2023年海南省東方市中考數(shù)學(xué)考前沖刺練習(xí)試題及完整答案詳解【名校卷】_第1頁(yè)
2023年海南省東方市中考數(shù)學(xué)考前沖刺練習(xí)試題及完整答案詳解【名校卷】_第2頁(yè)
2023年海南省東方市中考數(shù)學(xué)考前沖刺練習(xí)試題及完整答案詳解【名校卷】_第3頁(yè)
2023年海南省東方市中考數(shù)學(xué)考前沖刺練習(xí)試題及完整答案詳解【名校卷】_第4頁(yè)
2023年海南省東方市中考數(shù)學(xué)考前沖刺練習(xí)試題及完整答案詳解【名校卷】_第5頁(yè)
已閱讀5頁(yè),還剩27頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

海南省東方市中考數(shù)學(xué)考前沖刺練習(xí)試題考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來(lái)的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無(wú)效。第I卷(選擇題25分)一、單選題(5小題,每小題2分,共計(jì)10分)1、如圖圖案中,不是中心對(duì)稱圖形的是()A. B. C. D.2、如圖,在△ABC中,∠CAB=64°,將△ABC在平面內(nèi)繞點(diǎn)A旋轉(zhuǎn)到△AB′C′的位置,使CC′AB,則旋轉(zhuǎn)角的度數(shù)為()A.64° B.52° C.42° D.36°3、直線不經(jīng)過(guò)第二象限,則關(guān)于的方程實(shí)數(shù)解的個(gè)數(shù)是(

).A.0個(gè) B.1個(gè) C.2個(gè) D.1個(gè)或2個(gè)4、5個(gè)紅球、4個(gè)白球放入一個(gè)不透明的盒子里,從中摸出6個(gè)球,恰好紅球與白球都摸到,這個(gè)事件()A.不可能發(fā)生 B.可能發(fā)生 C.很可能發(fā)生 D.必然發(fā)生5、如圖,AB是的直徑,CD是的弦,且,,,則圖中陰影部分的面積為()A. B. C. D.二、多選題(5小題,每小題3分,共計(jì)15分)1、等腰三角形三邊長(zhǎng)分別為a,b,3,且a,b是關(guān)于x的一元二次方程x2﹣8x﹣1+m=0的兩根,則m的值為()A.15 B.16 C.17 D.182、如圖在四邊形中,,,,為的中點(diǎn),以點(diǎn)為圓心、長(zhǎng)為半徑作圓,恰好使得點(diǎn)在圓上,連接,若,則下列說(shuō)法中正確的是(

)A.是劣弧的中點(diǎn) B.是圓的切線C. D.3、下列命題不正確的是(

)A.三角形的內(nèi)心到三角形三個(gè)頂點(diǎn)的距離相等B.三角形的內(nèi)心不一定在三角形的內(nèi)部C.等邊三角形的內(nèi)心,外心重合D.一個(gè)圓一定有唯一一個(gè)外切三角形4、已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,下列結(jié)論正確的有()A.2a+b<0 B.a(chǎn)bc>0 C.4a﹣2b+c>0 D.a(chǎn)+c>05、若二次函數(shù)(a是不為0的常數(shù))的圖象與x軸交于A、B兩點(diǎn).則以下結(jié)論正確的有(

)A.B.當(dāng)時(shí),y隨x的增大而增大C.無(wú)論a取任何不為0的數(shù),該函數(shù)的圖象必經(jīng)過(guò)定點(diǎn)D.若線段AB上有且只有5個(gè)橫坐標(biāo)為整數(shù)的點(diǎn),則a的取值范圍是第Ⅱ卷(非選擇題75分)三、填空題(5小題,每小題3分,共計(jì)15分)1、如圖,在ABC中,∠C=90°,AB=10,在同一平面內(nèi),點(diǎn)O到點(diǎn)A,B,C的距離均等于a(a為常數(shù)).那么常數(shù)a的值等于________.2、若關(guān)于x的一元二次方程的根的判別式的值為4,則m的值為_(kāi)____.3、在平面直角坐標(biāo)系中,已知和是拋物線上的兩點(diǎn),將拋物線的圖象向上平移n(n是正整數(shù))個(gè)單位,使平移后的圖象與x軸沒(méi)有交點(diǎn),則n的最小值為_(kāi)____.4、如圖,正方形ABCD的邊長(zhǎng)為1,⊙O經(jīng)過(guò)點(diǎn)C,CM為⊙O的直徑,且CM=1.過(guò)點(diǎn)M作⊙O的切線分別交邊AB,AD于點(diǎn)G,H.BD與CG,CH分別交于點(diǎn)E,F(xiàn),⊙O繞點(diǎn)C在平面內(nèi)旋轉(zhuǎn)(始終保持圓心O在正方形ABCD內(nèi)部).給出下列四個(gè)結(jié)論:①HD=2BG;②∠GCH=45°;③H,F(xiàn),E,G四點(diǎn)在同一個(gè)圓上;④四邊形CGAH面積的最大值為2.其中正確的結(jié)論有_____(填寫所有正確結(jié)論的序號(hào)).5、在圓內(nèi)接四邊形ABCD中,,則的度數(shù)為_(kāi)_____.四、簡(jiǎn)答題(2小題,每小題10分,共計(jì)20分)1、某商場(chǎng)購(gòu)進(jìn)甲、乙兩種商品共100箱,全部售完后,甲商品共盈利900元,乙商品共盈利400元,甲商品比乙商品每箱多盈利5元.(1)求甲、乙兩種商品每箱各盈利多少元?(2)甲、乙兩種商品全部售完后,該商場(chǎng)又購(gòu)進(jìn)一批甲商品,在原每箱盈利不變的前提下,平均每天可賣出100箱.如調(diào)整價(jià)格,每降價(jià)1元,平均每天可以多賣出20箱,那么當(dāng)降價(jià)多少元時(shí),該商場(chǎng)利潤(rùn)最大?最大利潤(rùn)是多少?2、在矩形中,于點(diǎn),點(diǎn)是邊上一點(diǎn).(1)若平分,交于點(diǎn),PF⊥BD,如圖(1),證明四邊形是菱形;(2)若,如圖(2),求證:.五、解答題(4小題,每小題10分,共計(jì)40分)1、如圖,已知弓形的長(zhǎng),弓高,(,并經(jīng)過(guò)圓心O).(1)請(qǐng)利用尺規(guī)作圖的方法找到圓心O;(2)求弓形所在的半徑的長(zhǎng).2、如圖,⊙O的半徑弦AB于點(diǎn)C,連結(jié)AO并延長(zhǎng)交⊙O于點(diǎn)E,連結(jié)EC.已知,.(1)求⊙O半徑的長(zhǎng);(2)求EC的長(zhǎng).3、如圖,已知正方形點(diǎn)在邊上,以為邊在左側(cè)作正方形;以為鄰邊作平行四邊形連接.(1)判斷和的數(shù)量及位置關(guān)系,并說(shuō)明理由;(2)將繞點(diǎn)順時(shí)針旋轉(zhuǎn),在旋轉(zhuǎn)過(guò)程中,和的數(shù)量及位置關(guān)系是否發(fā)生變化?請(qǐng)說(shuō)明理由.4、在平面直角坐標(biāo)系xOy中,對(duì)于點(diǎn)P,O,Q給出如下定義:若OQ<PO<PQ且PO≤2,我們稱點(diǎn)P是線段OQ的“潛力點(diǎn)”已知點(diǎn)O(0,0),Q(1,0)(1)在P1(0,-1),P2(,),P3(-1,1)中是線段OQ的“潛力點(diǎn)”是_____________;(2)若點(diǎn)P在直線y=x上,且為線段OQ的“潛力點(diǎn)”,求點(diǎn)P橫坐標(biāo)的取值范圍;(3)直線y=2x+b與x軸交于點(diǎn)M,與y軸交于點(diǎn)N,當(dāng)線段MN上存在線段OQ的“潛力點(diǎn)”時(shí),直接寫出b的取值范圍-參考答案-一、單選題1、C【分析】根據(jù)中心對(duì)稱圖形的概念:把一個(gè)圖形繞某一點(diǎn)旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠與原來(lái)的圖形重合,那么這個(gè)圖形就叫做中心對(duì)稱圖形,這個(gè)點(diǎn)叫做對(duì)稱中心求解.【詳解】解:A、是中心對(duì)稱圖形,故A選項(xiàng)不合題意;B、是中心對(duì)稱圖形,故B選項(xiàng)不合題意;C、不是中心對(duì)稱圖形,故C選項(xiàng)符合題意;D、是中心對(duì)稱圖形,故D選項(xiàng)不合題意;故選:C.【點(diǎn)睛】本題考查了中心對(duì)稱圖形的知識(shí),解題的關(guān)鍵是掌握中心對(duì)稱圖形的概念.中心對(duì)稱圖形是要尋找對(duì)稱中心,旋轉(zhuǎn)180°后重合.2、B【分析】先根據(jù)平行線的性質(zhì)得∠ACC′=∠CAB=64°,再根據(jù)旋轉(zhuǎn)的性質(zhì)得∠CAC′等于旋轉(zhuǎn)角,AC=AC′,則利用等腰三角形的性質(zhì)得∠ACC′=∠AC′C=64°,然后根據(jù)三角形內(nèi)角和定理可計(jì)算出∠CAC′的度數(shù),從而得到旋轉(zhuǎn)角的度數(shù).【詳解】解:∵CC′∥AB,∴∠ACC′=∠CAB=64°∵△ABC在平面內(nèi)繞點(diǎn)A旋轉(zhuǎn)到△AB′C′的位置,∴∠CAC′等于旋轉(zhuǎn)角,AC=AC′,∴∠ACC′=∠AC′C=64°,∴∠CAC′=180°-∠ACC′-∠AC′C=180°-2×64°=52°,∴旋轉(zhuǎn)角為52°.故選:B.【點(diǎn)睛】本題考查了旋轉(zhuǎn)的性質(zhì):對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等;對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;旋轉(zhuǎn)前、后的圖形全等.3、D【解析】【分析】根據(jù)直線不經(jīng)過(guò)第二象限,得到,再分兩種情況判斷方程的解的情況.【詳解】∵直線不經(jīng)過(guò)第二象限,∴,∵方程,當(dāng)a=0時(shí),方程為一元一次方程,故有一個(gè)解,當(dāng)a<0時(shí),方程為一元二次方程,∵?=,∴4-4a>0,∴方程有兩個(gè)不相等的實(shí)數(shù)根,故選:D.【考點(diǎn)】此題考查一次函數(shù)的性質(zhì):利用函數(shù)圖象經(jīng)過(guò)的象限判斷字母的符號(hào),方程的解的情況,注意易錯(cuò)點(diǎn)是a的取值范圍,再分類討論.4、D【解析】【分析】根據(jù)事件的可能性判斷相應(yīng)類型即可.【詳解】5個(gè)紅球、4個(gè)白球放入一個(gè)不透明的盒子里,由于紅球和白球的個(gè)數(shù)都小于6,從中摸出6個(gè)球,恰好紅球與白球都摸到,是必然事件.故選:D.【考點(diǎn)】本題考查的是可能性大小的判斷,解決這類題目要注意具體情況具體對(duì)待.一般地必然事件的可能性大小為1,不可能事件發(fā)生的可能性大小為0,隨機(jī)事件發(fā)生的可能性大小在0至1之間.5、C【分析】如圖,連接OC,OD,可知是等邊三角形,,,,計(jì)算求解即可.【詳解】解:如圖連接OC,OD∵∴是等邊三角形∴由題意知,故選C.【點(diǎn)睛】本題考查了扇形的面積,等邊三角形等知識(shí).解題的關(guān)鍵在于用扇形表示陰影面積.二、多選題1、BC【解析】【分析】分3為底邊長(zhǎng)或腰長(zhǎng)兩種情況考慮:當(dāng)3為底時(shí),由a=b及a+b=8即可求出a、b的值,利用三角形的三邊關(guān)系確定此種情況存在,再利用根與系數(shù)的關(guān)系即可求得的值;當(dāng)3為腰時(shí),則a、b中有一個(gè)為3,a+b=8即可求出b,再利用根與系數(shù)的關(guān)系即可求得的值.【詳解】解:當(dāng)3為腰時(shí),此時(shí)a=3或b=3,把x=3代入方程x2﹣8x﹣1+m=0得9﹣24﹣1+m=0,解得m=16,此時(shí)方程為x2﹣8x+15=0,解得x1=3,x2=5;當(dāng)3為底時(shí),此時(shí)a=b,Δ=82﹣4(﹣1+m)=0,解得m=17,此時(shí)方程為x2﹣8x+16=0,解得x1=x2=4;綜上所述,m的值為16或17.故答案為:BC.【考點(diǎn)】本題考查了一元二次方程根與系數(shù)的關(guān)系,等腰三角形的定義,分3為底邊長(zhǎng)或腰長(zhǎng)兩種情況討論是解題的關(guān)鍵.2、ABC【解析】【分析】直接利用圓周角定理以及結(jié)合圓心角、弧、弦的關(guān)系、切線的判定方法、平行線的判定方法、四邊形內(nèi)角和分別分析得出答案.【詳解】解:A.∵∠BAD=25°,∠EAD=25°,∴∠DAB=∠EAD∴,故此選項(xiàng)正確;B.∵∠BAD=25°,OA=OD,∴∠ADO=∠BAD=25°∵∠ADC=115°,∴∠ODC=∠ADC-∠ADC=115°-25°=90°,∴CD是⊙O的切線,故此選項(xiàng)正確;C.∵∠EAD=∠ADO=25°∴AE∥DO,故此選項(xiàng)正確;D.∵,,,∴∠OBC=360°-∠DAB-∠ADC-∠C=360°-25°-115°-90°=130°,故此選項(xiàng)錯(cuò)誤.故選擇ABC.【考點(diǎn)】此題主要考查了切線的判定以及圓周角與弧的關(guān)系、四邊形內(nèi)角和、平行線的判定方法等知識(shí),正確掌握相關(guān)判定方法是解題關(guān)鍵.3、ABD【解析】【分析】根據(jù)三角形內(nèi)心的定義和圓的外切三角形的定義判斷即可.【詳解】解:A、三角形的內(nèi)心是三個(gè)內(nèi)角平分線的交點(diǎn),內(nèi)心到三角形三邊的距離相等,錯(cuò)誤,該選項(xiàng)符合題意;B、三角形的內(nèi)心是三個(gè)內(nèi)角平分線的交點(diǎn),三角形的內(nèi)心一定在三角形的內(nèi)部,錯(cuò)誤,該選項(xiàng)符合題意;C、等邊三角形的內(nèi)心,外心重合,正確,該選項(xiàng)不符合題意;D、經(jīng)過(guò)圓上的三點(diǎn)作圓的切線,三條切線相交,即可得到圓的一個(gè)外切三角形,所以一個(gè)圓有無(wú)數(shù)個(gè)外切三角形,錯(cuò)誤,該選項(xiàng)符合題意;故選:ABD.【考點(diǎn)】本題主要考查了內(nèi)心和外心以及命題的真假判斷,正確的命題叫真命題,錯(cuò)誤的命題叫做假命題.判斷命題的真假關(guān)鍵是要熟悉課本中的定義與定理.4、AD【解析】【分析】結(jié)合圖象,根據(jù)函數(shù)的開(kāi)口方向、與y軸的交點(diǎn)、對(duì)稱軸的位置、和當(dāng)x=-2時(shí),x=-1時(shí),對(duì)應(yīng)y值的大小依次可判斷.【詳解】解:根據(jù)開(kāi)口方向可知,根據(jù)圖象與y軸的交點(diǎn)可知,根據(jù)對(duì)稱軸可知:,∴,∴,,故A選項(xiàng)正確;∴abc<0,故B選項(xiàng)錯(cuò)誤;根據(jù)圖象可知,當(dāng)x=-2時(shí),,故C選項(xiàng)錯(cuò)誤;根據(jù)圖象可知,當(dāng)x=-1時(shí),,∴,故D選項(xiàng)正確.故選:AD.【考點(diǎn)】本題考查了二次函數(shù)圖象判定式子的正負(fù).二次函數(shù)y=ax2+bx+c系數(shù)符號(hào)由拋物線開(kāi)口方向、對(duì)稱軸、拋物線與y軸的交點(diǎn)確定,注意特殊點(diǎn)的函數(shù)值.5、ACD【解析】【分析】求得頂點(diǎn)坐標(biāo),根據(jù)題意即可判斷①正確;根據(jù)二次函數(shù)的性質(zhì)即可判斷②錯(cuò)誤;二次函數(shù)是不為0的常數(shù))的頂點(diǎn),即可判斷③錯(cuò)誤;根據(jù)題意時(shí),時(shí),即可判斷④正確.【詳解】解:二次函數(shù),頂點(diǎn)為,在軸的下方,∵函數(shù)的圖象與軸交于、兩點(diǎn),拋物線開(kāi)口向上,,故①正確;時(shí),隨的增大而增大,故②錯(cuò)誤;由題意可知當(dāng),二次函數(shù)是不為0的常數(shù))的圖象一定經(jīng)過(guò)點(diǎn),故③正確;線段上有且只有5個(gè)橫坐標(biāo)為整數(shù)的點(diǎn),且對(duì)稱軸為直線,∴當(dāng)時(shí),,當(dāng)時(shí),,,解得,故④正確;故選:ACD.【考點(diǎn)】本題考查了二次函數(shù)的性質(zhì),二次函數(shù)圖象與系數(shù)的關(guān)系,二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征,能夠理解題意,利用二次函數(shù)的性質(zhì)解答是解題的關(guān)鍵.三、填空題1、5【分析】直接利用直角三角形斜邊上的中線等于斜邊的一半即可求解.【詳解】解:根據(jù)直角三角形斜邊上的中線等于斜邊的一半,即可知道點(diǎn)到點(diǎn)A,B,C的距離相等,如下圖:,,故答案是:5.【點(diǎn)睛】本題考查了直角三角形的外接圓的外心,解題的關(guān)鍵是掌握直角三角形斜邊上的中線等于斜邊的一半即可求解.2、【解析】【分析】利用根的判別式,建立關(guān)于m的方程求得m的值.【詳解】關(guān)于x的一元二次方程的根的判別式的值為4,∵,,,,解得.故答案為:.【考點(diǎn)】本題考查了一元二次方程(a≠0)的根的判別式.3、4【解析】【分析】通過(guò)A、B兩點(diǎn)得出對(duì)稱軸,再根據(jù)對(duì)稱軸公式算出b,由此可得出二次函數(shù)表達(dá)式,從而算出最小值即可推出n的最小值.【詳解】∵A、B的縱坐標(biāo)一樣,∴A、B是對(duì)稱的兩點(diǎn),∴對(duì)稱軸,即,∴b=-4.∴拋物線解析式為:.∴拋物線頂點(diǎn)(2,-3).∴滿足題意n的最小值為4,故答案為:4.【考點(diǎn)】本題考查二次函數(shù)對(duì)稱軸的性質(zhì),頂點(diǎn)式的變形及拋物線的平移,關(guān)鍵在于根據(jù)對(duì)稱軸的性質(zhì)從題意中判斷出對(duì)稱軸.4、②③④【分析】根據(jù)切線的性質(zhì),正方形的性質(zhì),通過(guò)三角形全等,證明HD=HM,∠HCM=∠HCD,GM=GB,∠GCB=∠GCM,可判斷前兩個(gè)結(jié)論;運(yùn)用對(duì)角互補(bǔ)的四邊形內(nèi)接于圓,證明∠GHF+∠GEF=180°,取GH的中點(diǎn)P,連接PA,則PA+PC≥AC,當(dāng)PC最大時(shí),PA最小,根據(jù)直徑是圓中最大的弦,故PC=1時(shí),PA最小,計(jì)算即可.【詳解】∵GH是⊙O的切線,M為切點(diǎn),且CM是⊙O的直徑,∴∠CMH=90°,∵四邊形ABCD是正方形,∴∠CMH=∠CDH=90°,∵CM=CD,CH=CH,∴△CMH≌△CDH,∴HD=HM,∠HCM=∠HCD,同理可證,∴GM=GB,∠GCB=∠GCM,∴GB+DH=GH,無(wú)法確定HD=2BG,故①錯(cuò)誤;∵∠HCM+∠HCD+∠GCB+∠GCM=90°,∴2∠HCM+2∠GCM=90°,∴∠HCM+∠GCM=45°,即∠GCH=45°,故②正確;∵△CMH≌△CDH,BD是正方形的對(duì)角線,∴∠GHF=∠DHF,∠GCH=∠HDF=45°,∴∠GHF+∠GEF=∠DHF+∠GCH+∠EFC=∠DHF+∠HDF+∠HFD=180°,根據(jù)對(duì)角互補(bǔ)的四邊形內(nèi)接于圓,∴H,F(xiàn),E,G四點(diǎn)在同一個(gè)圓上,故③正確;∵正方形ABCD的邊長(zhǎng)為1,∴=1=,∠GAH=90°,AC=取GH的中點(diǎn)P,連接PA,∴GH=2PA,∴=,∴當(dāng)PA取最小值時(shí),有最大值,連接PC,AC,則PA+PC≥AC,∴PA≥AC-PC,∴當(dāng)PC最大時(shí),PA最小,∵直徑是圓中最大的弦,∴PC=1時(shí),PA最小,∴當(dāng)A,P,C三點(diǎn)共線時(shí),且PC最大時(shí),PA最小,∴PA=-1,∴最大值為:1-(-1)=2-,∴四邊形CGAH面積的最大值為2,∴④正確;故答案為:②③④.【點(diǎn)睛】本題考查了切線的性質(zhì),直徑是最大的弦,三角形的全等,直角三角形斜邊上的中線,四點(diǎn)共圓,正方形的性質(zhì),熟練掌握?qǐng)A的性質(zhì),靈活運(yùn)用直角三角形的性質(zhì),線段最短原理是解題的關(guān)鍵.5、110°【分析】根據(jù)圓內(nèi)接四邊形對(duì)角互補(bǔ),得∠D+∠B=180°,結(jié)合已知求解即可.【詳解】∵圓內(nèi)接四邊形對(duì)角互補(bǔ),∴∠D+∠B=180°,∵∴∠D=110°,故答案為:110°.【點(diǎn)睛】本題考查了圓內(nèi)接四邊形互補(bǔ)的性質(zhì),熟練掌握并運(yùn)用性質(zhì)是解題的關(guān)鍵.四、簡(jiǎn)答題1、(1)甲種商品每箱盈利15元,則乙種商品每箱盈利10元;(2)當(dāng)降價(jià)5元時(shí),該商場(chǎng)利潤(rùn)最大,最大利潤(rùn)是2000元.【解析】【分析】(1)設(shè)甲種商品每箱盈利x元,則乙種商品每箱盈利(x-5)元,根據(jù)題意列出方程,解方程即可得出結(jié)論;(2)設(shè)甲種商品降價(jià)a元,則每天可多賣出20a箱,利潤(rùn)為w元,根據(jù)題意列出函數(shù)解析式,根據(jù)二次函數(shù)的性質(zhì)求出函數(shù)的最值.【詳解】解:(1)設(shè)甲種商品每箱盈利x元,則乙種商品每箱盈利(x-5)元,根據(jù)題意得:,整理得:x2-18x+45=0,解得:x=15或x=3(舍去),經(jīng)檢驗(yàn),x=15是原分式方程的解,符合實(shí)際,∴x-5=15-5=10(元),答:甲種商品每箱盈利15元,則乙種商品每箱盈利10元;(2)設(shè)甲種商品降價(jià)a元,則每天可多賣出20a箱,利潤(rùn)為w元,由題意得:w=(15-a)(100+20a)=-20a2+200a+1500=-20(a-5)2+2000,∵a=-20,當(dāng)a=5時(shí),函數(shù)有最大值,最大值是2000元,答:當(dāng)降價(jià)5元時(shí),該商場(chǎng)利潤(rùn)最大,最大利潤(rùn)是2000元.【考點(diǎn)】本題考查了分式方程及二次函數(shù)的應(yīng)用,解題的關(guān)鍵是理解題意,找出等量關(guān)系,準(zhǔn)確列出分式方程及函數(shù)關(guān)系式.2、(1)見(jiàn)解析;(2)見(jiàn)解析【解析】【分析】(1)想辦法證明AG=PF,AG∥PF,推出四邊形AGFP是平行四邊形,再證明PA=PF即可解決問(wèn)題.(2)證明△AEP∽△DEC,可得,由此即可解決問(wèn)題.【詳解】解:(1)∵平分,,,∴,,又∵在中,,在中,∴,又∵,∴,∴,∴,∵,,∴AG∥PF,∴四邊形是平行四邊形,∴四邊形AGFP是菱形;(2)∵,,∴,,∴,又∵,,∴,∴,∴,∴,又∵,∴.【考點(diǎn)】本題主要考查了角平分線的性質(zhì),菱形的判定,相似三角形的性質(zhì)與判定,矩形的性質(zhì),解題的關(guān)鍵在于能夠熟練掌握相關(guān)知識(shí)進(jìn)行求解.五、解答題1、(1)見(jiàn)解析(2)10【分析】(1)作BC的垂直平分線,與直線CD的交點(diǎn)即為圓心;(2)連接OA,根據(jù)勾股定理列出方程即可求解.(1)解:如圖所示,點(diǎn)O即是圓心;(2)解:連接OA,∵,并經(jīng)過(guò)圓心O,,∴,∵,∴解得,,答:半徑為10.【點(diǎn)睛】本題考查了垂徑定理和確定圓心,解題關(guān)鍵是熟練作圖確定圓心,利用垂徑定理和勾股定理求半徑.2、(1);(2)【解析】【分析】(1)根據(jù)垂徑定理可得,再由勾股定理可求得半徑的長(zhǎng);(2)連接構(gòu)造出,利用勾股定理可求得,再利用勾股定理解即可求得答案.【詳解】解:(1)∵,∴∴設(shè)的半徑∴∵在中,∴∴∴半徑的長(zhǎng)為.(2)連接,如圖:∵是的直徑∴,∵∴在中,∵∴在中,∴.【考點(diǎn)】本題考查了垂徑定理、勾股定理、圓周角定理等,做出合適的輔助線是解題的關(guān)鍵.3、(1);;理由見(jiàn)解析;(2)與的數(shù)量及位置關(guān)系都不變;答案見(jiàn)解析.【解析】【分析】(1)證明,由全等三角形的性質(zhì)得出,,得出,則可得出結(jié)論;(2)證明,由全等三角形的性質(zhì)得出,,由平行線的性質(zhì)證出,則可得出結(jié)論.【詳解】解:(1),.由題意可得,平行四邊形為矩形,,,,,,,,,設(shè)與交于點(diǎn),則,即.(2)與的數(shù)量及位置關(guān)系都不變.如圖,延長(zhǎng)到點(diǎn),四邊形為平行四邊形,,,,,,,,,,又,,,,,,,,,即.【考點(diǎn)】本題考查了旋轉(zhuǎn)的性質(zhì),全等三角形的判定和性質(zhì),正方形的性質(zhì),解題的關(guān)鍵是:熟練掌握正方形的性質(zhì).4、(1);(2);(3)或【分析】(1)分別計(jì)算出OQ、PO和PQ的長(zhǎng)度,比較即可得出答案;(2)先判斷點(diǎn)P在以O(shè)為圓心,1為半徑的圓外且點(diǎn)P在線段OQ垂直平分線的左側(cè),結(jié)合PO≤2,點(diǎn)P在以O(shè)為圓心,

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論