版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
江蘇省溧陽市中考數學測試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題25分)一、單選題(5小題,每小題2分,共計10分)1、擲一枚質地均勻的骰子,向上一面的點數大于2且小于5的概率是()A. B. C. D.2、已知⊙O的半徑為4,點O到直線m的距離為d,若直線m與⊙O公共點的個數為2個,則d可?。ǎ〢.5 B.4.5 C.4 D.03、如圖,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2.將△ABC繞點C按順時針方向旋轉到點D落在AB邊上,此時得到△EDC,斜邊DE交AC邊于點F,則圖中陰影部分的面積為()A.3 B.1 C. D.4、如圖,在中,,,,將繞原點O逆時針旋轉90°,則旋轉后點A的對應點的坐標是()A. B. C. D.5、中國有悠久的金石文化,印信是金石文化的代表之一.南北朝時期的官員獨孤信的印信是迄今發(fā)現的中國古代唯一一枚楷書?。谋砻婢烧叫魏偷冗吶切谓M成(如圖1),可以看成圖2所示的幾何體.從正面看該幾何體得到的平面圖形是()A. B. C. D.二、多選題(5小題,每小題3分,共計15分)1、下列說法不正確的是()A.相切兩圓的連心線經過切點 B.長度相等的兩條弧是等弧C.平分弦的直徑垂直于弦 D.相等的圓心角所對的弦相等2、二次函數y=ax2+bx+c(a≠0)的部分圖象如圖所示,圖象過點(﹣1,0),對稱軸為直線x=2,下列結論中正確的有()A.4a+b=0B.9a+c>﹣3bC.7a﹣3b+2c>0D.若點A(﹣3,y1)、點B(﹣,y2)、點C(7,y3)在該函數圖象上,則y1<y3<y2E.若方程a(x+1)(x﹣5)=﹣3的兩根為x1和x2,且x1<x2,則x1<﹣1<5<x23、若為圓內接四邊形,則下列哪個選項可能成立(
)A. B.C. D.4、已知直角三角形的兩條邊長恰好是方程的兩個根,則此直角三角形斜邊長是(
)A. B. C.3 D.55、下列方程中,是一元二次方程的是(
)A. B. C. D.第Ⅱ卷(非選擇題75分)三、填空題(5小題,每小題3分,共計15分)1、如圖,點O是正方形ABCD的對稱中心,射線OM,ON分別交正方形的邊AD,CD于E,F兩點,連接EF,已知,.(1)以點E,O,F,D為頂點的圖形的面積為_________;(2)線段EF的最小值是_________.2、如圖,將半徑為的圓形紙片沿一條弦折疊,折疊后弧的中點與圓心重疊,則弦的長度為________.3、如圖,四邊形內接于,若,則_______°.4、有四張完全相同的卡片,正面分別標有數字,,,,將四張卡片背面朝上,任抽一張卡片,卡片上的數字記為,再從剩下卡片中抽一張,卡片上的數字記為,則二次函數的對稱軸在軸左側的概率是__________.5、已知關于x的一元二次方程的一個根比另一個根大2,則m的值為_____.四、簡答題(2小題,每小題10分,共計20分)1、據說,在距今2500多年前,古希臘數學家就已經較準確地測出了埃及金字塔的高度,操作過程大致如下:如圖所示,設AB是金字塔的高,在某一時刻,陽光照射下的金字塔在底面上投下了一個清晰的陰影,塔頂A的影子落在地面上的點C處,金字塔底部可看作方正形FGHI,測得正方形邊長FG長為160米,點B在正方形的中心,BC與金字塔底部一邊垂直于點K,與此同時,直立地面上的一根標桿DO留下的影子是OE,射向地面的太陽光線可看作平行線(AC∥DE),此時測得標桿DO長為1.2米,影子OE長為2.7米,KC長為250米,求金字塔的高度AB及斜坡AK的坡度(結果均保留四個有效數字)2、定義:我們知道,四邊形的一條對角線把這個四邊形分成了兩個三角形,如果這兩個三角形相似(不全等),我們就把這條對角線叫做這個四邊形的“相似對角線”.(1)如圖1,在四邊形中,,,對角線平分.求證:是四邊形的“相似對角線”;(2)如圖2,已知是四邊形的“相似對角線”,.連接,若的面積為,求的長.五、解答題(4小題,每小題10分,共計40分)1、如圖,在方格紙中,已知頂點在格點處的△ABC,請畫出將△ABC繞點C旋轉180°得到的△A'B'C'.(需寫出△A'B'C'各頂點的坐標).2、如圖,CD是⊙O的直徑,∠EOD=84°,AE交⊙O于點B,且AB=OB,求∠A的度數.3、如圖,⊙O的半徑弦AB于點C,連結AO并延長交⊙O于點E,連結EC.已知,.(1)求⊙O半徑的長;(2)求EC的長.4、如圖,已知點在上,點在外,求作一個圓,使它經過點,并且與相切于點.(要求寫出作法,不要求證明)-參考答案-一、單選題1、C【分析】根據骰子各面上的數字得到向上一面的點數可能是3或4,利用概率公式計算即可.【詳解】解:一枚質地均勻的骰子共有六個面,點數分別為1,2,3,4,5,6,∴點數大于2且小于5的有3或4,∴向上一面的點數大于2且小于5的概率是=,故選:C.【點睛】此題考查了求簡單事件的概率,正確掌握概率的計算公式是解題的關鍵.2、D【解析】【分析】根據直線和圓的位置關系判斷方法,可得結論.【詳解】∵直線m與⊙O公共點的個數為2個∴直線與圓相交∴d<半徑=4故選D.【考點】本題考查了直線與圓的位置關系,掌握直線和圓的位置關系判斷方法:設⊙O的半徑為r,圓心O到直線l的距離為d.①直線l和⊙O相交?d<r②直線l和⊙O相切?d=r,③直線l和⊙O相離?d>r.3、D【分析】根據題意及旋轉的性質可得是等邊三角形,則,,根據含30度角的直角三角形的性質,即可求得,由勾股定理即可求得,進而求得陰影部分的面積.【詳解】解:如圖,設與相交于點,,,,旋轉,,是等邊三角形,,,,,,,,陰影部分的面積為故選D【點睛】本題考查了等邊三角形的性質,勾股定理,含30度角的直角三角形的性質,旋轉的性質,利用含30度角的直角三角形的性質是解題的關鍵.4、C【分析】過點A作AC⊥x軸于點C,設,則,根據勾股定理,可得,從而得到,進而得到∴,可得到點,再根據旋轉的性質,即可求解.【詳解】解:如圖,過點A作AC⊥x軸于點C,設,則,∵,,∴,∵,,∴,解得:,∴,∴,∴點,∴將繞原點O順時針旋轉90°,則旋轉后點A的對應點的坐標是,∴將繞原點O逆時針旋轉90°,則旋轉后點A的對應點的坐標是.故選:C【點睛】本題考查坐標與圖形變化一旋轉,解直角三角形等知識,解題的關鍵是求出點A的坐標,屬于中考常考題型.5、D【分析】找到從正面看所得到的圖形即可.【詳解】解:從正面看是一個正六邊形,里面有2個矩形,故選D.【點睛】本題靈活考查了三種視圖之間的關系以及視圖和實物之間的關系,同時還考查了對圖形的想象力,難度適中.二、多選題1、BCD【解析】【分析】要找出正確命題,可運用相關基礎知識分析找出正確選項,也可以通過舉反例排除不正確選項,從而得出正確選項.(1)等弧指的是在同圓或等圓中,能夠完全重合的?。L度相等的兩條弧,不一定能夠完全重合;(2)此弦不能是直徑;(3)相等的圓心角所對的弦相等指的是在同圓或等圓中.【詳解】解:A、根據圓的軸對稱性可知此命題正確,不符合題意;B、等弧指的是在同圓或等圓中,能夠完全重合的?。嗣}沒有強調在同圓或等圓中,所以長度相等的兩條弧,不一定能夠完全重合,此命題錯誤,符合題意;B、此弦不能是直徑,命題錯誤,符合題意;C、相等的圓心角指的是在同圓或等圓中,此命題錯誤,符合題意;故選:BCD.【考點】本題考查的是兩圓的位置關系、圓周角定理以及垂徑定理,熟知平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧是解答此題的關鍵.2、ABE【解析】【分析】根據拋物線的對稱軸為直線x=2,則有4a+b=0,可得A正確;根據二次函數的對稱性得到當x=3時,函數值大于0,則9a+3b+c>0,即9a+c>﹣3b,可得B正確;由于x=﹣1時,y=0,則a﹣b+c=0,易得c=﹣5a,所以7a-3b+2c=9a,再根據拋物線開口向下得a<0,于是有7a﹣3b+2c<0,可得C錯誤;利用拋物線的對稱性得到(﹣3,)在拋物線上,然后利用二次函數的增減性可得D錯誤;作出直線y=﹣3,然后依據函數圖象進行判斷可得E正確;綜上即可得答案.【詳解】A項:∵x==2,∴4a+b=0,故A正確.B項:∵拋物線與x軸的一個交點為(-1,0),對稱軸為直線x=2,∴另一個交點為(5,0),∵拋物線開口向下,∴當x=3時,y>0,即9a+3b+c>0,∴9a+c>﹣3b,故B正確.C項:∵拋物線與x軸的一個交點為(﹣1,0),∴a﹣b+c=0∵b=﹣4a,∴a+4a+c=0,即c=﹣5a,∴7a﹣3b+2c=7a+12a﹣10a=9a,∵拋物線開口向下,∴a<0,∴7a﹣3b+2c<0,故C錯誤;D項:∵拋物線的對稱軸為x=2,C(7,)在拋物線上,∴點(﹣3,)與C(7,)關于對稱軸x=2對稱,∵A(﹣3,)在拋物線上,∴=,∵﹣3<﹣12,在對稱軸的左側,拋物線開口向下,∴y隨x的增大而增大,∴=<,故D錯誤.E項:方程a(x+1)(x﹣5)=0的兩根為x=﹣1或x=5,過y=﹣3作x軸的平行線,直線y=﹣3與拋物線的交點的橫坐標為方程的兩根,∵<,拋物線與x軸交點為(-1,0),(5,0),∴依據函數圖象可知:<﹣1<5<,故E正確.故答案為:ABE【考點】本題考查了二次函數圖象與系數的關系:二次函數y=ax2+bx+c(a≠0),二次項系數a決定拋物線的開口方向和大小,當a>0時,拋物線向上開口;當a<0時,拋物線向下開口;一次項系數b和二次項系數a共同決定對稱軸的位置,當a與b同號時(即ab>0),對稱軸在y軸左;當a與b異號時(即ab<0),對稱軸在y軸右;常數項c決定拋物線與y軸交點.拋物線與y軸交于(0,c);拋物線與x軸交點個數由△決定,△=b2﹣4ac>0時,拋物線與x軸有2個交點;△=b2﹣4ac=0時,拋物線與x軸有1個交點;△=b2﹣4ac<0時,拋物線與x軸沒有交點.3、BD【解析】【分析】根據圓內接四邊形的性質得出∠A+∠C=∠B+∠D=180°,再逐個判斷即可.【詳解】解:∵四邊形ABCD是圓內接四邊形,∴∠A+∠C=180°,∠B+∠D=180°,∴∠A+∠C=∠B+∠D,A.∵,∴∠A+∠C≠∠B+∠D,故本選項不符合題意;B.∵,∴∠A+∠C=∠B+∠D,故本選項符合題意;C.∵,∴∠A+∠C≠∠B+∠D,故本選項不符合題意;D.∵,∴∠A+∠C=∠B+∠D,故本選項符合題意;故選:BD.【考點】本題考查了圓周角定理和圓內接四邊形的性質,注意:圓內接四邊形的對角互補.4、AC【解析】【分析】先解出一元二次方程,再根據勾股定理計算即可;【詳解】,,∴或,當2、3是直角邊時,斜邊;∵,∴3可以是三角形斜邊;故選AC.【考點】本題主要考查了一元二次方程的求解、勾股定理,準確計算是解題的關鍵.5、ABC【解析】【分析】根據一元二次方程的定義逐個判斷即可.【詳解】解:A、是一元二次方程,故本選項符合題意;B、是一元二次方程,故本選項符合題意;C、是一元二次方程,故本選項符合題意;D、方程,整理得:,是一元一次方程,不是一元二次方程,故本選項不符合題意;故選:【考點】本題考查了一元二次方程的定義,能熟記一元二次方程的定義的內容是解此題的關鍵,注意:只含有一個未知數,并且所含未知數的項的次數最高是2的整式.三、填空題1、
1
【解析】【分析】(1)連接AO,DO,證明,可得,求出即可求解;(2)設,則,由勾股定理可得,即可求EF的最小值.【詳解】解:(1)連接AO,DO,∵,∴,∵四邊形ABCD是正方形,O是中心,∴,,,∴,∴,∴,∴,∵,∴,∴故答案為:1;(2)設,則,,在中,,∴當時,EF有最小值,故答案為:.【考點】本題考查正方形的性質,全等三角形的判定與性質,二次函數的性質,熟練掌握二次函數求最值的方法是解題的關鍵.2、【解析】【分析】連接OC交AB于點D,再連接OA.根據軸對稱的性質確定,OD=CD;再根據垂徑定理確定AD=BD;再根據勾股定理求出AD的長度,進而即可求出AB的長度.【詳解】解:如下圖所示,連接OC交AB于點D,再連接OA.∵折疊后弧的中點與圓心重疊,∴,OD=CD.∴AD=BD.∵圓形紙片的半徑為10cm,∴OA=OC=10cm.∴OD=5cm.∴cm.∴BD=cm.∴cm.故答案為:.【考點】本題考查軸對稱的性質,垂徑定理,勾股定理,綜合應用這些知識點是解題關鍵.3、104【解析】【分析】根據圓內接四邊形的對角互補列式計算即可.【詳解】解:∵四邊形ABCD內接于⊙O,∴∠A+∠C=180°,∴∠C=180°﹣∠A=180°﹣76°=104°,故答案為:104.【考點】本題考查的是圓內接四邊形的性質,掌握圓內接四邊形的對角互補是解題的關鍵.4、【分析】根據二次函數的性質,對稱軸為,進而可得同號,根據列表法即可求得二次函數的對稱軸在軸左側的概率【詳解】解:二次函數的對稱軸在軸左側對稱軸為,即同號,列表如下共有12種等可能結果,其中同號的結果有4種則二次函數的對稱軸在軸左側的概率為故答案為:【點睛】本題考查了二次函數圖象的性質,列表法求概率,掌握二次函數的圖象與系數的關系以及列表法求概率是解題的關鍵.5、1【解析】【分析】利用因式分解法求出x1,x2,再根據根的關系即可求解.【詳解】解(x-3m)(x-m)=0∴x-3m=0或x-m=0解得x1=3m,x2=m,∴3m-m=2解得m=1故答案為:1.【考點】此題主要考查解一元二次方程,解題的關鍵是熟知因式分解法的運用.四、簡答題1、金字塔的高度AB為米,斜坡AK的坡度為1.833.【解析】【分析】根據同一時刻物高與影長成正比例列式計算即可.【詳解】解:∵FGHI是正方形,點B在正方形的中心,BC⊥HG,∴BK∥FG,BK==×160=80,∵根據同一時刻物高與影長成正比例,∴,即,解得:AB=米,連接AK,=1.833.∴金字塔的高度AB為米,斜坡AK的坡度為1.833.【考點】本題考查了相似三角形的應用,只要是把實際問題抽象到相似三角形中,利用相似三角形的相似比,列出方程,通過解方程求解,解此題的關鍵是找到各部分以及與其對應的影長.2、(1)見解析;(2)【解析】【分析】(1)根據所給的相似對角線的證明方法證明即可;(2)由題可證的,得到,過點E作,可得出EQ,根據即可求解;【詳解】(1)證明:∵,平分,∴,∴.∵,∴.,∴∴是四邊形ABCD的“相似對角線”.(2)∵是四邊形EFGH的“相似對角線”,∴三角形EFH與三角形HFG相似.又,∴,∴,∴.過點E作,垂足為.則.∵,∴,∴,∴,∴.【考點】本題主要考查了四邊形綜合知識點,涉及了相似三角形,解直角三角形等知識,準確分析并能靈活運用相關知識是解題的關鍵.五、解答題1、A'(-1,-3),B'(1,-1),C'(-2,0)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 合規(guī)運營油罐車管理制度
- 廚房健康及衛(wèi)生管理制度
- 餐廳衛(wèi)生把關制度
- 貴州省基建財務制度
- 公辦幼兒園財務制度制度
- 衛(wèi)生社區(qū)消毒隔離制度
- 上墻事業(yè)單位財務制度
- 合作經營合同
- 衛(wèi)生計生守信激勵制度
- 事業(yè)單位財務制度新規(guī)定
- 安全目標管理制度煤廠(3篇)
- 云南省玉溪市2025-2026學年八年級上學期1月期末物理試題(原卷版+解析版)
- 車輛駕駛員崗前培訓制度
- 2026年哈爾濱通河縣第一批公益性崗位招聘62人考試參考試題及答案解析
- 就業(yè)協議書解約函模板
- 頭部護理與頭皮健康維護
- 2026年山東城市服務職業(yè)學院單招職業(yè)技能考試題庫附答案詳解
- 研發(fā)部門員工加班管理細則
- 鋼結構橋梁施工監(jiān)測方案
- 高考英語3500單詞表(帶音標)(亂序版)默寫背誦通用版
- GB/T 9414.9-2017維修性第9部分:維修和維修保障
評論
0/150
提交評論