2024-2025學(xué)年江西省貴溪市中考數(shù)學(xué)真題分類(勾股定理)匯編專項(xiàng)練習(xí)練習(xí)題(含答案解析)_第1頁
2024-2025學(xué)年江西省貴溪市中考數(shù)學(xué)真題分類(勾股定理)匯編專項(xiàng)練習(xí)練習(xí)題(含答案解析)_第2頁
2024-2025學(xué)年江西省貴溪市中考數(shù)學(xué)真題分類(勾股定理)匯編專項(xiàng)練習(xí)練習(xí)題(含答案解析)_第3頁
2024-2025學(xué)年江西省貴溪市中考數(shù)學(xué)真題分類(勾股定理)匯編專項(xiàng)練習(xí)練習(xí)題(含答案解析)_第4頁
2024-2025學(xué)年江西省貴溪市中考數(shù)學(xué)真題分類(勾股定理)匯編專項(xiàng)練習(xí)練習(xí)題(含答案解析)_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費(fèi)閱讀

付費(fèi)下載

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

江西省貴溪市中考數(shù)學(xué)真題分類(勾股定理)匯編專項(xiàng)練習(xí)考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題14分)一、單選題(7小題,每小題2分,共計(jì)14分)1、如圖,在△ABC中,AD,BE分別是BC,AC邊上的中線,且AD⊥BE,垂足為點(diǎn)F,設(shè)BC=a,AC=b,AB=c,則下列關(guān)系式中成立的是(

)A.a(chǎn)2+b2=5c2 B.a(chǎn)2+b2=4c2 C.a(chǎn)2+b2=3c2 D.a(chǎn)2+b2=2c22、若直角三角形的三邊長分別為2,4,x,則x的可能值有(

)A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)3、如圖,所有陰影四邊形都是正方形,所有三角形都是直角三角形,已知正方形A,B,C的面積依次為2,4,3,則正方形D的面積為()A.9 B.8 C.27 D.454、如圖,正方形ABCD中,AB=12,將△ADE沿AE對(duì)折至△AEF,延長EF交BC于點(diǎn)G,G剛好是BC邊的中點(diǎn),則ED的長是()A.2 B.3 C.4 D.55、在直角三角形中,若勾為3,股為4,則弦為()A.5 B.6 C.7 D.86、如圖,長方形中,,,將此長方形折疊,使點(diǎn)與點(diǎn)重合,折痕為,則的長為(

)A.12 B.8 C.10 D.137、有一個(gè)直角三角形的兩邊長分別為3和4,則第三邊的長為()A.5 B. C. D.5或第Ⅱ卷(非選擇題86分)二、填空題(8小題,每小題2分,共計(jì)16分)1、一根直立于水中的蘆節(jié)(BD)高出水面(AC)2米,一陣風(fēng)吹來,蘆葦?shù)捻敹薉恰好到達(dá)水面的C處,且C到BD的距離AC=6米,水的深度(AB)為________米2、如圖,折疊直角三角形紙片ABC,使得兩個(gè)銳角頂點(diǎn)A、C重合,設(shè)折痕為DE,若AB=4,BC=3,則△ADC的周長是__________

3、如圖,點(diǎn)在正方形的邊上,若,,那么正方形的面積為_.4、在Rt△ABC中,∠C=90°,且AC∶BC=1∶7,AB=100米,則AC=_________米.5、把兩個(gè)同樣大小含角的三角尺按如圖所示的方式放置,其中一個(gè)三角尺的銳角頂點(diǎn)與另一個(gè)三角尺的直角頂點(diǎn)重合于點(diǎn),且另外三個(gè)銳角頂點(diǎn)在同一直線上.若,則____.6、如圖,已知中,,,動(dòng)點(diǎn)M滿足,將線段繞點(diǎn)C順時(shí)針旋轉(zhuǎn)得到線段,連接,則的最小值為_________.7、《九章算術(shù)》中有一道“引葭赴岸”問題:“今有池一丈,葭生其中央,出水一尺,引葭赴岸,適與岸齊.問水深,葭長各幾何?”題意是:有一個(gè)池塘,其底面是邊長為10尺的正方形,一棵蘆葦AB生長在它的中央,高出水面部分BC為1尺.如果把該蘆葦沿與水池邊垂直的方向拉向岸邊,那么蘆葦?shù)捻敳緽恰好碰到岸邊的B'(如圖).則蘆葦長_____尺.8、如圖,矩形ABCD中,AD=6,AB=8.點(diǎn)E為邊DC上的一個(gè)動(dòng)點(diǎn),△AD'E與△ADE關(guān)于直線AE對(duì)稱,當(dāng)△CD'E為直角三角形時(shí),DE的長為__.三、解答題(7小題,每小題10分,共計(jì)70分)1、如圖,點(diǎn)B,F(xiàn),C,E在同一條直線上,,且.(1)求證:.(2)若,,,求BE的長.2、在尋找某墜毀飛機(jī)的過程中,兩艘搜救艇接到消息,在海面上有疑似漂浮目標(biāo)A、B.于是,一艘搜救艇以16海里/時(shí)的速度離開港口O(如圖)沿北偏東40°的方向向目標(biāo)A前進(jìn),同時(shí),另一艘搜救艇也從港口O出發(fā),以12海里/時(shí)的速度向著目標(biāo)B出發(fā),1.5小時(shí)后,他們同時(shí)分別到達(dá)目標(biāo)A、B.此時(shí),他們相距30海里,請(qǐng)問第二艘搜救艇的航行方向是北偏西多少度?3、設(shè)直角三角形的兩條直角邊長及斜邊上的高分別為a,b及h,求證:.4、如圖所示,△ABC的兩條高AD,BE相交于點(diǎn)F,AC=BC.(1)求證:△ADC≌△BEC.(2)若CD=1,BE=2,求線段AC的長.5、如圖,某商家想在商場大樓上懸掛一塊廣告牌,廣告牌高.根據(jù)商場規(guī)定廣告牌最高點(diǎn)不得高于地面20m,經(jīng)測量,測角儀支架高,在F處測得廣告牌底部點(diǎn)B的仰角為30°,在E處測得標(biāo)語牌頂部點(diǎn)A的仰角為45°,,請(qǐng)計(jì)算說明,商家這樣放廣告牌是否符合規(guī)定?(圖中點(diǎn)A,B,C,D,E,F(xiàn),G,H在同一平面內(nèi))6、如圖,在一次地震中,一棵垂直于地面且高度為16米的大樹被折斷,樹的頂部落在離樹根8米處,即,求這棵樹在離地面多高處被折斷(即求AC的長度)?7、已知m>0,若3m+2,4m+8,5m+8是一組勾股數(shù),求m的值.-參考答案-一、單選題1、A【解析】【詳解】設(shè)EF=x,DF=y(tǒng),根據(jù)三角形重心的性質(zhì)得AF=2y,BF=2EF=2x,利用勾股定理得到4x2+4y2=c2,4x2+y2=b2,x2+4y2=a2,然后利用加減消元法消去x、y得到a、b、c的關(guān)系.【解答】解:設(shè)EF=x,DF=y(tǒng),∵AD,BE分別是BC,AC邊上的中線,∴點(diǎn)F為△ABC的重心,AF=AC=b,BD=a,∴AF=2DF=2y,BF=2EF=2x,∵AD⊥BE,∴∠AFB=∠AFE=∠BFD=90°,在Rt△AFB中,4x2+4y2=c2,①在Rt△AEF中,4x2+y2=b2,②在Rt△BFD中,x2+4y2=a2,③②+③得5x2+5y2=(a2+b2),∴4x2+4y2=(a2+b2),④①﹣④得c2﹣(a2+b2)=0,即a2+b2=5c2.故選:A.【點(diǎn)評(píng)】本題考查了三角形的重心:重心到頂點(diǎn)的距離與重心到對(duì)邊中點(diǎn)的距離之比為2:1.也考查了勾股定理.2、B【解析】【詳解】分析:x可為斜邊也可為直角邊,因此解本題時(shí)要對(duì)x的取值進(jìn)行討論.解答:解:當(dāng)x為斜邊時(shí),x2=22+42=20,所以x=2;當(dāng)4為斜邊時(shí),x2=16-4=12,x=2.故選B.點(diǎn)評(píng):本題考查了勾股定理的應(yīng)用,注意要分兩種情況討論.3、A【解析】【分析】設(shè)正方形D的面積為x,根據(jù)圖形得出方程2+4=x-3,求出即可.【詳解】∵正方形A、B、C的面積依次為2、4、3,∴根據(jù)圖形得:2+4=x?3.解得:x=9.故選A.【考點(diǎn)】本題考查了勾股定理,根據(jù)圖形推出四個(gè)正方形的關(guān)系是解決問題的關(guān)鍵.4、C【解析】【分析】連接AG,證明△ABG≌△AFG,得到FG=BG,△ADE沿AE對(duì)折至△AEF,則EF=DE,設(shè)DE=x,則EF=x,EC=12-x,則Rt△EGC中根據(jù)勾股定理列方程可求出DE的值.【詳解】如圖,連接AG,∵四邊形ABCD是正方形,∴∠A=∠B=∠C=∠D=90°,AB=BC=CD=AD=12.∵△ADE沿AE對(duì)折至△AEF,∴EF=DE,AF=AD,∵AF=AD,AB=AD,∴AF=AB,又AG是公共邊,∴△ABG≌△AFG(HL),∵G剛好是BC邊的中點(diǎn),∴BG=FG=,設(shè)DE=x,則EF=x,EC=12-x,在Rt△EGC中,根據(jù)勾股定理列方程:62+(12-x)2=(x+6)2解得:x=4.所以ED的長是4,答案選C.【考點(diǎn)】本題考查了正方形和全等三角形的綜合知識(shí),根據(jù)勾股定理列方程是本題的解題關(guān)鍵.5、A【解析】【分析】直接根據(jù)勾股定理求解即可.【詳解】解:∵在直角三角形中,勾為3,股為4,∴弦為,故選A.【考點(diǎn)】本題考查了勾股定理,熟練掌握勾股定理是解題的關(guān)鍵.6、D【解析】【分析】設(shè)BE為x,則AE為25-x,在由勾股定理有,即可求得BE=13.【詳解】設(shè)BE為x,則DE為x,AE為25-x∵四邊形為長方形∴∠EAB=90°∴在中由勾股定理有即化簡得解得故選:D.【考點(diǎn)】本題考查了折疊問題求折痕或其他邊長,主要可根據(jù)折疊前后兩圖形的全等條件,把某個(gè)直角三角形的三邊都用同一未知量表示出來,并根據(jù)勾股定理建立方程,進(jìn)而可以求解.7、D【解析】【分析】分4是直角邊、4是斜邊兩種情況考慮,再根據(jù)勾股定理計(jì)算即可.【詳解】解:當(dāng)4是直角邊時(shí),斜邊==5;當(dāng)4是斜邊時(shí),另一條直角邊=;故選:D.【考點(diǎn)】本題考查的是勾股定理,如果直角三角形的兩條直角邊長分別是a,b,斜邊長為c,那么a2+b2=c2.二、填空題1、8【解析】【分析】先設(shè)水深x米,則AB=x,則有BD=AD+AB=x+2,由題條件有BD=BC=x+2,又根據(jù)蘆節(jié)直立水面可知BD⊥AC,則在直角△ABC中,利用勾股定理即可求出x.【詳解】解:設(shè)水深x米,則AB=x,則有:BD=AD+AB=x+2,即有:BD=BC=x+2,根據(jù)蘆節(jié)直立水面,可知BD⊥AC,且AC=6,則在直角△ABC中:,即:,解得x=8,即水深8米,故答案為8.【考點(diǎn)】本題考查了勾股定理的應(yīng)用,從現(xiàn)實(shí)圖形中抽象出勾股定理這一模型是解答本題的關(guān)鍵.2、【解析】【分析】首先根據(jù)勾股定理設(shè),求出AD、CD,再求出AB,相加即可.【詳解】解:∵折疊直角三角形紙片,使兩個(gè)銳角頂點(diǎn)、重合,∴,設(shè),則,故,∵,∴,即,解得,∴.則在中,由勾股定理得∴AC=5∴周長為AD+CD+AB=.故答案為:.【考點(diǎn)】本題考查了勾股定理的應(yīng)用以及折疊的性質(zhì),掌握勾股定理和折疊的性質(zhì)是解題的關(guān)鍵.3、.【解析】【分析】根據(jù)勾股定理求出BC,根據(jù)正方形的面積公式計(jì)算即可.【詳解】解:由勾股定理得,,正方形的面積,故答案為.【考點(diǎn)】本題考查了勾股定理,如果直角三角形的兩條直角邊長分別是a,b,斜邊長為c,那么a2+b2=c2.4、【解析】【分析】首先根據(jù)BC,AC的比設(shè)出BC,AC,然后利用勾股定理列式計(jì)算求得a,即可求解.【詳解】解:∵AC∶BC=1∶7,∴設(shè)AC=a,則BC=7a,∵∠C=90°,∴AB2=AC2+BC2,∴1002=a2+(7a)2,解得:a=10,∴AC=10米.故答案為:10.【考點(diǎn)】本題主要考查勾股定理,掌握勾股定理的內(nèi)容是解題的關(guān)鍵.5、.【解析】【分析】如圖,先利用等腰直角三角形的性質(zhì)求出,,再利用勾股定理求出DF,即可得出結(jié)論.【詳解】如圖,過點(diǎn)作于,在中,,,,兩個(gè)同樣大小的含角的三角尺,,在中,根據(jù)勾股定理得,,,故答案為.【考點(diǎn)】此題主要考查了勾股定理,等腰直角三角形的性質(zhì),正確作出輔助線是解本題的關(guān)鍵.6、##【解析】【分析】證明△AMC≌△BNC,可得,再根據(jù)三角形三邊關(guān)系得出當(dāng)點(diǎn)N落在線段AB上時(shí),最小,求出最小值即可.【詳解】解:∵線段繞點(diǎn)C順時(shí)針旋轉(zhuǎn)得到線段,∴,,∵,,∴,∴△AMC≌△BNC,∴,∵∴的最小值為;故答案為:.【考點(diǎn)】本題考查了全等三角形的判定與性質(zhì),勾股定理,解題關(guān)鍵是證明三角形全等,得出,根據(jù)三角形三邊關(guān)系取得最小值.7、13【解析】【分析】將其轉(zhuǎn)化為數(shù)學(xué)幾何圖形,如圖所示,根據(jù)題意,可知B'C=5尺,設(shè)水深A(yù)C=x尺,則蘆葦長(x+1)尺,根據(jù)勾股定理建立方程,求出的方程的解即可得到蘆葦?shù)拈L和水深.【詳解】解:設(shè)水深x尺,則蘆葦長(x+1)尺,在Rt△CAB′中,AC2+B′C2=AB′2,即x2+52=(x+1)2,解得:x=12,∴x+1=13,故蘆葦長13尺,故答案為:13【考點(diǎn)】本題考查勾股定理,和列方程解決實(shí)際問題,能夠在實(shí)際問題中找到直角三角形并應(yīng)用勾股定理是解決本題的關(guān)鍵.8、3或6【解析】【分析】分兩種情況分別求解,(1)當(dāng)∠CED′=90°時(shí),如圖(1),根據(jù)軸對(duì)稱的性質(zhì)得∠AED=∠AED′=45′,得DE=AD=6;(2)當(dāng)∠ED′A=90°時(shí),如圖(2),根據(jù)軸對(duì)稱的性質(zhì)得∠AD′E=∠D,AD′=AD,DE=D′E,得A、D′、C在同一直線上,根據(jù)勾股定理得AC=10,設(shè)DE=D′E=x,則EC=CD?DE=8?x,根據(jù)勾股定理得,D′E2+D′C2=EC2,代入相關(guān)的值,計(jì)算即可.【詳解】解:當(dāng)∠CED′=90°時(shí),如圖(1),∵∠CED′=90°,根據(jù)軸對(duì)稱的性質(zhì)得∠AED=∠AED′=×90°=45°,∵∠D=90°,∴△ADE是等腰直角三角形,∴DE=AD=6;(2)當(dāng)∠ED′A=90°時(shí),如圖(2),根據(jù)軸對(duì)稱的性質(zhì)得∠AD′E=∠D=90°,AD′=AD,DE=D′E,△CD′E為直角三角形,即∠CD′E=90°,∴∠AD′E+∠CD′E=180°,∴A、D′、C在同一直線上,根據(jù)勾股定理得,∴CD′=10?6=4,設(shè)DE=D′E=x,則EC=CD?DE=8?x,在Rt△D′EC中,D′E2+D′C2=EC2,即x2+16=(8?x)2,解得x=3,即DE=3;綜上所述:DE的長為3或6;故答案為:3或6.【考點(diǎn)】本題考查了矩形的性質(zhì)、勾股定理、軸對(duì)稱的性質(zhì),熟練掌握矩形的性質(zhì)、勾股定理、軸對(duì)稱的性質(zhì)的綜合應(yīng)用,分情況討論,作出圖形是解題關(guān)鍵.三、解答題1、(1)見解析(2)6【解析】【分析】(1)根據(jù)已知條件利用證明即可;(2)根據(jù)勾股定理求解即可.(1)證明:∵.∴,∵,∴,又∵,∴(2)解:∵,,且,∴由勾股定理得,∴,∴【考點(diǎn)】本題考查了全等三角形的性質(zhì)與判定,勾股定理解直角三角形,掌握以上知識(shí)是解題的關(guān)鍵.2、第二艘搜救艇的航行方向是北偏西50度.【解析】【分析】根據(jù)題意求出OA、OB,根據(jù)勾股定理的逆定理求出∠AOB=90°,即可得出答案.【詳解】解:根據(jù)題意得:OA=16海里/時(shí)×1.5小時(shí)=24海里;OB=12海里/時(shí)×1.5小時(shí)=18海里,∵OB2+OA2=242+182=900,AB2=302=900,∴OB2+OA2=AB2,∴∠AOB=90°,∵艘搜救艇以16海里/時(shí)的速度離開港口O(如圖)沿北偏東40°的方向向目標(biāo)A的前進(jìn),∴∠BOD=50°,即第二艘搜救艇的航行方向是北偏西50度.【考點(diǎn)】本題考查了方向角,勾股定理的逆定理的應(yīng)用,能熟記定理的內(nèi)容是解此題的關(guān)鍵,注意:如果三角形兩邊a、b的平方和等于第三邊c的平方,那么這個(gè)三角形是直角三角形.3、見解析【解析】【分析】設(shè)斜邊為c,根據(jù)勾股定理即可得出c=,再由三角形的面積公式即可得出結(jié)論.【詳解】證明:設(shè)斜邊為c,根據(jù)勾股定理即可得出c=,∵ab=ch,∴ab=h,即a2b2=a2h2+b2h2,∴=,即.【考點(diǎn)】本題考查的是勾股定理,熟知在任何一個(gè)直角三角形中,兩條直角邊長的平方之和一定等于斜邊長的平方是解答此題的關(guān)鍵.4、(1)見解析(2)【解析】【分析】(1)由AD⊥BC,BE⊥AC得∠BEC=∠ADC=90°,可證∠DAC=∠CBE,根據(jù)AAS可證△ADC≌△BEC;

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論