2024-2025學年陜西省華陰市中考數(shù)學真題分類(勾股定理)匯編章節(jié)測評試卷(附答案詳解)_第1頁
2024-2025學年陜西省華陰市中考數(shù)學真題分類(勾股定理)匯編章節(jié)測評試卷(附答案詳解)_第2頁
2024-2025學年陜西省華陰市中考數(shù)學真題分類(勾股定理)匯編章節(jié)測評試卷(附答案詳解)_第3頁
2024-2025學年陜西省華陰市中考數(shù)學真題分類(勾股定理)匯編章節(jié)測評試卷(附答案詳解)_第4頁
2024-2025學年陜西省華陰市中考數(shù)學真題分類(勾股定理)匯編章節(jié)測評試卷(附答案詳解)_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

陜西省華陰市中考數(shù)學真題分類(勾股定理)匯編章節(jié)測評考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題14分)一、單選題(7小題,每小題2分,共計14分)1、如圖,在△ABC中,∠BAC=90°,BC=5,以AB,AC為邊作正方形,這兩個正方形的面積和為(

)A.5 B.9 C.16 D.252、已知點是平分線上的一點,且,作于點,點是射線上的一個動點,若,則的最小值為(

)A.2 B.3 C.4 D.53、在中,,,,的對邊分別是a,b,c,若,,則的面積是(

)A. B. C. D.4、如圖,在由邊長為1的7個正六邊形組成的網(wǎng)格中,點A,B在格點上.若再選擇一個格點C,使△ABC是直角三角形,且每個直角三角形邊長均大于1,則符合條件的格點C的個數(shù)是(

)A.2 B.4 C.5 D.65、如圖,小巷左右兩側(cè)是豎直的墻,一架梯子斜靠在左墻時,梯子底端到左墻角的距離為0.7米,頂端距離地面2.4米,如果保持梯子底端位置不動,將梯子斜靠在右墻時,頂端距離地面2米,那么小巷的寬度為(

)A.0.7米 B.1.5米 C.2.2米 D.2.4米6、我國古代數(shù)學著作《九章算術(shù)》中有這樣一個問題:

“今有方池一丈,葭生其中央,出水一尺,引葭赴岸,適與岸齊.水深、葭長各幾何?”.其大意是:如圖,有一個水池,水面是一個邊長為10尺(丈、尺是長度單位,1丈=10尺)的正方形,在水池正中央有一根蘆葦,它高出水面1尺.如果把這根蘆葦拉向水池一邊的中點,它的頂端恰好到達池邊的水面.水的深度與這根蘆葦?shù)拈L度分別是多少?若設(shè)這跟蘆葦?shù)拈L度為x尺,根據(jù)題意,所列方程正確的是(

)A.102+(x-1)2=x2 B.102+(x-1)2=(x+1)2C.52+(x-1)2=x2 D.52+(x-1)2=(x+1)27、如圖,在中,,cm,cm,點、分別在、邊上.現(xiàn)將沿翻折,使點落在點處.連接,則長度的最小值為(

)A.0 B.2 C.4 D.6第Ⅱ卷(非選擇題86分)二、填空題(8小題,每小題2分,共計16分)1、如圖所示,所有的四邊形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的邊長為7cm,正方形A、B、C的面積分別是,,,則正方形D的面積是______.2、如圖所示,數(shù)軸上點A所表示的數(shù)為_______.3、《九章算術(shù)》是我國古代最重要的數(shù)學著作之一,在勾股章中記載了一道“折竹抵地”問題:“今有竹高一丈,末折抵地,去本三尺,問折著高幾何?”翻譯成數(shù)學問題是:如圖所示,在ΔABC中,∠ACB=90o,AC+AB=10,BC=3,求AC的長,若設(shè)AC=x,則可列方程為________________.4、如圖,該圖形是由直角三角形和正方形構(gòu)成,其中最大正方形的邊長為7,則正方形A、B、C、D的面積之和為__________.5、我國古代數(shù)學著作《九章算術(shù)》中記載了一個問題:“今有池方一丈,葭(jiā)生其中,出水一尺.引葭赴岸(丈、尺是長度單位,1丈10尺)其大意為:有一個水池,水面是一個邊長為10尺的正方形,它高出水面1尺(即BC=1尺).如果把這根蘆葦拉向水池一邊的中點,它的頂端B恰好到達池邊的水面D處,問水的深度是多少?則水深DE為_____尺.6、一根直立于水中的蘆節(jié)(BD)高出水面(AC)2米,一陣風吹來,蘆葦?shù)捻敹薉恰好到達水面的C處,且C到BD的距離AC=6米,水的深度(AB)為________米7、已知一直角三角形的兩條直角邊分別為6cm、8cm,則此直角三角形斜邊上的高為____.8、如圖,滑竿在機械槽內(nèi)運動,∠ACB為直角,已知滑竿AB長2.5米,頂點A在AC上滑動,量得滑竿下端B距C點的距離為1.5米,當端點B向右移動0.5米時,滑竿頂端A下滑________米.三、解答題(7小題,每小題10分,共計70分)1、有一只喜鵲在一棵3m高的小樹上覓食,它的巢筑在距離該樹24m的一棵大樹上,大樹高14m,且巢離樹頂部1m.當它聽到巢中幼鳥的叫聲,立即趕過去,如果它飛行的速度為5m/s,那它至少需要多少時間才能趕回巢中?2、如圖,已知等腰△ABC的底邊BC=10cm,D是腰AC上一點,且CD=6cm,BD=8cm.(1)判斷△BCD的形狀,并說明理由;(2)求△ABC的周長.3、已知:整式A=(n2﹣1)2+(2n)2,整式B>0.嘗試化簡整式A.發(fā)現(xiàn)A=B2.求整式B.聯(lián)想:由上可知,B2=(n2﹣1)2+(2n)2,當n>1時,n2﹣1,2n,B為直角三角形的三邊長,如圖,填寫下表中B的值;直角三角形三邊n2﹣12nB勾股數(shù)組Ⅰ8勾股數(shù)組Ⅱ354、如圖所示的一塊地,已知,,,,,求這塊地的面積.5、超速行駛是引發(fā)交通事故的主要原因.上周末,小鵬等三位同學在濱海大道紅樹林路段,嘗試用自己所學的知識檢測車速,觀測點設(shè)在到公路l的距離為100米的P處.這時,一輛富康轎車由西向東勻速駛來,測得此車從A處行駛到B處所用的時間為3秒,并測得∠APO=60°,∠BPO=45°,試判斷此車是否超過了每小時80千米的限制速度?6、如圖,一個長5m的梯子AB,斜靠在一豎直的墻AO上,這時AO的距離為4m,如果梯子的頂端A沿墻下滑1m至C點.(1)求梯子底端B外移距離BD的長度;(2)猜想CE與BE的大小關(guān)系,并證明你的結(jié)論.7、如圖是一個長方形的大門,小強拿著一根竹竿要通過大門.他把竹竿豎放,發(fā)現(xiàn)竹竿比大門高1尺;然后他把竹竿斜放,竹竿恰好等于大門的對角線的長.已知大門寬4尺,請求出竹竿的長.-參考答案-一、單選題1、D【解析】【分析】設(shè),根據(jù)勾股定理可得,即可求解.【詳解】解:設(shè),根據(jù)勾股定理可得,即兩個正方形的面積和為25故選:D【考點】本題考查了勾股定理,掌握勾股定理是解題的關(guān)鍵.2、B【解析】【分析】根據(jù)垂線段最短可得PN⊥OA時,PN最短,再根據(jù)角平分線上的點到角的兩邊的距離相等可得PM=PN,再結(jié)合勾股定理求解即可.【詳解】解:當PN⊥OA時,PN的值最小,∵OC平分∠AOB,PM⊥OB,∴PM=PN,∵,,,∴由勾股定理可知:PM=3,∴PN的最小值為3.故選B.【考點】本題考查了角平分線上的點到角的兩邊的距離相等的性質(zhì),垂線段最短的性質(zhì)及勾股定理,熟記性質(zhì)是解題的關(guān)鍵.3、A【解析】【分析】根據(jù)題意可知,的面積為,結(jié)合已知條件,根據(jù)完全平方公式變形求值即可.【詳解】解:中,,,,所對的邊分別為a,b,c,,∵,,∴,,故A正確.故選:A.【考點】本題主要考查了勾股定理,完全平方公式變形求值,解題的關(guān)鍵是將完全平方公式變形求出ab的值.4、D【解析】【分析】分三種情況討論,當∠A=90°,或∠B=90°,或∠C=90°時,分別畫出符合條件的圖形,即可解答.【詳解】解:分三種情況討論,當∠A=90°,或∠B=90°,或∠C=90°如圖符合條件的格點C的個數(shù)是6個故選:D.【考點】本題考查正多邊形和圓的性質(zhì)、直角三角形的判定與性質(zhì)、直徑所對的圓周角是90°等知識,是基礎(chǔ)考點,掌握相關(guān)知識是解題關(guān)鍵.5、C【解析】【分析】在直角三角形中利用勾股定理計算出直角邊,即可求出小巷寬度.【詳解】在Rt△A′BD中,∵∠A′DB=90°,A′D=2米,BD2+A′D2=A′B′2,∴BD2+22=6.25,∴BD2=2.25,∵BD>0,∴BD=1.5米,∴CD=BC+BD=0.7+1.5=2.2米.故選:C.【考點】本題考查勾股定理的運用,利用梯子長度不變找到斜邊是關(guān)鍵.6、C【解析】【分析】設(shè)這跟蘆葦?shù)拈L度為x尺,根據(jù)勾股定理,即可求解.【詳解】解:設(shè)這跟蘆葦?shù)拈L度為x尺,根據(jù)題意得:52+(x-1)2=x2故選:C【考點】本題主要考查了勾股定理的應(yīng)用,明確題意,準確構(gòu)造直角三角形是解題的關(guān)鍵.7、C【解析】【分析】當H落在AB上,點D與B重合時,AH長度的值最小,根據(jù)勾股定理得到AB=10cm,由折疊的性質(zhì)知,BH=BC=6cm,于是得到結(jié)論.【詳解】解:當H落在AB上,點D與B重合時,AH長度的值最小,∵∠C=90°,AC=8cm,BC=6cm,∴AB=10cm,由折疊的性質(zhì)知,BH=BC=6cm,∴AH=AB-BH=4cm.故選:C.【考點】本題考查了翻折變換(折疊問題),勾股定理,熟練掌握折疊的性質(zhì)是解題的關(guān)鍵.二、填空題1、15【解析】【分析】根據(jù)勾股定理有S正方形1+S正方形2=S大正方形=49,S正方形C+S正方形D=S正方形2,S正方形A+S正方形B=S正方形1,等量代換即可求正方形D的面積.【詳解】解:如圖,根據(jù)勾股定理可知,∵S正方形1+S正方形2=S大正方形=49,S正方形C+S正方形D=S正方形2,S正方形A+S正方形B=S正方形1,∴S大正方形=S正方形C+S正方形D+S正方形A+S正方形B=49.∴正方形D的面積=49-8-12-14=15(cm2);故答案為:15.【考點】此題主要考查了勾股定理,注意根據(jù)正方形的面積公式以及勾股定理得到圖中正方形的面積之間的關(guān)系:以直角三角形的兩條直角邊為邊長的兩個正方形的面積和等于以斜邊為邊長的面積.2、【解析】【分析】根據(jù)數(shù)軸上點的特點和相關(guān)線段的長,結(jié)合勾股定理求出斜邊長,即可求出-1和A之間的線段的長,即可知A所表示的數(shù).【詳解】圖中直角三角形的兩直角邊為1,2,所以斜邊長為,那么-1和A之間的距離為,那么數(shù)軸上點A所表示的數(shù)為:.故答案為:.【考點】本題考查實數(shù)與數(shù)軸之間的對應(yīng)關(guān)系以及勾股定理,利用勾股定理求出直角三角形的斜邊的長是解答本題的關(guān)鍵.3、【解析】【分析】設(shè)AC=x,則AB=10-x,再由即可列出方程.【詳解】解:∵,且,∴,在Rt△ABC中,由勾股定理有:,即:,故可列出的方程為:,故答案為:.【考點】本題考查了勾股定理的應(yīng)用,熟練掌握勾股定理是解決本題的關(guān)鍵.4、49【解析】【分析】根據(jù)正方形A,B,C,D的面積和等于最大的正方形的面積,求解即可求出答案.【詳解】如圖對所給圖形進行標注:因為所有的三角形都是直角三角形,所有的四邊形都是正方形,所以正方形A的面積,正方形B的面積,正方形C的面積,正方形D的面積.因為,,所以正方形A,B,C,D的面積和.故答案為:49.【考點】本題主要考查了勾股定理、正方形的性質(zhì),面積的計算,掌握勾股定理是解本題的關(guān)鍵.5、12【解析】【分析】設(shè)水深為h尺,則蘆葦長為(h+1)尺,根據(jù)勾股定理列方程,解出h即可.【詳解】設(shè)水深為h尺,則蘆葦長為(h+1)尺,根據(jù)勾股定理,得(h+1)2-h2=52解得h=12,∴水深為12尺,故答案是:12.【考點】本題主要考查勾股定理的應(yīng)用,熟練根據(jù)勾股定理列出方程是解題的關(guān)鍵.6、8【解析】【分析】先設(shè)水深x米,則AB=x,則有BD=AD+AB=x+2,由題條件有BD=BC=x+2,又根據(jù)蘆節(jié)直立水面可知BD⊥AC,則在直角△ABC中,利用勾股定理即可求出x.【詳解】解:設(shè)水深x米,則AB=x,則有:BD=AD+AB=x+2,即有:BD=BC=x+2,根據(jù)蘆節(jié)直立水面,可知BD⊥AC,且AC=6,則在直角△ABC中:,即:,解得x=8,即水深8米,故答案為8.【考點】本題考查了勾股定理的應(yīng)用,從現(xiàn)實圖形中抽象出勾股定理這一模型是解答本題的關(guān)鍵.7、4.8cm.【解析】【分析】根據(jù)勾股定理可求出斜邊.然后由于同一三角形面積一定,可列方程直接解答.【詳解】∵直角三角形的兩條直角邊分別為6cm,8cm,∴斜邊為=10(cm),設(shè)斜邊上的高為h,則直角三角形的面積為×6×8=×10h,解得:h=4.8cm,這個直角三角形斜邊上的高為4.8cm.故答案為4.8cm.【考點】此題考查勾股定理,解題關(guān)鍵在于列出方程.8、0.5【解析】【詳解】結(jié)合題意可知AB=DE=2.5米,BC=1.5米,BD=0.5米,∠C=90°,∴AC===2(米).∵BD=0.5米,∴CD=2米,∴CE===1.5(米),∴AE=AC-EC=0.5(米).故答案為0.5.點睛:本題考查正確運用勾股定理.善于觀察題目的信息是解題以及學好數(shù)學的關(guān)鍵.三、解答題1、它至少需要5.2s才能趕回巢中.【解析】【分析】根據(jù)題意,構(gòu)建直角三角形,利用勾股定理解答.【詳解】解:如圖,由題意知AB=3,CD=14-1=13,BD=24.過A作AE⊥CD于E.則CE=13-3=10,AE=24,∴在Rt△AEC中,2、(1)△BDC為直角三角形,理由見解析;(2)△ABC的周長為=cm.【解析】【分析】(1)由BC=10cm,CD=8cm,BD=6cm,知道BC2=BD2+CD2,所以△BDC為直角三角形;(2)由此可求出AC的長,周長即可求出.(1)解:△BDC為直角三角形,理由如下,∵BC=10cm,CD=8cm,BD=6cm,而102=62+82,∴BC2=BD2+CD2.∴△BDC為直角三角形;(2)解:設(shè)AB=xcm,∵等腰△ABC,∴AB=AC=x,則AD=x-6,∵AB2=AD2+BD2,即x2=(x-6)2+82,∴x=,∴△ABC的周長=2AB+BC=(cm).【考點】本題考查了勾股定理的逆定理,關(guān)鍵是根據(jù)等腰三角形的性質(zhì)、勾股定理以及逆定理的應(yīng)用解答.3、A=(n2+1)2,B=n2+1,15,17;12,37【解析】【分析】先根據(jù)整式的混合運算法則求出A,進而求出B,再把n的值代入即可解答.【詳解】A=(n2﹣1)2+(2n)2=n4﹣2n2+1+4n2=n4+2n2+1=(n2+1)2,∵A=B2,B>0,∴B=n2+1,當2n=8時,n=4,n2﹣1=42﹣1=15,n2+1=42+1=17;當n2﹣1=35時,n=±6(負值舍去),2n=2×6=12,n2+1=37.直角三角形三邊n2﹣12nB勾股數(shù)組Ⅰ15817勾股數(shù)組Ⅱ351237故答案為:15,17;12,37.【考點】本題考查了勾股數(shù)的定義及勾股定理的逆定理:已知△ABC的三邊滿足a2+b2=c2,則△ABC是直角三角形.4、【解析】【分析】根據(jù)勾股定理求得的長,再根據(jù)勾股定理的逆定理判定為直角三角形,從而不難求得這塊地的面積.【詳解】解:連接.,,為直角三角形,,這塊地的面積.【考點】本題考查了學生對勾股定理及其逆定理的理解及運用能力,解題的關(guān)鍵是掌握勾股定理的知識.5、此車超過每小時80千米的限制速度.【解析】【分析】首先,根據(jù)在直角三角形BPO中,∠BPO=45°,可得到BO=PO=100m,再根據(jù)在直角三角形APO中,∠APO=60°,運用三角函數(shù)值,可得到AO=100,根據(jù)AB=AO-BO可求得AB的長;再結(jié)合速度的計算方法,求出車的速度,然后將車的速度與80千米/時進行比較,即可得到結(jié)論.【詳解】解:在Rt△APO中,∠APO=60°,則∠PAO=30°.∴AP=2OP=200m,AO===100(m).在Rt△BOP中,∠BPO=45°,則BO=OP=100m.∴AB=AO-BO=100-100≈73(m).∴從A到B小車行駛的速度為73÷3≈24.3(m/s)=87.48km/h>80km/h.∴此車超過每小時80千米的限制速度.【考點】本題考查了解直角三角形的應(yīng)用,從復(fù)雜的實際問題中整理出直角三角形并求解是解決此類題目的關(guān)鍵.6、(1)BD=1m;(2)CE與BE的大小關(guān)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論