這款文化衫每天所獲得的利潤最大,最大利潤為多少元?-參考答案-一、單選題1、B【解析】【分析】連接CD,根據(jù)圓內(nèi)接四邊形的性質(zhì)得到∠CDB=180°﹣∠A=130°,根據(jù)垂徑定理得到OD⊥BC,求得BD=CD,根據(jù)等腰三角形的性質(zhì)即可得到結(jié)論.【詳解】解:連接CD,∵∠A=50°,∴∠CDB=180°﹣∠A=130°,∵E是邊BC的中點(diǎn),∴OD⊥BC,∴BD=CD,∴∠ODB=∠ODC=∠BDC=65°,故選:B.【考點(diǎn)】本題考查了圓內(nèi)接四邊形的性質(zhì),垂徑定理,等腰三角形的性質(zhì)等知識.正確理解題意是解題的關(guān)鍵.2、C【分析】根據(jù)軸對稱圖形與中心對稱圖形的概念求解.【詳解】解:A、是軸對稱圖形,不是中心對稱圖形,故此選項(xiàng)不符合題意;B、是軸對稱圖形,不是中心對稱圖形,故此選項(xiàng)不符合題意;C、是軸對稱圖形,是中心對稱圖形,故此選項(xiàng)符合題意;D、不是軸對稱圖形,是中心對稱圖形,故此選項(xiàng)不符合題意;故選:C.【點(diǎn)睛】此題主要考查了中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后兩部分重合.3、C【解析】【分析】根據(jù)圓周角定理求出∠DOB,根據(jù)等腰三角形性質(zhì)求出∠OCD=∠ODC,根據(jù)三角形內(nèi)角和定理求出即可.【詳解】解:連接OD,∵∠DAB=25°,∴∠BOD=2∠DAB=50°,∴∠COD=90°-50°=40°,∵OC=OD,∴∠OCD=∠ODC=(180°-∠COD)=70°,故選:C.【考點(diǎn)】本題考查了圓周角定理,等腰三角形性質(zhì),三角形內(nèi)角和定理的應(yīng)用,主要考查學(xué)生的推理能力,題目比較典型,難度適中.4、B【解析】【分析】根據(jù)比例的性質(zhì)即可得到結(jié)論.【詳解】∵=,∴可設(shè)a=2k,b=3k,∴==-.故選B.【考點(diǎn)】本題主要考查了比例的性質(zhì),解本題的要點(diǎn)根據(jù)題意可設(shè)a,b的值,從而求出答案.5、A【解析】【分析】共有x個(gè)隊(duì)參加比賽,則每隊(duì)參加(x-1)場比賽,但2隊(duì)之間只有1場比賽,根據(jù)共安排36場比賽,列方程即可.【詳解】解:設(shè)有x個(gè)隊(duì)參賽,根據(jù)題意,可列方程為:x(x﹣1)=36,故選A.【考點(diǎn)】此題考查由實(shí)際問題抽象出一元二次方程,解題關(guān)鍵在于得到比賽總場數(shù)的等量關(guān)系.二、多選題1、ABCD【解析】【分析】根據(jù)圓周角定理即可得出平分,證明全等即可得到,根據(jù)即可得到,即可得到;【詳解】∵是半圓的直徑,∴,又∵,∴,∵,∴,又∵,∴,∴,∴平分,故A正確;又∵,,∴,∴,故B正確;∵,∴,又∵∠CDE=∠COD=45°,∴,故C正確;∴,∴,故D正確;故選ABCD.【考點(diǎn)】本題主要考查了圓周角定理、直角三角形的性質(zhì)、全等三角形的判定與性質(zhì)、相似三角形的判定與性質(zhì),準(zhǔn)確計(jì)算是解題的關(guān)鍵.2、BC【解析】【分析】由題意,拋物線經(jīng)過(0,0),(9,0),所以可以假設(shè)拋物線的解析式為h=at(t﹣9),把(1,8)代入可得a=﹣1,可得h=﹣t2+9t=﹣(t﹣4.5)2+20.25,由此即可一一判斷.【詳解】解:由題意,拋物線的解析式為h=at(t﹣9),把(1,8)代入可得a=﹣1,∴h=﹣t2+9t=﹣(t﹣4.5)2+20.25,∴足球距離地面的最大高度為20.25m,故A錯(cuò)誤,∴拋物線的對稱軸t=4.5,故B正確,∵t=9時(shí),h=0,∴足球被踢出9s時(shí)落地,故C正確,∵t=1.5時(shí),h=11.25,故D錯(cuò)誤.∴正確的有②③,故選:BC【考點(diǎn)】本題考查二次函數(shù)的應(yīng)用、求出拋物線的解析式是解題的關(guān)鍵,屬于中考??碱}型.3、ABC【解析】【分析】直接利用圓周角定理以及結(jié)合圓心角、弧、弦的關(guān)系、切線的判定方法、平行線的判定方法、四邊形內(nèi)角和分別分析得出答案.【詳解】解:A.∵∠BAD=25°,∠EAD=25°,∴∠DAB=∠EAD∴,故此選項(xiàng)正確;B.∵∠BAD=25°,OA=OD,∴∠ADO=∠BAD=25°∵∠ADC=115°,∴∠ODC=∠ADC-∠ADC=115°-25°=90°,∴CD是⊙O的切線,故此選項(xiàng)正確;C.∵∠EAD=∠ADO=25°∴AE∥DO,故此選項(xiàng)正確;D.∵,,,∴∠OBC=360°-∠DAB-∠ADC-∠C=360°-25°-115°-90°=130°,故此選項(xiàng)錯(cuò)誤.故選擇ABC.【考點(diǎn)】此題主要考查了切線的判定以及圓周角與弧的關(guān)系、四邊形內(nèi)角和、平行線的判定方法等知識,正確掌握相關(guān)判定方法是解題關(guān)鍵.4、ACD【解析】【分析】根據(jù)圖象左移加,右移減,圖象上移加,下移減,可得答案.【詳解】解:A、y=x2?1,先向上平移1個(gè)單位得到y(tǒng)=x2,再向上平移1個(gè)單位可以得到y(tǒng)=x2+1,故A符合題意;B、y=x2+6x+5=(x+3)2?4,右移3個(gè)單位,再上移5得到y(tǒng)=x2+1,故B不符合題意;C、y=x2+4x+4=(x+2)2,先向右平移2個(gè)單位得到y(tǒng)=(x+2?2)2=x2,再向上平移1個(gè)單位得到y(tǒng)=x2+1,故C符合題意;D、y=x2+8x+17=(x+4)2+1,先向右平移2個(gè)單位得到y(tǒng)=(x+4?2)2+1,再向右平移1個(gè)單位得到y(tǒng)=(x+4?2-2)2+1=x2+1,故D符合題意.故選:ACD.【考點(diǎn)】本題考查了二次函數(shù)圖象與幾何變換,用平移規(guī)律“左加右減,上加下減”直接代入函數(shù)解析式求得平移后的函數(shù)解析式,注意由目標(biāo)函數(shù)圖象到原函數(shù)圖象方向正好相反.5、ABCD【解析】【分析】A、利用切線的性質(zhì)得出∠PCO=90°,進(jìn)而得出△PCO≌△PDO(SSS),即可得出∠PCO=∠PDO=90°,得出答案即可;B、利用A項(xiàng)所求得出:∠CPB=∠BPD,進(jìn)而求出△CPB≌△DPB(SAS),即可得出答案;C、利用全等三角形的判定得出△PCO≌△BCA(ASA),進(jìn)而得出答案;D、利用四邊形PCBD是菱形,∠CPO=30°,則DP=DB,則∠DPB=∠DBP=30°,求出即可.【詳解】A、連接CO,DO,∵PC與⊙O相切,切點(diǎn)為C,∴∠PCO=90°,在△PCO和△PDO中,,∴△PCO≌△PDO(SSS),∴∠PCO=∠PDO=90°,∴PD與⊙O相切,故A正確;B、由A項(xiàng)得:∠CPB=∠BPD,在△CPB和△DPB中,,∴△CPB≌△DPB(SAS),∴BC=BD,∴PC=PD=BC=BD,∴四邊形PCBD是菱形,故B正確;C、連接AC,∵PC=CB,∴∠CPB=∠CBP,∵AB是⊙O直徑,∴∠ACB=90°,在△PCO和△BCA中,,∴△PCO≌△BCA(ASA),∴PO=AB,故C正確;D、∵四邊形PCBD是菱形,∠CPO=30°,∴DP=DB,則∠DPB=∠DBP=30°,∴∠PDB=120°,故D正確;故選:ABCD.【考點(diǎn)】此題主要考查了切線的判定與性質(zhì)和全等三角形的判定與性質(zhì)以及菱形的判定與性質(zhì)等知識,熟練利用全等三角形的判定與性質(zhì)是解題關(guān)鍵.三、填空題1、﹣3≤x≤且x≠.【解析】【分析】根據(jù)二次根式的性質(zhì),被開方數(shù)大于等于0;分母中有字母,分母不為0.【詳解】解:若代數(shù)式有意義,必有,解①得解②移項(xiàng)得兩邊平方得整理得解得③∴解集為﹣3≤x≤且x≠.故答案為:﹣3≤x≤且x≠.【考點(diǎn)】本題考查了二次根式的概念:式子(a≥0)叫二次根式,(a≥0)是一個(gè)非負(fù)數(shù).注意:二次根式中的被開方數(shù)必須是非負(fù)數(shù),否則二次根式無意義;當(dāng)二次根式在分母上時(shí)還要考慮分母不等于零,此時(shí)被開方數(shù)大于0.2、60π【解析】【分析】利用圓錐的側(cè)面積公式:,求出圓錐的母線即可解決問題.【詳解】解:圓錐的母線,∴圓錐的側(cè)面積=π×10×6=60π,故答案為:60π.【考點(diǎn)】本題考查了圓錐的側(cè)面積,勾股定理等知識,解題的關(guān)鍵是記住圓錐的側(cè)面積公式.3、【分析】第四象限點(diǎn)的特征是,所以當(dāng)橫坐標(biāo)只能為2或3,縱坐標(biāo)只能是或,畫出列表圖或樹狀圖,算出滿足條件的情況,進(jìn)一步求得概率即可.【詳解】如下圖:-4-123-4-123∵第四象限點(diǎn)的坐標(biāo)特征是,∴滿足條件的點(diǎn)分別是:,共4種情況,又∵從列表圖知,共有12種等可能性結(jié)果,∴點(diǎn)在第四象限的概率為.故答案為:【點(diǎn)睛】本題主要考察概率的求解,要熟悉樹狀圖或列表圖的要點(diǎn)是解題關(guān)鍵.4、0.880【分析】大量重復(fù)實(shí)驗(yàn)的情況下,當(dāng)頻率呈現(xiàn)一定的穩(wěn)定性時(shí),可以用這一穩(wěn)定值估計(jì)事件發(fā)生的概率,據(jù)此可解.【詳解】解:大量重復(fù)實(shí)驗(yàn)的情況下,當(dāng)頻率呈現(xiàn)一定的穩(wěn)定性時(shí),可以用這一穩(wěn)定值估計(jì)事件發(fā)生的概率,從上表可以看出,頻率成活的頻率,即穩(wěn)定于0.880左右,∴估計(jì)這種幼樹移植成活率的概率約為0.88.故答案為:0.880.【點(diǎn)睛】此題主要考查了利用頻率估計(jì)概率,大量反復(fù)試驗(yàn)下頻率穩(wěn)定值即概率.5、【分析】過O作OC垂直于弦AB,利用垂徑定理得到C為AB的中點(diǎn),然后由OA=OB,且∠AOB為直角,得到三角形OAB為等腰直角三角形,由斜邊AB的長,利用勾股定理求出直角邊OA的長即可;再由C為AB的中點(diǎn),由AB的長求出AC的長,在直角三角形OAC中,由OA及AC的長,利用勾股定理即可求出OC的長,即為O點(diǎn)到AB的距離.【詳解】解:過O作OC⊥AB,則有C為AB的中點(diǎn),∵OA=OB,∠AOB=90°,AB=a,∴根據(jù)勾股定理得:OA2+OB2=AB,∴OA=,在Rt△AOC中,OA=,AC=AB=,根據(jù)勾股定理得:OC==.故答案為:;【點(diǎn)睛】此題考查了垂徑定理,等腰直角三角形的性質(zhì),以及勾股定理,在圓中遇到弦,常常過圓心作弦的垂線,根據(jù)近垂徑定理由垂直得中點(diǎn),進(jìn)而由弦長的一半,圓的半徑及弦心距構(gòu)造直角三角形,利用勾股定理來解決問題.四、簡答題1、(1)見解析(2)(3)的值為1或-5【解析】【分析】(1)計(jì)算判別式的值,得到,即可判定;(2)計(jì)算二次函數(shù)的對稱軸為:直線,利用當(dāng)拋物線開口向上時(shí),誰離對稱軸遠(yuǎn)誰大判斷即可;(3)先得到拋物線沿y軸翻折后的函數(shù)關(guān)系式,再利用對稱軸與取值范圍的位置分類討論即可.(1)證明:令,則∴∴不論為何實(shí)數(shù),方程有兩個(gè)不相等的實(shí)數(shù)根∴無論為何實(shí)數(shù),該二次函數(shù)的圖象與軸總有兩個(gè)公共點(diǎn)(2)解:二次函數(shù)的對稱軸為:直線∵,拋物線開口向上∴拋物線上的點(diǎn)離對稱軸越遠(yuǎn)對應(yīng)的函數(shù)值越大∵∴M點(diǎn)到對稱軸的距離為:1N點(diǎn)到對稱軸的距離為:2∴(3)解:∵拋物線∴沿軸翻折后的函數(shù)解析式為∴該拋物線的對稱軸為直線①若,即,則當(dāng)時(shí),有最小值∴解得,∵∴②若,即,則當(dāng)時(shí),有最小值-1不合題意,舍去③若,,則當(dāng)時(shí),有最小值∴解得,∵∴綜上,的值為1或-5【考點(diǎn)】本題考查了拋物線與x軸的交點(diǎn)以及二次函數(shù)的最值問題,利用一元二次方程根的判別式判斷拋物線與x軸的交點(diǎn)情況;熟練掌握二次函數(shù)的最值情況、根據(jù)對稱軸與取值范圍的位置關(guān)系來確定二次函數(shù)的最值是解本題的關(guān)鍵.2、(1)4;(2).【解析】【分析】由p點(diǎn)可以求得函數(shù)解析式,即可得k;由函數(shù)解析式中x的取值可以得y的取值.【詳解】解:∵點(diǎn)在反比例函數(shù)的圖象上,∴.∵,∴反比例函數(shù)在第一象限內(nèi)單調(diào)遞減.∵當(dāng)時(shí),;當(dāng)時(shí),.∴.故當(dāng)時(shí),的取值范圍為:.【考點(diǎn)】本題考查了反比例函數(shù)的性質(zhì),熟悉掌握概念是解決本題的關(guān)鍵.五、解答題1、(1);(2)兩次都是紅球的概率為【分析】(1)根據(jù)列舉法將所有可能列出,然后找出符合條件的可能,計(jì)算即可得;(2)四個(gè)球簡寫為“紅1,紅2,黃,藍(lán)”,利用列表法列出所有出現(xiàn)的可能,從中找到符合條件的結(jié)果數(shù),再根據(jù)概率公式計(jì)算可.(1)解:攪勻后從中任意摸出1個(gè)球,有四種可能:紅球、紅球、黃球、藍(lán)球,其中是紅球的可能有兩種,∴,其中是黃球的可能有一種,∴,故答案為:;;(2)四個(gè)球簡寫為“紅1,紅2,黃,藍(lán)”,列表法為:紅1紅2黃藍(lán)紅1(紅1,紅1)(紅1,紅2)(紅1,黃)(紅1,藍(lán))紅2(紅2,紅1)(紅2,紅2)(紅2,黃)(紅2,藍(lán))黃(黃,紅1)(黃,紅2)(黃,黃)(黃,藍(lán))藍(lán)(藍(lán),紅1)(藍(lán),紅2)(藍(lán),黃)(藍(lán),藍(lán))共有16種等可能的結(jié)果數(shù),其中兩次都是紅球的有4種結(jié)果,所以兩次都是紅球的概率為:.【點(diǎn)睛】題目主要考查利用列表法或樹狀圖法求概率,理解題意,熟練掌握列表法或樹狀圖法是解題關(guān)鍵.2、邊長為,邊心距為【分析】過點(diǎn)O作OE⊥BC,垂足為E,利用圓內(nèi)接四邊形的性質(zhì)求出∠BOC=90°,∠OBC=45°,然后在Rt△OBE中,根據(jù)勾股定理求出OE、BE即可.【詳解】解:過點(diǎn)O作OE⊥BC,垂足為E,∵正方形ABCD是半徑為R的⊙O內(nèi)接四邊形,R=6,∴∠BOC==90°,∠OBC=45°,OB=OC=6,∴BE=OE.在Rt△OBE中,∠BEO=90°,由勾股定理可得∵OE2+BE2=OB2,∴OE2+BE2=36,∴OE=BE=,∴BC=2BE=,即半徑為6的圓內(nèi)接正方形ABCD的邊長為,邊心

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論