2023江西省瑞金市中考數(shù)學考前沖刺練習試題(奪分金卷)附答案詳解_第1頁
2023江西省瑞金市中考數(shù)學考前沖刺練習試題(奪分金卷)附答案詳解_第2頁
2023江西省瑞金市中考數(shù)學考前沖刺練習試題(奪分金卷)附答案詳解_第3頁
2023江西省瑞金市中考數(shù)學考前沖刺練習試題(奪分金卷)附答案詳解_第4頁
2023江西省瑞金市中考數(shù)學考前沖刺練習試題(奪分金卷)附答案詳解_第5頁
已閱讀5頁,還剩33頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

江西省瑞金市中考數(shù)學考前沖刺練習試題考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題25分)一、單選題(5小題,每小題2分,共計10分)1、在中,,,給出條件:①;②;③外接圓半徑為4.請在給出的3個條件中選取一個,使得BC的長唯一.可以選取的是()A.① B.② C.③ D.①或③2、關(guān)于x的一元二次方程根的情況,下列說法正確的是(

)A.有兩個不相等的實數(shù)根 B.有兩個相等的實數(shù)根C.無實數(shù)根 D.無法確定3、中國有悠久的金石文化,印信是金石文化的代表之一.南北朝時期的官員獨孤信的印信是迄今發(fā)現(xiàn)的中國古代唯一一枚楷書印.它的表面均由正方形和等邊三角形組成(如圖1),可以看成圖2所示的幾何體.從正面看該幾何體得到的平面圖形是()A. B. C. D.4、若實數(shù)滿足,則的值是()A.1 B.-3或1 C.-3 D.-1或35、如圖,已知是的兩條切線,A,B為切點,線段交于點M.給出下列四種說法:①;②;③四邊形有外接圓;④M是外接圓的圓心,其中正確說法的個數(shù)是(

)A.1 B.2 C.3 D.4二、多選題(5小題,每小題3分,共計15分)1、二次函數(shù)(a,b,c是常數(shù),)的自變量x與函數(shù)值y的部分對應值如下表:x…-2-1012……tm22n…已知.則下列結(jié)論中,正確的是(

)A. B.和是方程的兩個根C. D.(s取任意實數(shù))2、下列方程中是一元二次方程的有(

)A.B.C.D.E.F.3、下列說法正確的是(

)A.“射擊運動員射擊一次,命中靶心”是隨機事件B.某彩票的中獎機會是1%,買100張一定會中獎C.拋擲一枚質(zhì)地均勻的硬幣兩次,則兩次都是“正面朝上”的概率是D.某校有3200名學生,為了解學生最喜歡的課外體育運動項目,隨機抽取了200名學生,其中有85名學生表示最喜歡的項目是跳繩,估計該校最喜歡的課外體育運動項目為跳繩的有1360人4、如圖,是的直徑,,交于點,交于點,是的中點,連接.則下列結(jié)論正確的是(

)A. B. C. D.是的切線5、下列說法正確的是(

)A.圓是軸對稱圖形,它有無數(shù)條對稱軸B.圓的半徑、弦長的一半、弦上的弦心距能組成一個直角三角形,且圓的半徑是此直角三角形的斜邊C.弦長相等,則弦所對的弦心距也相等D.垂直于弦的直徑平分這條弦,并且平分弦所對的弧第Ⅱ卷(非選擇題75分)三、填空題(5小題,每小題3分,共計15分)1、一個不透明的袋子裝有除顏色外其余均相同的2個紅球和m個黃球,隨機從袋中摸出個球記錄下顏色,再放回袋中搖勻大量重復試驗后,發(fā)現(xiàn)摸出紅球的頻率穩(wěn)定在0.2附近,則m的值為_________.2、如圖,是的內(nèi)接正三角形,點是圓心,點,分別在邊,上,若,則的度數(shù)是____度.3、二次函數(shù)的部分圖象如圖所示,由圖象可知,方程的解為___________________;不等式的解集為___________________.4、如圖,,,以為直徑作半圓,圓心為點;以點為圓心,為半徑作,過點作的平行線交兩弧于點、,則陰影部分的面積是________.5、如圖,已知P是函數(shù)y1圖象上的動點,當點P在x軸上方時,作PH⊥x軸于點H,連接PO.小華用幾何畫板軟件對PO,PH的數(shù)量關(guān)系進行了探討,發(fā)現(xiàn)PO﹣PH是個定值,則這個定值為_____.四、簡答題(2小題,每小題10分,共計20分)1、(1)閱讀理解如圖,點,在反比例函數(shù)的圖象上,連接,取線段的中點.分別過點,,作軸的垂線,垂足為,,,交反比例函數(shù)的圖象于點.點,,的橫坐標分別為,,.小紅通過觀察反比例函數(shù)的圖象,并運用幾何知識得出結(jié)論:AE+BG=2CF,CF>DF,由此得出一個關(guān)于,,之間數(shù)量關(guān)系的命題:若,則______.(2)證明命題小東認為:可以通過“若,則”的思路證明上述命題.小晴認為:可以通過“若,,且,則”的思路證明上述命題.請你選擇一種方法證明(1)中的命題.2、根據(jù)下列條件,求二次函數(shù)的解析式.(1)圖象經(jīng)過(0,1),(1,﹣2),(2,3)三點;(2)圖象的頂點(2,3),且經(jīng)過點(3,1);五、解答題(4小題,每小題10分,共計40分)1、將銳角為45°的直角三角板MPN的一個銳角頂點P與正方形ABCD的頂點A重合,正方形ABCD固定不動,然后將三角板繞著點A旋轉(zhuǎn),∠MPN的兩邊分別與正方形的邊BC、DC或其所在直線相交于點E、F,連接EF.(1)在三角板旋轉(zhuǎn)過程中,當∠MPN的兩邊分別與正方形的邊CB、DC相交時,如圖1所示,請直接寫出線段BE、DF、EF滿足的數(shù)量關(guān)系;(2)在三角板旋轉(zhuǎn)過程中,當∠MPN的兩邊分別與正方形的邊CB、DC的延長線相交時,如圖2所示,請直接寫出線段BE、DF、EF滿足的數(shù)量關(guān)系;(3)若正方形的邊長為4,在三角板旋轉(zhuǎn)過程中,當∠MPN的一邊恰好經(jīng)過BC邊的中點時,試求線段EF的長.2、如圖,CD是⊙O的直徑,∠EOD=84°,AE交⊙O于點B,且AB=OB,求∠A的度數(shù).3、已知x1,x2是關(guān)于x的一元二次方程x2-4mx+4m2-9=0的兩實數(shù)根.(1)若這個方程有一個根為-1,求m的值;(2)若這個方程的一個根大于-1,另一個根小于-1,求m的取值范圍;(3)已知Rt△ABC的一邊長為7,x1,x2恰好是此三角形的另外兩邊的邊長,求m的值.4、在△ABC與△DEF中,∠BAC=∠EDF=90°,且AB=AC,DE=DF.(1)如圖1,若點D與A重合,AC與EF交于P,且∠CAE=30°,CE,求EP的長;(2)如圖2,若點D與C重合,EF與BC交于點M,且BM=CM,連接AE,且∠CAE=∠MCE,求證:AE+MF=CE;(3)如圖3,若點D與A重合,連接BE,且∠ABE∠ABC,連接BF,CE,當BF+CE最小時,直接出的值.-參考答案-一、單選題1、B【分析】畫出圖形,作,交BE于點D.根據(jù)等腰直角三角形的性質(zhì)和勾股定理可求出AD的長,再由AD和AC的長作比較即可判斷①②;由前面所求的AD的長和AB的長,結(jié)合該三角形外接圓的半徑長,即可判斷該外接圓的圓心可在AB上方,也可在AB下方,其與AE的交點即為C點,為兩點不唯一,可判斷其不符合題意.【詳解】如圖,,,點C在射線上.作,交BE于點D.∵,∴為等腰直角三角形,∴,∴不存在的三角形ABC,故①不符合題意;∵,,AC=8,而AC>6,∴存在的唯一三角形ABC,如圖,點C即是.∴,使得BC的長唯一成立,故②符合題意;∵,,∴存在兩個點C使的外接圓的半徑等于4,兩個外接圓圓心分別在AB的上、下兩側(cè),如圖,點C和即為使的外接圓的半徑等于4的點.故③不符合題意.故選B.【點睛】本題考查等腰直角三角形的判定和性質(zhì),勾股定理,三角形外接圓的性質(zhì).利用數(shù)形結(jié)合的思想是解答本題的關(guān)鍵.2、A【解析】【分析】先計算判別式,再進行配方得到△=(k-1)2+4,然后根據(jù)非負數(shù)的性質(zhì)得到△>0,再利用判別式的意義即可得到方程總有兩個不相等的實數(shù)根.【詳解】△=(k-3)2-4(1-k)=k2-6k+9-4+4k=k2-2k+5=(k-1)2+4,∴(k-1)2+4>0,即△>0,∴方程總有兩個不相等的實數(shù)根.故選:A.【考點】本題考查的是根的判別式,一元二次方程ax2+bx+c=0(a≠0)的根與△=b2-4ac有如下關(guān)系:①當△>0時,方程有兩個不相等的實數(shù)根;②當△=0時,方程有兩個相等的實數(shù)根;③當△<0時,方程無實數(shù)根.上面的結(jié)論反過來也成立.3、D【分析】找到從正面看所得到的圖形即可.【詳解】解:從正面看是一個正六邊形,里面有2個矩形,故選D.【點睛】本題靈活考查了三種視圖之間的關(guān)系以及視圖和實物之間的關(guān)系,同時還考查了對圖形的想象力,難度適中.4、A【解析】【分析】設(shè)x2-3x=y.將y代入原方程得到關(guān)于y的一元二次方程y2+2y-3=0即可,解這個方程求出y的值,然后利用根的判別式檢驗即可.【詳解】設(shè)x2-3x=y.將y代入原方程,得y2+2y-3=0,解之得,y=1或y=-3.當y=1時,x2-3x=1,△=b2-4ac=(-3)2-4×1×(-1)=9+4=13>0,有兩個不相等的實數(shù)根,當y=-3時,x2-3x=-3,△=b2-4ac=(-3)2-4×1×3=9=12<0,無解.故y=1,即x2-3x=1.故選A.【考點】本題考查了換元法解一元二次方程及一元二次方程根的判別式,解數(shù)學題時,把某個式子看成一個整體,用一個變量去代替它,從而使問題得到簡化,這叫換元法.換元的實質(zhì)是轉(zhuǎn)化,關(guān)鍵是構(gòu)造元和設(shè)元,理論依據(jù)是等量代換,目的是變換研究對象,將問題移至新對象的知識背景中去研,從而使非標準型問題標準化、復雜問題簡單化,變得容易處理.5、C【解析】【分析】由切線長定理判斷①,結(jié)合等腰三角形的性質(zhì)判斷②,利用切線的性質(zhì)與直角三角形的斜邊上的中線等于斜邊的一半,判斷③,利用反證法判斷④.【詳解】如圖,是的兩條切線,故①正確,故②正確,是的兩條切線,取的中點,連接,則所以:以為圓心,為半徑作圓,則共圓,故③正確,M是外接圓的圓心,與題干提供的條件不符,故④錯誤,綜上:正確的說法是個,故選C.【考點】本題考查的是切線長定理,三角形的外接圓,四邊形的外接圓,掌握以上知識是解題的關(guān)鍵.二、多選題1、BC【解析】【分析】由表中數(shù)據(jù),結(jié)合二次函數(shù)的對稱性,可知,二次函數(shù)的對稱軸為,結(jié)合拋物線對稱軸為:,得出,由,,結(jié)合二次函數(shù)圖象性質(zhì),逐一分析各個選項,即可作出相應的判斷.【詳解】解:由表格數(shù)據(jù)可知,當時,,將點代入中,可得.由表格數(shù)據(jù)可知,當時,;當時,;即拋物線對稱軸為:,∵拋物線對稱軸為:,∴,化簡得,.∵,,∴拋物線解析式化為,.將點代入中,化簡得,,∵,∴,解得.∵,∴.∵,,,∴,故A選項說法錯誤,不符合題意;∵二次函數(shù)對稱軸為,∴和時,對應的函數(shù)值相等,∵時,對應函數(shù)值為,∴和是方程的兩個根,故B選項說法正確,符合題意;由表中數(shù)據(jù)可知,二次函數(shù)過點和,將點和分別代入二次函數(shù)解析式中,可得,,,故,C選項說法正確,符合題意;∵,∴,∵,∴,即,∵,∴,s取任意實數(shù),故D選項說法錯誤,不符合題意;故選:BC.【考點】本題考查了二次函數(shù)的圖象性質(zhì),二次函數(shù)與一元二次方程的關(guān)系,深入理解函數(shù)概念,熟練掌握二次函數(shù)圖象性質(zhì)是解題的關(guān)鍵.2、BCD【解析】【分析】根據(jù)一元二次方程的定義對6個選項逐一進行分析.【詳解】A中最高次數(shù)是3不是2,故本選項錯誤;B符合一元二次方程的定義,故本選項正確;C原式可化為4x2—=0,符合一元二次方程的定義,故本選項正確;D原式可化為2x2十x-1=0,符合一元二次方程的定義,故本選項正確;E原式可化為2x+1=0,不符合一元二次方程的定義,故本選項錯誤;Fax2+bx+c=0,只有在滿足a≠0的條件下才是一元二次方程,故本選項錯誤.故答案為:BCD【考點】本題考查了一元二次方程的概念,只有一個未知數(shù)且未知數(shù)最高次數(shù)為2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=0(且a≠0)特別要注意a≠0的條件,這是在做題過程中容易忽視的知識點.3、ACD【解析】【分析】根據(jù)隨機事件的定義(隨機事件是指在一定條件下可能發(fā)生也可能不發(fā)生的事件)可判斷A;由于中獎的概率是等可能的,則買100張可能會中獎,可能不會中獎可判斷B;利用列舉法將所有可能列舉出來,求滿足條件的概率即可判斷C;根據(jù)計算公式列出算式,即可判斷D.【詳解】解:A、“射擊運動員射擊一次,命中靶心”是隨機事件,選項正確;B、由于中獎的概率是等可能的,則買100張可能會中獎,可能不會中獎,選項說法錯誤,不符合題意;C、拋擲一枚質(zhì)地均勻的硬幣兩次,所有可能出現(xiàn)的結(jié)果有:(正,正),(正,反),(反,正),(反,反),則兩次都是“正面朝上”的概率是,選項正確;D、根據(jù)計算公式該項人數(shù)等于該項所占百分比乘以總?cè)藬?shù),,選項正確,符合題意.故選:ACD.【考點】本題主要考查隨機事件的定義,概率發(fā)生的可能性、求隨機事件的概率與求某項的人數(shù),根據(jù)等可能事件的概率公式求解是解題關(guān)鍵.4、BCD【解析】【分析】首先由是的直徑,得出,推出,根據(jù)是的中點,得出是的中位線,得到,,再由,推出是的中位線,得,即是的切線,最后由假設(shè)推出不正確.【詳解】解:連接,.是的直徑,(直徑所對的圓周角是直角),;而在中,,是邊上的中線,選項符合題意);是的直徑,,,,,,選項符合題意),是的中位線,即:,是的中點,是的中位線,,.是的切線選項符合題意);只有當是等腰直角三角形時,,故選項錯誤,不符合題意,故選:BCD.【考點】本題考查的知識點是切線的判定與性質(zhì)、等腰三角形的性質(zhì)及圓周角定理,解題的關(guān)鍵是運用等腰三角形性質(zhì)及圓周角定理及切線性質(zhì)作答.5、ABD【解析】【分析】根據(jù)圓的相關(guān)知識和垂徑定理進行分析即可.【詳解】解:A.圓是軸對稱圖形,它有無數(shù)條對稱軸,正確;B.圓的半徑、弦長的一半、弦上的弦心距能組成一個直角三角形,且圓的半徑是此直角三角形的斜邊,正確;C.弦長相等,則弦所對的弦心距也相等,不正確,只有在同圓或等圓中,弦長相等,則弦所對的弦心距也相等;D.垂直于弦的直徑平分這條弦,并且平分弦所對的弧,正確.故選:ABD.【考點】本題考查了學生對圓的基本概念和垂徑定理的理解,屬于基礎(chǔ)題.三、填空題1、8【分析】首先根據(jù)題意可取確定摸出紅球的概率為0.2,然后根據(jù)概率公式建立方程求解即可.【詳解】解:∵大量重復試驗后,發(fā)現(xiàn)摸出紅球的頻率穩(wěn)定在0.2附近,∴摸出紅球的概率為0.2,由題意,,解得:,經(jīng)檢驗,是原方程的解,且符合題意,故答案為:8.【點睛】本題考查由頻率估計概率,以及已知概率求數(shù)量;大量重復試驗后,某種情況出現(xiàn)的頻率穩(wěn)定在某個值附近時,這個值即為該事件發(fā)生的概率,掌握概率公式是解題關(guān)鍵.2、120【解析】【分析】本題可通過構(gòu)造輔助線,利用垂徑定理證明角等,繼而利用SAS定理證明三角形全等,最后根據(jù)角的互換結(jié)合同弧所對的圓周角等于圓心角的一半求解本題.【詳解】連接OA,OB,作OH⊥AC,OM⊥AB,如下圖所示:因為等邊三角形ABC,OH⊥AC,OM⊥AB,由垂徑定理得:AH=AM,又因為OA=OA,故△OAH△OAM(HL).∴∠OAH=∠OAM.又∵OA=OB,AD=EB,∴∠OAB=∠OBA=∠OAD,∴△ODA△OEB(SAS),∴∠DOA=∠EOB,∴∠DOE=∠DOA+∠AOE=∠AOE+∠EOB=∠AOB.又∵∠C=60°以及同弧,∴∠AOB=∠DOE=120°.故本題答案為:120.【考點】本題考查圓與等邊三角形的綜合,本題目需要根據(jù)等角的互換將所求問題進行轉(zhuǎn)化,構(gòu)造輔助線是本題難點,全等以及垂徑定理的應用在圓綜合題目極為常見,圓心角、弧、圓周角的關(guān)系需熟練掌握.3、

或【解析】【分析】根據(jù)拋物線的對稱軸和拋物線與x軸一個交點求出另一個交點,再通過二次函數(shù)與方程的兩根,二次函數(shù)與不等式解集的關(guān)系求得答案.【詳解】∵拋物線的對稱軸為,拋物線與x軸一個交點為(5,0)∴拋物線與x軸另一個交點為(-1,0)∴方程的解為:,由圖像可知,不等式的解集為:或.故答案為:,;或.【考點】本題考查了二次函數(shù)的圖像性質(zhì),掌握二次函數(shù)與方程的兩根,二次函數(shù)與不等式的解集關(guān)系,是解決問題的關(guān)鍵.4、【解析】【分析】連接CE,如圖,利用平行線的性質(zhì)得∠COE=∠EOB=90°,再利用勾股定理計算出OE=,利用余弦的定義得到∠OCE=60°,然后根據(jù)扇形面積公式,利用S陰影部分=S扇形BCE?S△OCE?S扇形BOD進行計算即可.【詳解】解:連接CE,如圖,∵AC⊥BC,∴∠ACB=90°,∵AC∥OE,∴∠COE=∠EOB=90°,∵OC=1,CE=2,∴OE=,cos∠OCE=,∴∠OCE=60°,∴S陰影部分=S扇形BCE?S△OCE?S扇形BOD=,故答案為.【考點】本題考查了扇形面積的計算:求陰影面積的主要思路是將不規(guī)則圖形面積轉(zhuǎn)化為規(guī)則圖形的面積.5、2【解析】【分析】設(shè)p(x,x2-1),則OH=|x|,PH=|x2-1|,因點P在x軸上方,所以x2-1>0,由勾股定理求得OP=x2+1,即可求得OP-PH=2,得出答案.【詳解】解:設(shè)p(x,x2-1),則OH=|x|,PH=|x2-1|,當點P在x軸上方時,∴x2-1>0,∴PH=|x2-1|=x2-1,在Rt△OHP中,由勾股定理,得OP2=OH2+PH2=x2+(x2-1)2=(x2+1)2,∴OP=x2+1,∴OP-PH=(x2+1)-(x2-1)=2,故答案為:2.【考點】本題考查二次函數(shù)圖象上點的坐標特征,勾股定理,利用坐標求線段長度是解題的關(guān)鍵.四、簡答題1、(1);(2)證明見解析.【解析】【分析】(1)求出AE,BG,DF,利用AE+BG=2CF,可得.(2)利用求差法比較大小.【詳解】(1)∵,,,,,∴.(2)∵,∵,∴,∴,∴.【考點】本題考查反比例函數(shù)圖形上的點的坐標特征,反比例函數(shù)的圖象等知識,解題的關(guān)鍵是理解題意,靈活運用所學知識解決問題.2、(1)y=4x2﹣7x+1;(2)y=﹣2(x﹣2)2+3.【解析】【分析】(1)先設(shè)出拋物線的解析式為y=ax2+bx+c,再將點(0,1),(1,?2),(2,3)代入解析式中,即可求得拋物線的解析式;(2)由于已知拋物線的頂點坐標,則可設(shè)頂點式y(tǒng)=a(x?2)2+3,然后把(3,1)代入求出a的值即可.【詳解】解:(1)設(shè)出拋物線的解析式為y=ax2+bx+c,將(0,1),(1,﹣2),(2,3)代入解析式,得:,解得:,∴拋物線解析式為:y=4x2﹣7x+1;(2)設(shè)拋物線解析式為y=a(x﹣2)2+3,把(3,1)代入得:a(3﹣2)2+3=1,解得a=﹣2,所以拋物線解析式為y=﹣2(x﹣2)2+3.【考點】本題考查了待定系數(shù)法求二次函數(shù)的解析式:一般地,當已知拋物線上三點時,常選擇一般式,用待定系數(shù)法列三元一次方程組來求解;當已知拋物線的頂點或?qū)ΨQ軸時,常設(shè)其解析式為頂點式來求解;當已知拋物線與x軸有兩個交點時,可選擇設(shè)其解析式為交點式來求解.五、解答題1、(1)EF=DF+BE;(2)EF=DF-BE;(3)線段EF的長為或.【分析】(1)延長FD至G,使DG=BE,連接AG,先證△ABE≌△ADG,再證△GAF≌△EAF即可;(2)在DC上截取DH=BE,連接AH,先證△ADH≌△ABE,再證△HAF≌EAF即可;(3)分兩種情形分別求解即可解決問題.【詳解】解:(1)結(jié)論:EF=BE+DF.理由:延長FD至G,使DG=BE,連接AG,如圖①,∵ABCD是正方形,∴AB=AD,∠ABE=ADG=∠DAB=90°,∴△ABE≌△ADG(AAS),∴AE=AG,∠DAG=∠EAB,∵∠EAF=45°,∴∠DAF+∠EAB=45°,∴∠DAF+∠DAG=45°,∴∠GAF=∠EAF=45°,∵AF=AF,∴△GAF≌△EAF(AAS),∴EF=GF,∴GF=DF+DG=DF+BE,即:EF=DF+BE;(2)結(jié)論:EF=DF-BE.理由:在DC上截取DH=BE,連接AH,如圖②,∵AD=AB,∠ADH=∠ABE=90°,∴△ADH≌△ABE(SAS),∴AH=AE,∠DAH=∠EAB,∵∠EAF=∠EAB+∠BAF=45°,∴∠DAH+∠BAF=45°,∴∠HAF=45°=∠EAF,∵AF=AF,∴△HAF≌EAF(SAS),∴HF=EF,∵DF=DH+HF,∴EF=DF-BE;(3)①當MA經(jīng)過BC的中點E時,同(1)作輔助線,如圖:設(shè)FD=x,由(1)的結(jié)論得FG=EF=2+x,F(xiàn)C=4-x.在Rt△EFC中,(x+2)2=(4-x)2+22,∴x=,∴EF=x+2=.②當NA經(jīng)過BC的中點G時,同(2)作輔助線,設(shè)BE=x,由(2)的結(jié)論得EC=4+x,EF=FH,∵K為BC邊的中點,∴CK=BC=2,同理可證△ABK≌FCK(SAS),∴CF=AB=4,EF=FH=CF+CD-DH=8-x,在Rt△EFC中,由勾股定理得到:(4+x)2+42=(8-x)2,∴x=,∴EF=8-=.綜上,線段EF的長為或.【點睛】本題屬于四邊形綜合題,考查了正方形的性質(zhì),旋轉(zhuǎn)變換,全等三角形的判定和性質(zhì),勾股定理等知識,解題的關(guān)鍵是學會利用旋轉(zhuǎn)法添加輔助線,構(gòu)造全等三角形解決問題,學會利用參數(shù)構(gòu)建方程解決問題.2、28°【解析】【分析】根據(jù)等腰三角形的性質(zhì),可得∠A與∠AOB的關(guān)系,∠BEO與∠EBO的關(guān)系,根據(jù)三角形外角的性質(zhì),可得關(guān)于∠A的方程,根據(jù)解方程,可得答案.【詳解】∵AB=BO,∴∠BOC=∠A,∴∠EBO=∠BOC+∠A=2∠A,而OB=OE,得∠E=∠EBO=2∠A,∴∠EOD=∠E+∠A=3∠A,而∠EOD=84°,∴3∠A=84°,∴∠A=28°.【考點】本題考查了三角形的性質(zhì)與圓的相關(guān)知識點,解題的關(guān)鍵是熟練的掌握三角形的性質(zhì)與圓的認識.3、(1)m的值為1或-2(2)-2<m<1(3)m=或m=【解析】【分析】(1)把x=-1代入方程,列出m的一元二次方程,求出m的值;(2)首先用m表示出方程的兩根,然后列出m的不等式組,求出m的取值范圍;(3)首先用m表示出方程的兩根,分直角△ABC的斜邊長為7或2m+3,根據(jù)勾股定理求出m的值.(1)解:∵x1,x2是一元二次方程x2-4mx+4m2-9=0的兩實數(shù)根,這個方程有一個根為-1,∴將x=-1代入方程x2-4mx+4m2-9=0,得1+4m+4m2-9=0.解得m=1或m=-2.∴m的值為1或-2.(2)解:∵x2-4mx+4m2=9,∴(x-2m)2=9,即x-2m=±3.∴x1=2m+3,x2=2m-3.∵2m+3>2m-3,∴解得-2<m<1.∴m的取值范圍是-2<m<1.(3)解:由(2)可知方程x2-4mx+4m2-9=0的兩根分別為2m+3,2m-3.若Rt△ABC的斜邊長為7,則有49=(2m+3)2+(2m-3)2.解得m=±.∵邊長必須是正數(shù),∴m=.若斜邊為2m+3,則(2m+3)2=(2m-3)2+72.解得m=.綜上所述,m=或m=.【考點】本題主要考查了根的判別式與根與系數(shù)的關(guān)系的知識,解答本題的關(guān)鍵是熟練掌握根與系數(shù)關(guān)系以及根的判別式的知識,此題難度一般.4、(1);(2)證明見詳解;(3).【分析】(1)過點P作PG⊥EC于G,根據(jù)等腰直角三角形得出∠B=∠C=45°,根據(jù)PG⊥EC,可取∠GPC=90°-∠C=45°,可得PG=GC,根據(jù)三角形外角性質(zhì)∠EPC=75°,可求∠EPG=30°,根據(jù)30°直角三角形性質(zhì)得出EP=2EG,根據(jù)勾股定理根據(jù)EC=EG+GC=EG+,可求EG=即可;(2)連結(jié)AE,在CE上截取EJ=AE,連結(jié)AJ,根據(jù)∠MAH=45°=∠HEC,可得點A、M、C、E四點共圓,得出∠AEM=∠ACM=45°=∠HEC,∠AME=∠ACE,可得△AEJ為等腰直角三角形,根據(jù)根據(jù)勾股定理AJ=,得出∠CAE=∠MCE,可證∠JAC=∠JCA,可得AJ=JC=,先證△CHM∽△ECM,再證△AEM≌△HEC(AAS),得出EM=EC,再證△AME≌△MCF(AAS),得出AE=MF即可;(3)分兩種情況,當BE在∠ABC的平分線上時,與BE在△ABC外部時,當BE在∠ABC的平分線上時,作∠ABC的平分線交AC于O,將△AEC逆時針旋轉(zhuǎn)90°得到△AFC′,過點O作OP⊥BC于P,則點E在BO上,有∠ABE=∠ABC,先證B、A、C′三點共線,根據(jù)兩點之交線段最短可得BF+CE=BF+C′F≥BC′,當點F在BC′上時,BF+CE最短=BC′,此時點E在AC上與點O重合,然后利用勾股定理EC=,BF=AB+AF=AC+AF=(1+)AF+AF=(2+)AF在Rt△ABE中,根據(jù)勾股定理,當BE在△ABC外部時,∠EBA=,將△EAC逆時針旋轉(zhuǎn)90°得到△FAC′,先證B、A、C′三點共線,根據(jù)兩點之間線段最短可得BF+CE=BF+FC′≥BC′,當點F在BC′上時,BF+CE最短=BC′,再證EF=BF,然后根據(jù)勾股定理BF=CE=AE+AC=AF+AB=在Rt△EAB中,根據(jù)勾股定理即可.【詳解】解:(1)過點P作PG⊥EC于G,∵∠BAC=90°,AB=AC,∴∠B=∠C=45°,∵PG⊥EC,∴∠GPC=90°-∠C=45°,∴PG=GC,∵∠EAC=30°,∠EDF=90°,DE=DF,∴∠DEF=∠F=45°,∴∠EPC=∠AEF+∠EAC=30°+45°=75°,∴∠EPG=∠EPC-∠GPC=75°-45°=30°,∴EP=2EG,在Rt△EPG中,根據(jù)勾股定理∴GC=PG=∴EC=EG+GC=EG+,∴EG=,∴EP=2EG=;(2)連結(jié)AE,在CE上截取EJ=AE,連結(jié)AJ,∵BM=CM,AB=AC,∠BAC=90°,∴AM⊥BC,AM=BM=CM,∴∠MAH=45°=∠HEC,∴點A、M、C、E四點共圓,∴∠AEM=∠ACM=45°=∠HEC,∠AME=∠ACE,∴∠AEJ=∠AEM+∠HEC=45°+45°=90°,∵AE=JE,∴∠EAJ=∠EJA=45°,在Rt△AEJ中,根據(jù)勾股定理AJ=,∵∠CAE=∠M

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論