版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
湖北省當陽市中考數(shù)學考試彩蛋押題考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題25分)一、單選題(5小題,每小題2分,共計10分)1、下列圖形中,是中心對稱圖形,但不是軸對稱圖形的是()A. B. C. D.2、以原點O為圓心的圓交x軸于A、B兩點,交y軸的正半軸于點C,D為第一象限內⊙O上的一點,若∠DAB=25°,則∠OCD=(
).A.50° B.40° C.70° D.30°3、從下列命題中,隨機抽取一個是真命題的概率是()(1)無理數(shù)都是無限小數(shù);(2)因式分解;(3)棱長是的正方體的表面展開圖的周長一定是;(4)弧長是,面積是的扇形的圓心角是.A. B. C. D.14、在不透明口袋內裝有除顏色外完全相同的5個小球,其中紅球2個,白球3個.攪拌均勻后,隨機抽取一個小球,是紅球的概率為()A. B. C. D.5、往直徑為78cm的圓柱形容器內裝入一些水以后,截面如圖所示,若水面寬,則水的最大深度為()A.36cm B.27cm C.24cm D.15cm二、多選題(5小題,每小題3分,共計15分)1、如圖,AB為⊙O直徑,弦CD⊥AB于E,則下面結論中正確的是(
)A.CE=DE B.弧BC=弧BD C.∠BAC=∠BAD D.OE=BE2、一個兩位數(shù),十位數(shù)字與個位數(shù)字之和是5,把這個數(shù)的個位數(shù)字與十位數(shù)字對調后,所得的新的兩位數(shù)與原來的兩位數(shù)的乘積是736,原來的兩位數(shù)是(
)A.23 B.32 C. D.3、已知關于的方程,下列說法不正確的是(
)A.當時,方程無解 B.當時,方程有兩個相等的實數(shù)根C.當時,方程有兩個相等的實數(shù)根 D.當時,方程有兩個不相等的實數(shù)根4、下列說法中,不正確的是(
)A.平分一條直徑的弦必垂直于這條直徑B.平分一條弧的直線垂直于這條弧所對的弦C.弦的垂線必經過這條弦所在圓的圓心D.在一個圓內平分一條弧和平分它所對的弦的直線必經過這個圓的圓心5、下列命題正確的是(
)A.垂直于弦的直徑平分弦所對的兩條弧 B.弦的垂直平分線經過圓心C.平分弦的直徑垂直于弦 D.平分弦所對的兩條弧的直線垂直于弦第Ⅱ卷(非選擇題75分)三、填空題(5小題,每小題3分,共計15分)1、若關于x的一元二次方程的根的判別式的值為4,則m的值為_____.2、如圖,△ABC內接于☉O,∠CAB=30°,∠CBA=45°,CD⊥AB于點D,若☉O的半徑為2,則CD的長為_____3、如圖,正三角形ABC的邊長為,D、E、F分別為BC,CA,AB的中點,以A,B,C三點為圓心,長為半徑作圓,圖中陰影部分面積為______.4、如圖,△ABC和△DEC關于點C成中心對稱,若AC=1,AB=2,∠BAC=90°,則AE的長是_________.5、半徑為6cm的扇形的圓心角所對的弧長為cm,這個圓心角______度.四、簡答題(2小題,每小題10分,共計20分)1、某公司電商平臺,在2021年五一長假期間,舉行了商品打折促銷活動,經市場調查發(fā)現(xiàn),某種商品的周銷售量y(件)是關于售價x(元/件)的一次函數(shù),下表僅列出了該商品的售價x,周銷售量y,周銷售利潤W(元)的三組對應值數(shù)據(jù).x407090y1809030W360045002100(1)求y關于x的函數(shù)解析式(不要求寫出自變量的取值范圍);(2)若該商品進價a(元/件),售價x為多少時,周銷售利潤W最大?并求出此時的最大利潤;(3)因疫情期間,該商品進價提高了m(元/件)(),公司為回饋消費者,規(guī)定該商品售價x不得超過55(元/件),且該商品在今后的銷售中,周銷售量與售價仍滿足(1)中的函數(shù)關系,若周銷售最大利潤是4050元,求m的值.2、某校舉行田徑運動會,學校準備了某種氣球,這些氣球內充滿了一定質量的氣體,當溫度不變時,氣球內氣體的氣壓是氣體體積的反比例函數(shù),其圖象如圖所示.(1)求這一函數(shù)的解析式.(2)當氣體的體積為時,氣壓是多少?(3)當氣球內的氣壓大于時,氣球會將爆炸,為了安全起見,氣體的體積應不小于多少?五、解答題(4小題,每小題10分,共計40分)1、如圖,拋物線y=-+x+2與x軸負半軸交于點A,與y軸交于點B.(1)求A,B兩點的坐標;(2)如圖1,點C在y軸右側的拋物線上,且AC=BC,求點C的坐標;(3)如圖2,將△ABO繞平面內點P順時針旋轉90°后,得到△DEF(點A,B,O的對應點分別是點D,E,F(xiàn)),D,E兩點剛好在拋物線上.①求點F的坐標;②直接寫出點P的坐標.2、如圖,在方格紙中,已知頂點在格點處的△ABC,請畫出將△ABC繞點C旋轉180°得到的△A'B'C'.(需寫出△A'B'C'各頂點的坐標).3、如圖,矩形ABCD中,AB=6cm,BC=12cm..點M從點A開始沿AB邊向點B以1cm/秒的速度向B點移動,點N從點B開始沿BC邊以2cm/秒的速度向點C移動.若M,N分別從A,B點同時出發(fā),設移動時間為t(0<t<6),△DMN的面積為S.(1)求S關于t的函數(shù)關系式,并求出S的最小值;(2)當△DMN為直角三角形時,求△DMN的面積.4、判斷2、5、-4是不是一元二次方程的根-參考答案-一、單選題1、B【分析】根據(jù)“把一個圖形繞著某一個點旋轉180°,如果旋轉后的圖形能夠與原來的圖形重合,那么這個圖形叫做中心對稱圖形”及“如果一個平面圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形就叫做軸對稱圖形”,由此問題可求解.【詳解】解:A、既不是軸對稱圖形也不是中心對稱圖形,故不符合題意;B、是中心對稱圖形但不是軸對稱圖形,故符合題意;C、既不是軸對稱圖形也不是中心對稱圖形,故不符合題意;D、是軸對稱圖形但不是中心對稱圖形,故不符合題意;故選B.【點睛】本題主要考查中心對稱圖形及軸對稱圖形的識別,熟練掌握中心對稱圖形及軸對稱圖形的定義是解題的關鍵.2、C【解析】【分析】根據(jù)圓周角定理求出∠DOB,根據(jù)等腰三角形性質求出∠OCD=∠ODC,根據(jù)三角形內角和定理求出即可.【詳解】解:連接OD,∵∠DAB=25°,∴∠BOD=2∠DAB=50°,∴∠COD=90°-50°=40°,∵OC=OD,∴∠OCD=∠ODC=(180°-∠COD)=70°,故選:C.【考點】本題考查了圓周角定理,等腰三角形性質,三角形內角和定理的應用,主要考查學生的推理能力,題目比較典型,難度適中.3、C【解析】【分析】分別判斷各命題的真假,再利用概率公式求解.【詳解】解:(1)無理數(shù)都是無限小數(shù),是真命題,(2)因式分解,是真命題,(3)棱長是的正方體的表面展開圖的周長一定是,是真命題,(4)設扇形半徑為r,圓心角為n,∵弧長是,則=,則,∵面積是,則=,則360×240,則,則n=3600÷24=150°,故扇形的圓心角是,是假命題,則隨機抽取一個是真命題的概率是,故選C.【考點】本題考查了命題的真假,概率,扇形的弧長和面積,無理數(shù),因式分解,正方體展開圖,知識點較多,難度一般,解題的關鍵是運用所學知識判斷各個命題的真假.4、A【分析】用紅球的個數(shù)除以所有球的個數(shù)即可求得抽到紅球的概率.【詳解】解:∵共有5個球,其中紅球有2個,∴P(摸到紅球)=,故選:A.【點睛】此題主要考查概率的意義及求法.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.5、C【分析】連接,過點作于點,交于點,先由垂徑定理求出的長,再根據(jù)勾股定理求出的長,進而得出的長即可.【詳解】解:連接,過點作于點,交于點,如圖所示:則,的直徑為,,在中,,,即水的最大深度為,故選:C.【點睛】本題考查了垂徑定理、勾股定理等知識,解題的關鍵是根據(jù)題意作出輔助線,構造出直角三角形是解答此題的關鍵.二、多選題1、ABC【解析】【分析】根據(jù)垂徑定理知,垂直于弦的直徑平分弦,并且平分線所對的兩條弧,即可判斷A選項、B選項正確,由圓周角定理知,在同圓或等圓中,同弧所對的圓周角相等,可判斷C選項正確,題目中并沒有提到E是OB中點,所以不能證明OE=BE.【詳解】A.AB為⊙O直徑,弦CD⊥AB于E,由垂徑定理得:CE=DE,A選項正確;B.由垂徑定理得:,B選項正確;C.,由圓周角定理得:∠BAC=∠BAD,C選項正確;D.E不一定是OB中點,所以不能證明OE=BE,D錯誤.故選:ABC.【考點】本題考查垂徑定理和圓周角定理,熟知垂直于弦的直徑平分弦,并且平分線所對的兩條弧是解題的關鍵.2、AB【解析】【分析】設原來的兩位數(shù)十位上的數(shù)字為,則個位上的數(shù)字為,根據(jù)所得到的新兩位數(shù)與原來的兩位數(shù)的乘積為736,可列出方程求解即可.【詳解】解:設原來的兩位數(shù)十位上的數(shù)字為,則個位上的數(shù)字為,依題意可得:,解得:,,當時,,符合題意,原來的兩位數(shù)是23,當時,,符合題意,原來的兩位數(shù)是32,∴原來的兩位數(shù)是23或32,故選AB.【考點】本題考查了一元二次方程的應用,解題的關鍵是能正確用每一數(shù)位上的數(shù)字表示這個兩位數(shù).3、ABD【解析】【分析】利用k的值,分別代入求出方程的根的情況即可.【詳解】關于的方程,A當k=0時,x-1=0,則x=1,故此選項錯誤,符合題意;B當k=1時,-1=0,x=±1,方程有兩個不相等的實數(shù)解,故此選項錯誤,符合題意;C當k=-1時,,則,,此時方程有兩個相等的實數(shù)根,故此選項正確,不符合題意;D當時,根據(jù)A選項,若k=0,此時方程有一個實數(shù)根,故此選項錯誤,符合題意,故選:ABD.【考點】此題主要考查了一元二次方程的解,代入k的值判斷方程根的情況是解題關鍵.4、ABC【解析】【分析】根據(jù)垂徑定理的推論,即如果一條直線滿足:①垂直于弦,②平分弦,③過圓心,④平分優(yōu)弧,⑤平分劣弧中的兩個條件,即可推論出其余三個,逐一進行判斷即可.【詳解】解:A、由于直徑也是弦,所以平分一條直徑的弦不一定垂直這條直徑,選項說法錯誤,符合題意;B、平分一條弧的直線不一定垂直于這條弧,應該是:過圓心,且平分一條弧的直線垂直于這條弧所對的弦,選項說法錯誤,符合題意;C、弦的垂線不一定經過這條弦所在的圓心,應該是:弦的垂直平分線必經過這條弦所在的圓心,選項說法錯誤,符合題意;D、在一個圓內,平分一條弧和它所對弦的直線必經過這個圓的圓心,選項說法正確,不符合題意;故選ABC.【考點】本題考查了垂徑定理,解題的關鍵是掌握垂徑定理及其推論.5、ABD【解析】【分析】根據(jù)垂徑定理及其推論進行判斷即可.【詳解】A、垂直于弦的直徑平分弦所對的兩條弧,正確;B、弦的垂直平分線經過圓心,正確;C、平分弦(不是直徑)的直徑垂直于弦,故錯誤;D、平分弦所對的兩條弧的直線垂直于弦,正確;故選ABD.【考點】本題考查了垂徑定理:熟練掌握垂徑定理及其推論是解決問題的關鍵.三、填空題1、【解析】【分析】利用根的判別式,建立關于m的方程求得m的值.【詳解】關于x的一元二次方程的根的判別式的值為4,∵,,,,解得.故答案為:.【考點】本題考查了一元二次方程(a≠0)的根的判別式.2、【解析】【分析】連接OA,OC,根據(jù)∠COA=2∠CBA=90°可求出AC=,然后在Rt△ACD中利用三角函數(shù)即可求得CD的長.【詳解】解:連接OA,OC,∵∠COA=2∠CBA=90°,∴在Rt△AOC中,AC=,∵CD⊥AB,∴在Rt△ACD中,CD=AC·sin∠CAD=,故答案為.【考點】本題考查了圓周角定理以及銳角三角函數(shù),根據(jù)題意作出常用輔助線是解題關鍵.3、【分析】陰影部分的面積等于等邊三角形的面積減去三個扇形面積,而這三個扇形拼起來正好是一個半徑為半圓的面積,即陰影部分面積=等邊三角形面積?半徑為半圓的面積,因此求出半圓面積,連接AD,則可求得AD的長,從而可求得等邊三角形的面積,即可求得陰影部分的面積.【詳解】連接AD,如圖所示則AD⊥BC∵D點是BC的中點∴由勾股定理得∴∵S半圓=∴S陰影=S△ABC?S半圓故答案為:【點睛】本題是求組合圖形的面積,扇形面積及三角形面積的計算.關鍵是把不規(guī)則圖形面積通過割補轉化為規(guī)則圖形的面積計算.4、2【解析】【分析】根據(jù)中心對稱的性質AD=DE及∠D=90゜,由勾股定理即可求得AE的長.【詳解】∵△DEC與△ABC關于點C成中心對稱,∴△ABC≌△DEC,∴AB=DE=2,AC=DC=1,∠D=∠BAC=90°,∴AD=2,∵∠D=90°,∴AE=,故答案為.【考點】本題考查了中心對稱的性質,勾股定理等知識,關鍵中心對稱性質的應用.5、60【分析】根據(jù)弧長公式求解即可.【詳解】解:,解得,,故答案為:60.【點睛】本題考查了弧長公式,靈活應用弧長公式是解題的關鍵.四、簡答題1、(1);(2)售價60元時,周銷售利潤最大為4800元;(3)【解析】【分析】(1)①依題意設y=kx+b,解方程組即可得到結論;(2)根據(jù)題意得,再由表格數(shù)據(jù)求出,得到,根據(jù)二次函數(shù)的頂點式,求出最值即可;(3)根據(jù)題意得,由于對稱軸是直線,根據(jù)二次函數(shù)的性質即可得到結論.【詳解】解:(1)設,由題意有,解得,所以y關于x的函數(shù)解析式為;(2)由(1),又由表可得:,,.所以售價時,周銷售利潤W最大,最大利潤為4800;(3)由題意,其對稱軸,時上述函數(shù)單調遞增,所以只有時周銷售利潤最大,..【考點】本題考查了二次函數(shù)在實際生活中的應用,重點是掌握求最值的問題.注意:數(shù)學應用題來源于實踐,用于實踐,在當今社會市場經濟的環(huán)境下,應掌握一些有關商品價格和利潤的知識,總利潤等于總收入減去總成本,然后再利用二次函數(shù)求最值.2、(1);(2)60KPa;(3)【解析】【分析】(1)設,A(0.5,120)在反比例函數(shù)上,即可求得反比例函數(shù)解析式;(2)把V=1代入(1)中的函數(shù)關系式求P即可;(3)依題意P≤150,即,解不等式即可.【詳解】(1)設,∵A(0.5,120)在反比例函數(shù)上∴∴k=60∴;故答案為:(2)當V=1m3時,=60(KPa);故答案為:60KPa(3)當P>150KPa時,氣球將爆炸,∴P≤150,∴,解得V0.4(m3).故答案為:為了安全起見,氣體的體積應不小于0.4(m3).【考點】本題考查了反比例函數(shù)的應用,將實際的問題轉化為數(shù)學問題,建立反比例函數(shù)的數(shù)學模型.要熟練掌握物理或化學學科中的一些具有反比例函數(shù)關系的公式.同時體會數(shù)學中的轉化思想.五、解答題1、(1)A(-1,0),B(0,2);(2)點C的坐標(,);(3)①求點F的坐標(1,2);②點P的坐標(,)【分析】(1)令x=0,求得y值,得點B的坐標;令y=0,求得x的值,取較小的一個即求A點的坐標;(2)設C的坐標為(x,-+x+2),根據(jù)AC=BC,得到,令t=-+x,解方程即可;(3)①根據(jù)題意,得∠BPE=90°,PB=PE即點P在線段BE的垂直平分線上,根據(jù)B,E都在拋物線上,則B,E是對稱點,從而確定點P在拋物線的對稱軸上,點F在BE上,且BE∥x軸,點E(3,2),確定BE=3,根據(jù)旋轉性質,得EF=BO=2,從而確定點F的坐標;②根據(jù)BE=3,∠BPE=90°,PB=PE,確定P到BE的距離,即可寫出點P的坐標.【詳解】(1)令x=0,得y=2,∴點B的坐標為B(0,2);令y=0,得-+x+2=0,解得∵點A在x軸的負半軸;∴A點的坐標(-1,0);(2)設C的坐標為(x,-+x+2),∵AC=BC,A(-1,0),B(0,2),∴,∵A(-1,0),B(0,2),∴,即,設t=-+x,∴,∴,∴,∴,整理,得,解得∵點C在y軸右側的拋物線上,∴,此時y=,∴點C的坐標(,);(3)①如圖,根據(jù)題意,得∠BPE=90°,PB=PE即點P在線段BE的垂直平分線上,∵B,E都在拋物線上,∴B,E是對稱點,∴點P在拋物線的對稱軸上,點F在BE上,且BE∥x軸,∵拋物線的對稱軸為直線x=,B(0,2),∴點E(3,2),BE=3,∵EF=BO=2,∴BF=1,∴點F的坐標為(1,2);②如圖,設拋物線的對稱軸與BE交于點M,交x軸與點N,∵BE=3,∴BM=,∵∠BPE=90°,PB=PE,∴PM=BM=,∴PM=BM=,∴PN=2-=,∴點P的坐標為(,).【點睛】本題考查了拋物線與坐標軸的交點,旋轉的性質,兩點間的距離公式,一元二次方程的解法,換元法解方程,熟練掌握拋物線的對稱性,靈活理解旋轉的意義,熟練解一元二次方程是解題的關鍵.2、A'(-1,-3),B'(1,-1),C'(-2,0),畫圖見解析.【分析】先畫出點A,B關于點C中心對稱的點A',B',再連接A',B',C即可解題.【詳解】解:A關于點C中心對稱的點A'(-1,-3),B關于點C中心對稱的點B'(1,-1),C關于點C中心對稱的點C'(-2,0),如圖,△A'B'C'即為所求作圖形.【點睛】本題考查中心對稱圖形,是基礎考點,掌握相關知識是解題關鍵.3、(1)27(2)【解析】【分析】(1
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年外匯管理交易執(zhí)行合同
- 鋼結構維護保養(yǎng)方案
- 建筑外遮陽電動百葉控制系統(tǒng)安裝
- 換熱站建設項目可行性研究報告
- 制造崗位職工技能提升培訓方案設計
- 遠程視頻會議設備運維管理方案
- 人教版三年級數(shù)學上冊知識點總結
- 煤礦安全生產管理規(guī)范及崗位職責
- 酒店運營管理流程及服務規(guī)范手冊
- 行政崗位年度工作總結模板
- (2025年)山東事業(yè)單位考試真題及答案
- 質量檢驗部2025年度工作總結與2026年度規(guī)劃
- 陳世榮使徒課件
- 2025至2030中國丙烯酸壓敏膠行業(yè)調研及市場前景預測評估報告
- 河北省石家莊2026屆高二上數(shù)學期末考試試題含解析
- EPC工程總承包項目合同管理
- 書籍營銷方案
- 四年級數(shù)學除法三位數(shù)除以兩位數(shù)100道題 整除 帶答案
- 村委會 工作總結
- 廠房以租代售合同范本
- 2025年“漂亮飯”社媒觀察報告-藝恩
評論
0/150
提交評論