版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
鄭州市中考數(shù)學(xué)幾何綜合壓軸題易錯(cuò)專題一、中考數(shù)學(xué)幾何綜合壓軸題1.定義:如果一個(gè)三角形一條邊上的高與這條邊的比值是3:5,那么稱這個(gè)三角形為“準(zhǔn)黃金”三角形,這條邊就叫做這個(gè)三角形的“金底”.(概念感知)(1)如圖1,在中,,,,試判斷是否是“準(zhǔn)黃金”三角形,請說明理由.(問題探究)(2)如圖2,是“準(zhǔn)黃金”三角形,BC是“金底”,把沿BC翻折得到,連AB接AD交BC的延長線于點(diǎn)E,若點(diǎn)C恰好是的重心,求的值.(拓展提升)(3)如圖3,,且直線與之間的距離為3,“準(zhǔn)黃金”的“金底”BC在直線上,點(diǎn)A在直線上.,若是鈍角,將繞點(diǎn)按順時(shí)針方向旋轉(zhuǎn)得到,線段交于點(diǎn)D.①當(dāng)時(shí),則_________;②如圖4,當(dāng)點(diǎn)B落在直線上時(shí),求的值.解析:(1)是“準(zhǔn)黃金”三角形,理由見解析;(2);(3)①;②.【分析】(1)過點(diǎn)A作于點(diǎn)D,先求出AD的長度,然后得到,即可得到結(jié)論;(2)根據(jù)題意,由“金底”的定義得,設(shè),,由勾股定理求出AB的長度,根據(jù)比值即可求出的值;(3)①作AE⊥BC于E,DF⊥AC于F,先求出AC的長度,由相似三角形的性質(zhì),得到AF=2DF,由解直角三角形,得到,則,即可求出DF的長度,然后得到CD的長度;②由①可知,得到CE和AC的長度,分別過點(diǎn),D作,,垂足分別為點(diǎn)G,F(xiàn),然后根據(jù)相似三角形的判定和性質(zhì),得到,然后求出CD和AD的長度,即可得到答案.【詳解】解:(1)是“準(zhǔn)黃金”三角形.理由:如圖,過點(diǎn)A作于點(diǎn)D,∵,,∴.∴.∴是“準(zhǔn)黃金”三角形.(2)∵點(diǎn)A,D關(guān)于BC對稱,∴,.∵是“準(zhǔn)黃金”三角形,BC是“金底”,∴.不防設(shè),,∵點(diǎn)為的重心,∴.∴,.∴.∴.(3)①作AE⊥BC于E,DF⊥AC于F,如圖:由題意得AE=3,∵,∴BC=5,∵,∴,在Rt△ABE中,由勾股定理得:,∴,∴;∵∠AEC=∠DFA=90°,∠ACE=∠DAF,∴△ACE∽△DAF,∴,設(shè),則,∵∠ACD=30°,∴,∴,解得:∴.②如圖,過點(diǎn)A作于點(diǎn)E,則.∵是“準(zhǔn)黃金”三角形,BC是“金底”,∴.∴.∵,∴.∴.∴,.分別過點(diǎn),D作,,垂足分別為點(diǎn)G,F(xiàn),∴,,,則.∵,∴.∴.∴設(shè),,.∵,∴,且.∴.∴.∴,解得.∴,.∴.【點(diǎn)睛】本題屬于相似形綜合題,主要考查了重心的性質(zhì),等腰直角三角形的性質(zhì),勾股定理,解直角三角形,旋轉(zhuǎn)的性質(zhì)以及勾股定理的綜合運(yùn)用,解決問題的關(guān)鍵是依據(jù)題意畫出圖形,根據(jù)數(shù)形結(jié)合的思想進(jìn)行解答.2.(概念學(xué)習(xí))在平面直角坐標(biāo)系中,的半徑為,若平移個(gè)單位后,使某圖形上所有點(diǎn)在內(nèi)或上,則稱的最小值為對該圖形的“最近覆蓋距離”.例如,如圖①,,則對線段的“最近覆蓋距離”為.(概念理解)(1)對點(diǎn)的“最近覆蓋距離”為_.(2)如圖②,點(diǎn)是函數(shù)圖像上一點(diǎn),且對點(diǎn)的“最近覆蓋距離”為,則點(diǎn)的坐標(biāo)為_.(拓展應(yīng)用)(3)如圖③,若一次函數(shù)的圖像上存在點(diǎn),使對點(diǎn)的“最近覆蓋距離”為,求的取值范圍.(4),且,將對線段的“最近覆蓋距離”記為,則的取值范圍是.解析:(1)4;(2)或;(3)或;(4)【分析】(1)求出點(diǎn)(3,4)與原點(diǎn)的距離,這個(gè)距離與1的差即是所求結(jié)果;(2)設(shè)點(diǎn)P的坐標(biāo)為,根據(jù)P到圓心的距離為4及勾股定理,可得關(guān)于x的方程,解方程即可求得點(diǎn)P的坐標(biāo);(3)考慮臨界狀態(tài),當(dāng)OC=2時(shí),函數(shù)圖象上存在點(diǎn)C,使對點(diǎn)C的“最近覆蓋距離”為1,利用三角形相似求出;同理,另一個(gè)臨界狀態(tài)為,即可求解;(4)由題意可得DE是一條傾斜角度為45°,長度為的線段,可在圓上找到兩條與之平行且等長的弦AB、FG,如果D落在弧AF上,或者落在弧BG上,進(jìn)而求解.【詳解】(1)點(diǎn)(3,4)與原點(diǎn)的距離為,而5-1=4,則對點(diǎn)的“最近覆蓋距離”為4;故答案為:(2)由題意可知,到圓的最小距離為,即到圓心的距離為由點(diǎn)P在直線上,故設(shè),則解得故點(diǎn)P的坐標(biāo)為:或故答案為:或(3)如圖,考慮臨界狀態(tài),過O作OC⊥DE于C點(diǎn),當(dāng)時(shí),函數(shù)圖像上存在點(diǎn),使對點(diǎn)的“最近覆蓋距離”為則設(shè)則由勾股定理可得:解得(舍)此時(shí).同理,另一個(gè)臨界狀態(tài)為經(jīng)分析可知,函數(shù)相比臨界狀態(tài)更靠近軸,則存在點(diǎn)或由題意可知,是一條傾斜角度為,長度為的線段可在圓上找到兩條與之平行且等長的弦如果落在弧上,或者落在弧上,則成立當(dāng)時(shí),到弧的最小距離為此時(shí)當(dāng)時(shí),到弧的最小距離為此時(shí)綜上【點(diǎn)睛】本題是圓的綜合題,主要考查了一次函數(shù)的性質(zhì)、圓的基本知識、三角形相似的判定與性質(zhì)、新定義等,數(shù)形結(jié)合是本題解題的關(guān)鍵.3.情境觀察:將矩形ABCD紙片沿對角線AC剪開,得到△ABC和△A′C′D,如圖1所示.將△A′C′D的頂點(diǎn)A′與點(diǎn)A重合,并繞點(diǎn)A按逆時(shí)針方向旋轉(zhuǎn),使點(diǎn)D、A(A′)、B在同一條直線上,如圖2所示.觀察圖2可知:與BC相等的線段是▲,∠CAC′=▲°.問題探究:如圖3,△ABC中,AG⊥BC于點(diǎn)G,以A為直角頂點(diǎn),分別以AB、AC為直角邊,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,過點(diǎn)E、F作射線GA的垂線,垂足分別為P、Q.試探究EP與FQ之間的數(shù)量關(guān)系,并證明你的結(jié)論.拓展延伸:如圖4,△ABC中,AG⊥BC于點(diǎn)G,分別以AB、AC為一邊向△ABC外作矩形ABME和矩形ACNF,射線GA交EF于點(diǎn)H.若AB=kAE,AC=kAF,試探究HE與HF之間的數(shù)量關(guān)系,并說明理由.解析:情境觀察:AD(或A′D),90問題探究:EP=FQ.證明見解析結(jié)論:HE=HF.證明見解析【詳解】情境觀察AD(或A′D),90問題探究結(jié)論:EP=FQ.證明:∵△ABE是等腰三角形,∴AB=AE,∠BAE=90°.∴∠BAG+∠EAP=90°.∵AG⊥BC,∴∠BAG+∠ABG=90°,∴∠ABG=∠EAP.∵EP⊥AG,∴∠AGB=∠EPA=90°,∴Rt△ABG≌Rt△EAP.∴AG=EP.同理AG=FQ.∴EP=FQ拓展延伸結(jié)論:HE=HF.理由:過點(diǎn)E作EP⊥GA,F(xiàn)Q⊥GA,垂足分別為P、Q.∵四邊形ABME是矩形,∴∠BAE=90°,∴∠BAG+∠EAP=90°.AG⊥BC,∴∠BAG+∠ABG=90°,∴∠ABG=∠EAP.∵∠AGB=∠EPA=90°,∴△ABG∽△EAP,同理△ACG∽△FAQ,∵AB=kAE,AC=kAF,∴EP=FQ.∵∠EHP=∠FHQ,∴Rt△EPH≌Rt△FQH.∴HE=HF4.如圖1,兩個(gè)完全相同的三角形紙片和重合放置,其中,.(1)操作發(fā)現(xiàn):如圖2,固定,使繞點(diǎn)旋轉(zhuǎn),當(dāng)點(diǎn)恰好落在邊上時(shí),填空:①線段與的位置關(guān)系是________;②設(shè)的面積為,的面積為,則與的數(shù)量關(guān)系是_____.(2)猜想論證:當(dāng)繞點(diǎn)旋轉(zhuǎn)到如圖3所示的位置時(shí),請猜想(1)中與的數(shù)量關(guān)系是否仍然成立?若成立,請證明;若不成立,請說明理由.(3)拓展探究:已知,平分,,,交于點(diǎn)(如圖4).若在射線上存在點(diǎn),使,請求相應(yīng)的的長.解析:(1)DE∥AC;S1=S2;(2)成立,證明見解析;(3)BF的長為3或6.【分析】(1)①根據(jù)旋轉(zhuǎn)的性質(zhì)可得AC=CD,然后求出△ACD是等邊三角形,根據(jù)等邊三角形的性質(zhì)可得∠ACD=60°,然后根據(jù)內(nèi)錯(cuò)角相等,兩直線平行解答;②根據(jù)等邊三角形的性質(zhì)可得AC=AD,再根據(jù)直角三角形30°角所對的直角邊等于斜邊的一半求出AC=AB,然后求出AC=BD,再根據(jù)等邊三角形的性質(zhì)求出點(diǎn)C到AB的距離等于點(diǎn)D到AC的距離,然后根據(jù)等底等高的三角形的面積相等解答;(2)根據(jù)旋轉(zhuǎn)的性質(zhì)可得BC=CE,AC=CD,再求出∠ACN=∠DCM,然后利用“角角邊”證明△ACN和△DCM全等,根據(jù)全等三角形對應(yīng)邊相等可得AN=DM,然后利用等底等高的三角形的面積相等證明;(3)過點(diǎn)D作DF1∥BE,求出四邊形BEDF1是菱形,根據(jù)菱形的對邊相等可得BE=DF1,然后根據(jù)等底等高的三角形的面積相等可知點(diǎn)F1為所求的點(diǎn),過點(diǎn)D作DF2⊥BD,求出∠F1DF2=60°,從而得到△DF1F2是等邊三角形,然后求出DF1=DF2,再求出∠CDF1=∠CDF2,利用“邊角邊”證明△CDF1和△CDF2全等,根據(jù)全等三角形的面積相等可得點(diǎn)F2也是所求的點(diǎn),然后勾股定理求出EG的長,即可得解【詳解】(1)①∵△DEC繞點(diǎn)C旋轉(zhuǎn)點(diǎn)D恰好落在AB邊上,∴AC=CD,∵∠BAC=90°-∠B=90°-30°=60°,∴△ACD是等邊三角形,∴∠ACD=60°,又∵∠CDE=∠BAC=60°,∴∠ACD=∠CDE,∴DE∥AC;故答案為:DE∥AC;②∵∠B=30°,∠C=90°,∴CD=AC=AB,∴BD=AD=AC,根據(jù)等邊三角形的性質(zhì),△ACD的邊AC、AD上的高相等,∴△BDC的面積和△AEC的面積相等(等底等高的三角形的面積相等),即S1=S2;故答案為:S1=S2;(2)如圖,過點(diǎn)D作DM⊥BC于M,過點(diǎn)A作AN⊥CE交EC的延長線于N,∵△DEC是由△ABC繞點(diǎn)C旋轉(zhuǎn)得到,∴BC=CE,AC=CD,∵∠ACN+∠BCN=90°,∠DCM+∠BCN=180°-90°=90°,∴∠ACN=∠DCM,∵在△ACN和△DCM中,,∴△ACN≌△DCM(AAS),∴AN=DM,∴△BDC的面積和△AEC的面積相等(等底等高的三角形的面積相等),即S1=S2;(3)如圖,過點(diǎn)D作DF1∥BE,易求四邊形BEDF1是菱形,所以BE=DF1,且BE、DF1上的高相等,此時(shí)S△DCF1=S△BDE;過點(diǎn)D作DF2⊥BD,∵∠ABC=60°,F(xiàn)1D∥BE,∴∠F2F1D=∠ABC=60°,∵BF1=DF1,∠F1BD=∠ABC=30°,∠F2DB=90°,∴∠F1DF2=∠ABC=60°,∴△DF1F2是等邊三角形,∴DF1=DF2,過點(diǎn)D作DG⊥BC于G,∵BD=CD,∠ABC=60°,點(diǎn)D是角平分線上一點(diǎn),∴∠DBC=∠DCB=×60°=30°,BG=BC=,∴BD=3∴∠CDF1=180°-∠BCD=180°-30°=150°,∠CDF2=360°-150°-60°=150°,∴∠CDF1=∠CDF2,∵在△CDF1和△CDF2中,,∴△CDF1≌△CDF2(SAS),∴點(diǎn)F2也是所求的點(diǎn),∵∠ABC=60°,點(diǎn)D是角平分線上一點(diǎn),DE∥AB,∴∠DBC=∠BDE=∠ABD=×60°=30°,∴∠CDE=360°-∠CDF2-∠F2DB-DBE=360°-150°-90°-30°=90°,∴∠CDG=90°-∠DCG=60°,又∵BD=CD=3,∴DG=,設(shè)EG為x,則DE=2x,,解得x=1.5,∴BE=BG-EG=4.5-1.5=3,∴BF1=3,BF2=BF1+F1F2=3+3=6,故BF的長為3或6.【點(diǎn)睛】此題考查全等三角形的判定與性質(zhì),三角形的面積,等邊三角形的判定與性質(zhì),直角三角形30°角所對的直角邊等于斜邊的一半的性質(zhì),熟練掌握等底等高的三角形的面積相等,以及全等三角形的面積相等是解題的關(guān)鍵,(3)要注意符合條件的點(diǎn)F有兩個(gè).5.如圖,已知和均為等腰三角形,,,將這兩個(gè)三角形放置在一起.(1)問題發(fā)現(xiàn)如圖①,當(dāng)時(shí),點(diǎn)、、在同一直線上,連接,則的度數(shù)為__________,線段、、之間的數(shù)量關(guān)系是__________;(2)拓展探究如圖②,當(dāng)時(shí),點(diǎn)、、在同一直線上,連接.請判斷的度數(shù)及線段、、之間的數(shù)量關(guān)系,并說明理由;(3)解決問題如圖③,,,,連接、,在繞點(diǎn)旋轉(zhuǎn)的過程中,當(dāng)時(shí),請直接寫出的長解析:(1);(2);(3)或.【分析】(1)證明△ACE≌△ABD,得出CE=AD,∠AEC=∠ADB,即可得出結(jié)論;(2)證明△ACE∽△ABD,得出∠AEC=∠ADB,,即可得出結(jié)論;(3)先判斷出,再求出,①當(dāng)點(diǎn)E在點(diǎn)D上方時(shí),先判斷出四邊形APDE是矩形,求出AP=DP=AE=2,再根據(jù)勾股定理求出,BP=6,得出BD=4;②當(dāng)點(diǎn)E在點(diǎn)D下方時(shí),同①的方法得,AP=DP=AE=1,BP=4,進(jìn)而得出BD=BP+DP=8,即可得出結(jié)論.【詳解】(1)在△ABC為等腰三角形,AC=BC,∠ACB=60°,∴△ABC是等邊三角形,∴AC=AB,∠CAB=60°,同理:AE=AD,∠ADE=∠EAD=60°,∴∠EAD=∠CAB,∴∠EAC=∠DAB,∴△ACE≌△ABD(SAS),∴CE=AD,∠AEC=∠ADB,∵點(diǎn)B、D、E在同一直線上,∴∠ADB=180°-∠ADE=120°,∴∠AEC=120°,∴∵DE=AE,∴BE=DE+BD=AE+CE,故答案為60°,BE=AE+CE;(2).理由如下:和均為等腰三角形,,,,,,點(diǎn)、、在同一直線上,,.;(3)由(2)知,△ACE∽△ABD,∴,在Rt△ABC中,,∴;①當(dāng)點(diǎn)E在點(diǎn)D上方時(shí),如圖③,過點(diǎn)A作AP⊥BD交BD的延長線于P,∵DE⊥BD,∴∠PDE=∠AED=∠APD,∴四邊形APDE是矩形,∵AE=DE,∴矩形APDE是正方形,∴AP=DP=AE=2,在Rt△APB中,根據(jù)勾股定理得,∴BD=BP-AP=4,∴;②當(dāng)點(diǎn)E在點(diǎn)D下方時(shí),如圖④,同①的方法得,AP=DP=AE=2,BP=4,∴BD=BP+DP=8,∴,即:CE的長為或.【點(diǎn)睛】此題是幾何變換綜合題,主要考查了旋轉(zhuǎn)的性質(zhì),全等三角形的判定和性質(zhì),相似三角形的判定和性質(zhì),勾股定理,等邊三角形的性質(zhì),判斷出△ACE∽△ABD是解本題的關(guān)鍵.6.探究:如圖1和2,四邊形中,已知,,點(diǎn),分別在、上,.(1)①如圖1,若、都是直角,把繞點(diǎn)逆時(shí)針旋轉(zhuǎn)至,使與重合,則能證得,請寫出推理過程;②如圖2,若、都不是直角,則當(dāng)與滿足數(shù)量關(guān)系_______時(shí),仍有;(2)拓展:如圖3,在中,,,點(diǎn)、均在邊上,且.若,求的長.解析:(1)①見解析;②,理由見解析;(2)【分析】(1)①根據(jù)旋轉(zhuǎn)的性質(zhì)得出AE=AG,∠BAE=∠DAG,BE=DG,求出∠EAF=∠GAF=45°,根據(jù)SAS推出△EAF≌△GAF,根據(jù)全等三角形的性質(zhì)得出EF=GF,即可求出答案;②根據(jù)旋轉(zhuǎn)的性質(zhì)得出AE=AG,∠B=∠ADG,∠BAE=∠DAG,求出C、D、G在一條直線上,根據(jù)SAS推出△EAF≌△GAF,根據(jù)全等三角形的性質(zhì)得出EF=GF,即可求出答案;(2)根據(jù)等腰直角三角形性質(zhì)好勾股定理求出∠ABC=∠C=45°,BC=4,根據(jù)旋轉(zhuǎn)的性質(zhì)得出AF=AE,∠FBA=∠C=45°,∠BAF=∠CAE,求出∠FAD=∠DAE=45°,證△FAD≌△EAD,根據(jù)全等得出DF=DE,設(shè)DE=x,則DF=x,BF=CE=3?x,根據(jù)勾股定理得出方程,求出x即可.【詳解】(1)①如圖1,∵把繞點(diǎn)逆時(shí)針旋轉(zhuǎn)至,使與重合,∴,,∵,,∴,∴,即,在和中∴,∴,∵,∴;②,理由是:把繞點(diǎn)旋轉(zhuǎn)到,使和重合,則,,,∵,∴,∴,,在一條直線上,和①知求法類似,,在和中∴,∴,∵,∴;故答案為:(2)∵中,,∴,由勾股定理得:,把繞點(diǎn)旋轉(zhuǎn)到,使和重合,連接.則,,,∵,∴,∴,在和中∴,∴,設(shè),則,∵,∴,∵,,∴,由勾股定理得:,,解得:,即.【點(diǎn)睛】本題考查了旋轉(zhuǎn)的性質(zhì),全等三角形的性質(zhì)和判定,勾股定理的應(yīng)用,此題是開放性試題,首先在特殊圖形中找到規(guī)律,然后再推廣到一般圖形中,對學(xué)生的分析問題,解決問題的能力要求比較高.7.綜合與實(shí)踐如圖①,在中中,,,,過點(diǎn)作于,將繞點(diǎn)逆時(shí)針方向旋轉(zhuǎn),得到,連接,,記旋轉(zhuǎn)角為.(1)問題發(fā)現(xiàn)如圖②,當(dāng)時(shí),__________;如圖③,當(dāng)時(shí),__________.(2)拓展探究試判斷:當(dāng)時(shí),的大小有無變化?請僅就圖④的情形給出證明.(3)問題解決如圖⑤,當(dāng)繞點(diǎn)逆時(shí)針旋轉(zhuǎn)至點(diǎn)落在邊上時(shí),求線段的長.解析:(1),;(2)無變化,理由詳見解析;(3).【分析】(1)首先利用勾股定理可求出AB的值,再根據(jù)三角形面積求出CD的值,再次利用勾股定理求出AD、BD的值,再分情況進(jìn)一步得出的值即可;(2)根據(jù)旋轉(zhuǎn)的性質(zhì)可得出,,再證明即可得出結(jié)論;(3)過點(diǎn)作于,證,推出,得出,繼而得到,再根據(jù),即可得出答案.【詳解】解:(1)∵,,∴∵∴∴當(dāng)時(shí),∴當(dāng)時(shí),∴故答案為:;;(2)無變化.證明:∵在中,,,,∴.∵,∴.∵,,∴.∴,即.∴,.∴.由旋轉(zhuǎn)可知,,.∴.∵,∴.∴.∴.(3)如圖,過點(diǎn)作于.∵,∴.∵,,∴.∴,即.∴.∴.∴.∵,∴.【點(diǎn)睛】本題考查了勾股定理、三角形的面積公式、旋轉(zhuǎn)的性質(zhì)、相似三角形的判定及性質(zhì)等多個(gè)知識點(diǎn),綜合性較強(qiáng),要會利用數(shù)形結(jié)合的思想把代數(shù)和幾何圖形結(jié)合起來,會利用相似三角形的性質(zhì)解題,此題結(jié)構(gòu)精巧,考查范圍廣.8.在中,,過點(diǎn)作直線,將繞點(diǎn)順時(shí)針旋轉(zhuǎn)得到(點(diǎn)的對應(yīng)點(diǎn)分別為).(1)問題發(fā)現(xiàn)如圖1,若與重合時(shí),則的度數(shù)為____________;(2)類比探究:如圖2,設(shè)與BC的交點(diǎn)為,當(dāng)為的中點(diǎn)時(shí),求線段的長;(3)拓展延伸在旋轉(zhuǎn)過程中,當(dāng)點(diǎn)分別在的延長線上時(shí),試探究四邊形的面積是否存在最小值.若存在,直接寫出四邊形的最小面積;若不存在,請說明理由.解析:(1)60;(2);(3)【分析】(1)由旋轉(zhuǎn)可得:AC=A'C=2,進(jìn)而得到BC=,依據(jù)∠A'BC=90°,可得,即可得到∠A'CB=30°,∠ACA'=60°;(2)根據(jù)M為A'B'的中點(diǎn),即可得出∠A=∠A'CM,進(jìn)而得到,依據(jù)tan∠Q=tan∠A=,即可得到BQ=BC×=2,進(jìn)而得出PQ=PB+BQ=;(3)依據(jù)S四邊形PA'B′Q=S△PCQ-S△A'CB'=S△PCQ-,即可得到S四邊形PA'B′Q最小,即S△PCQ最小,而S△PCQ=PQ×BC=PQ,利用幾何法或代數(shù)法即可得到S△PCQ的最小值=3,S四邊形PA'B′Q=3-.【詳解】解:(1)由旋轉(zhuǎn)可得:,,,,,,,,.(2)為的中點(diǎn),,山旋轉(zhuǎn)可得,,,,,,,;(3)四邊形四邊形最小即最小,,取的中點(diǎn),,,即,當(dāng)最小時(shí),最小,,即與正合時(shí),最小,,,的最小值,四邊形=.【點(diǎn)睛】此題考查四邊形綜合題,旋轉(zhuǎn)的性質(zhì),解直角三角形以及直角三角形的性質(zhì)的綜合運(yùn)用,解題關(guān)鍵在于掌握旋轉(zhuǎn)變換中,對應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等;對應(yīng)點(diǎn)與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;旋轉(zhuǎn)前、后的圖形全等.9.(基礎(chǔ)鞏固)(1)如圖①,,求證:.(嘗試應(yīng)用)(2)如圖②,在菱形中,,點(diǎn)E,F(xiàn)分別為邊上兩點(diǎn),將菱形沿翻折,點(diǎn)A恰好落在對角線上的點(diǎn)P處,若,求的值.(拓展提高)(3)如圖③,在矩形中,點(diǎn)P是邊上一點(diǎn),連接,若,求的長.解析:(1)見解析;(2);(3).【分析】(1)由證明,再根據(jù)相似三角形的判定方法解題即可;(2)由菱形的性質(zhì),得到,,繼而證明是等邊三角形,結(jié)合(1)中相似三角形對應(yīng)邊成比例的性質(zhì),設(shè),則可整理得到,據(jù)此解題;(3)在邊上取點(diǎn)E,F(xiàn),使得,由矩形的性質(zhì),得到,結(jié)合(1)中相似三角形對應(yīng)邊成比例的性質(zhì)解題即可.【詳解】解:(1)證明:∵,∴,即,∵,∴;(2)∵四邊形是菱形,∴,∴,∴是等邊三角形,∴,由(1)得,,∴,設(shè),則∴,可得①,②,①-②,得,∴,∴的值為;(3)如圖,在邊上取點(diǎn)E,F(xiàn),使得,設(shè)AB=CD=m,∵四邊形是矩形,∴,∴,=DF,,由(1)可得,,∴,∴,整理,得,解得或(舍去),∴.【點(diǎn)睛】本題考查相似三角形的綜合題、等邊三角形的性質(zhì)、菱形的性質(zhì)、矩形的性質(zhì)等知識,是重要考點(diǎn),難度一般,掌握相關(guān)知識是解題關(guān)鍵.10.(操作)如圖①,在矩形中,為對角線上一點(diǎn)(不與點(diǎn)重合),將沿射線方向平移到的位置,的對應(yīng)點(diǎn)為.已知(不需要證明).(探究)過圖①中的點(diǎn)作交延長線于點(diǎn),連接,其它條件不變,如圖②.求證:.(拓展)將圖②中的沿翻折得到,連接,其它條件不變,如圖③.當(dāng)最短時(shí),若,,直接寫出的長和此時(shí)四邊形的周長.解析:探究:見解析;拓展:四邊形的周長為【分析】探究:證明四邊形EGBC是平行四邊形,推出EG=BC,利用SAS證明三角形全等即可.拓展:如圖3中,連接BD交AC于點(diǎn)O,作BK⊥AC于K,F(xiàn)′H⊥BC于H.由題意四邊形AGFC是平行四邊形,推出GF=AC=,由BF=BF′,可以假設(shè)BF=x,則BG=利用相似三角形的性質(zhì),求出BH,HF′,利用勾股定理求出GF′,再利用二次函數(shù)的性質(zhì),求出GF′的值最小時(shí)BF′的值,推出BF′=此時(shí)點(diǎn)F′與O重合,由此即可解決問題.【詳解】解:探究:由平移,∴,即又∵,∴四邊形為平行四邊形∴∵,∴∠CBF=∠ACB,∵∴∠AEG=∠ACB,∴∠AEG=∠CBF∴.拓展:如圖3中,連接BD交AC于點(diǎn)O,作BK⊥AC于K,F(xiàn)′H⊥BC于H.∵四邊形ABCD是矩形,∴∠ABC=90°,AB=4,BC=2,∴∵∴,∴由題意四邊形AGFC是平行四邊形,∴GF=AC=,∵BF=BF′,可以假設(shè)BF=x,則BG=∵AC∥GF,∴∠BOK=∠HBF′,∵∠BKO=∠F′HB=90°,∴△F′HB∽△BKO,∴∴∴∴∵>0,∴當(dāng)時(shí),GF′的值最小,此時(shí)點(diǎn)F′與O重合,由對折得:由矩形的性質(zhì)得:四邊形BFCF′是菱形,四邊形BFCF′的周長為,且與互相平分,由勾股定理得:【點(diǎn)睛】本題屬于四邊形綜合題,考查了矩形的性質(zhì),翻折變換,平行四邊形的判定和性質(zhì),相似三角形的判定和性質(zhì),二次函數(shù)的性質(zhì)等知識,解題的關(guān)鍵是學(xué)會添加常用輔助線,構(gòu)造相似三角形解決問題,學(xué)會構(gòu)建二次函數(shù)解決最值問題,屬于中考壓軸題.11.(知識再現(xiàn))學(xué)完《全等三角形》一章后,我們知道“斜邊和一條直角邊分別相等的兩個(gè)直角三角形全等(簡稱HL定理)”是判定直角三角形全等的特有方法.(簡單應(yīng)用)如圖(1),在△ABC中,∠BAC=90°,AB=AC,點(diǎn)D、E分別在邊AC、AB上.若CE=BD,則線段AE和線段AD的數(shù)量關(guān)系是.(拓展延伸)在△ABC中,∠BAC=(90°<<180°),AB=AC=m,點(diǎn)D在邊AC上.(1)若點(diǎn)E在邊AB上,且CE=BD,如圖(2)所示,則線段AE與線段AD相等嗎?如果相等,請給出證明;如果不相等,請說明理由.(2)若點(diǎn)E在BA的延長線上,且CE=BD.試探究線段AE與線段AD的數(shù)量關(guān)系(用含有a、m的式子表示),并說明理由.解析:【簡單應(yīng)用】AE=AD;【拓展延伸】(1)相等,證明見解析;(2)AE﹣AD=2AC?cos(180°﹣),理由見解析【分析】簡單應(yīng)用:證明Rt△ABD≌Rt△ACE(HL),可得結(jié)論.拓展延伸:(1)結(jié)論:AE=AD.如圖(2)中,過點(diǎn)C作CM⊥BA交BA的延長線于M,過點(diǎn)N作BN⊥CA交CA的延長線于N.證明△CAM≌△BAN(AAS),推出CM=BN,AM=AN,證明Rt△CME≌Rt△BND(HL),推出EM=DN,可得結(jié)論.(2)如圖(3)中,結(jié)論:AE﹣AD=2m?cos(180°﹣).在AB上取一點(diǎn)E′,使得BD=CE′,則AD=AE′.過點(diǎn)C作CT⊥AE于T.證明TE=TE′,求出AT,可得結(jié)論.【詳解】簡單應(yīng)用:解:如圖(1)中,結(jié)論:AE=AD.理由:∵∠A=∠A=90°,AB=AC,BD=CE,∴Rt△ABD≌Rt△ACE(HL),∴AD=AE.故答案為:AE=AD.拓展延伸:(1)結(jié)論:AE=AD.理由:如圖(2)中,過點(diǎn)C作CM⊥BA交BA的延長線于M,過點(diǎn)N作BN⊥CA交CA的延長線于N.∵∠M=∠N=90°,∠CAM=∠BAN,CA=BA,∴△CAM≌△BAN(AAS),∴CM=BN,AM=AN,∵∠M=∠N=90°,CE=BD,CM=BN,∴Rt△CME≌Rt△BND(HL),∴EM=DN,∵AM=AN,∴AE=AD.(2)如圖(3)中,結(jié)論:AE﹣AD=2m?cos(180°﹣).理由:在AB上取一點(diǎn)E′,使得BD=CE′,則AD=AE′.過點(diǎn)C作CT⊥AE于T.∵CE′=BD,CE=BD,∴CE=CE′,∵CT⊥EE′,∴ET=TE′,∵AT=AC?cos(180°﹣)=m?cos(180°﹣),∴AE﹣AD=AE﹣AE′=2AT=2m?cos(180°﹣).【點(diǎn)睛】本題主要考查了全等三角形的性質(zhì)與判定,等腰三角形的性質(zhì)與判定,解直角三角形等知識,解題的關(guān)鍵在于能夠熟練尋找全等三角形解決問題.12.如圖1,邊長為4的正方形與邊長為的正方形的頂點(diǎn)重合,點(diǎn)在對角線上.問題發(fā)現(xiàn)(1)如圖1,與的數(shù)量關(guān)系為______.類比探究(2)如圖2,將正方形繞點(diǎn)旋轉(zhuǎn)度().請問(1)中的結(jié)論還成立嗎?若不成立,請說明理由.拓展延伸(3)若為的中點(diǎn),在正方形的旋轉(zhuǎn)過程中,當(dāng)點(diǎn),,在一條直線上時(shí),線段的長度為______.解析:(1);(2)成立,見解析;(3)或【分析】問題發(fā)現(xiàn):證出AB∥EF,由平行線分線段成比例定理得出,即可得出結(jié)論;類比探究:證明△ACE∽△BCF,得出,即可的結(jié)論;拓展延伸:分兩種情況,連接CE交GF于H,由正方形的性質(zhì)得出AB=BC=4,,,GH=HF=HE=HC,得出,,,由勾股定理求出,即可得出答案.【詳解】[問題發(fā)現(xiàn)]解:,理由如下:∵四邊形ABCD和四邊形CFEG是正方形,∴∠B=∠CFE=90°,∠FCE=∠BCA=45°,CE=CF,CE⊥GF,∴AB∥EF,∴,;故答案為:;[類比探究]解:上述結(jié)論還成立,理由如下:連接CE,如圖2所示:∵∠FCE=∠BCA=45°,∴∠BCF=∠ACE=45°-∠ACF,在Rt△CEG和Rt△CBA中,,,∴△ACE∽△BCF,,;[拓展延伸]解:分兩種情況:①如圖3所示:連接CE交GF于H,∵四邊形ABCD和四邊形CFEG是正方形,∴AB=BC=4,AC=AB=4,GF=CE=CF,HF=HE=HC,∵點(diǎn)F為BC的中點(diǎn),∴CF=BC=2,GF=CE=2,GH=HF=HE=HC=,∴,∴;②如圖4所示:連接CE交GF于H,同①得:GH=HF=HE=HC=,∴,∴;故答案為:或.【點(diǎn)睛】本題是四邊形綜合題目,考查了正方形的性質(zhì)、旋轉(zhuǎn)的性質(zhì)、平行線分線段成比例定理、相似三角形的判定與性質(zhì)、勾股定理等知識;熟練掌握正方形的性質(zhì),證明三角形相似是解題的關(guān)鍵.13.如圖1,在中,,,,點(diǎn)D,E分別是邊,的中點(diǎn),連接.將繞點(diǎn)C按逆時(shí)針方向旋轉(zhuǎn),記旋轉(zhuǎn)角為α.(1)問題發(fā)現(xiàn)①當(dāng)時(shí),;②當(dāng)時(shí),;(2)拓展探究試判斷:當(dāng)時(shí),的大小有無變化?請僅就圖2的情形給出證明;(3)問題解決當(dāng)旋轉(zhuǎn)至?xí)r,請直接寫出的長.解析:(1)①;②;(2)不變,證明見解析;(3)2或2【分析】(1)①當(dāng)=0°時(shí),在Rt△ABC中,由勾股定理,求出AC的值是多少;然后根據(jù)點(diǎn)D、E分別是邊BC、AC的中點(diǎn),分別求出AE、BD的大小,即可求出BD、AE的比值;②中,圖形如下,與①有所變化,但求解方法完全相同;(2)證明△ECA∽△DCB,從而根據(jù)邊長成比例得出比值;(3)存在2種情況,一種是當(dāng)時(shí),;另一種是當(dāng)時(shí),,分別利用勾股定理可求得.【詳解】(1)①∵在中,,,,點(diǎn)D,E分別是邊,的中點(diǎn)∴CD=BD=2,在Rt△ABC中,AB=,AC=∴AE=∴;②圖形如下:同理可知:BC=4,AC=,DC=2,DE=,CE=∴BD=DC+CB=2+4=6,AE=EC+AC==∴;(2)不變,理由如下∵∠ECD=∠ACB,∴∠ECA=∠DCB,又∵,∴△ECA∽△DCB,∴;(3)情況一:當(dāng)時(shí),,圖形如下,過點(diǎn)D作BC的垂線,交BC延長線于點(diǎn)F∵ED∥AC,∴∠ACD=∠EDC=90°∵∠ACB=∠ECD=30°∴∠ECF=30°,∴∠FCD=60°∵CD=2∴在Rt△DCF中,CF=1,F(xiàn)D=∴FB=FC=CB=1+4=5∴在Rt△FDB中,DB=2;情況二:當(dāng)時(shí),,圖形如下,過點(diǎn)D作BC的垂線,交BC于點(diǎn)F∵DE∥AC,∴∠ACD=90°∵∠ACB=30°,∴∠DCF=60°∵CD=2,∴在Rt△CDF中,CF=1,DF=∴FB=CB-CF=4-1=3∴在Rt△FDB中,DB=2綜上得:DB的長為2或2.【點(diǎn)睛】此題屬于旋轉(zhuǎn)的綜合題.考查了旋轉(zhuǎn)的性質(zhì)、相似三角形的判定與性質(zhì)以及勾股定理等知識.注意掌握分類討論思想的應(yīng)用是解此題的關(guān)鍵.14.如圖(1),已知點(diǎn)G在正方形ABCD的對角線AC上,GE⊥BC,垂足為點(diǎn)E,GF⊥CD,垂足為點(diǎn)F.(1)證明與推斷:①求證:四邊形CEGF是正方形;②推斷:的值為:(2)探究與證明:將正方形CEGF繞點(diǎn)C順時(shí)針方向旋轉(zhuǎn)α角(0°<α<45°),如圖(2)所示,試探究線段AG與BE之間的數(shù)量關(guān)系,并說明理由:(3)拓展與運(yùn)用:正方形CEGF在旋轉(zhuǎn)過程中,當(dāng)B,E,F(xiàn)三點(diǎn)在一條直線上時(shí),如圖(3)所示,延長CG交AD于點(diǎn)H.若AG=6,GH=2,則BC=.解析:(1)①四邊形CEGF是正方形;②;(2)線段AG與BE之間的數(shù)量關(guān)系為AG=BE;(3)3【分析】(1)①由、結(jié)合可得四邊形CEGF是矩形,再由即可得證;②由正方形性質(zhì)知、,據(jù)此可得、,利用平行線分線段成比例定理可得;(2)連接CG,只需證∽即可得;(3)證∽得,設(shè),知,由得、、,由可得a的值.【詳解】(1)①∵四邊形ABCD是正方形,∴∠BCD=90°,∠BCA=45°,∵GE⊥BC、GF⊥CD,∴∠CEG=∠CFG=∠ECF=90°,∴四邊形CEGF是矩形,∠CGE=∠ECG=45°,∴EG=EC,∴四邊形CEGF是正方形;②由①知四邊形CEGF是正方形,∴∠CEG=∠B=90°,∠ECG=45°,∴,GE∥AB,∴,故答案為;(2)連接CG,由旋轉(zhuǎn)性質(zhì)知∠BCE=∠ACG=α,在Rt△CEG和Rt△CBA中,=、=,∴=,∴△ACG∽△BCE,∴,∴線段AG與BE之間的數(shù)量關(guān)系為AG=BE;(3)∵∠CEF=45°,點(diǎn)B、E、F三點(diǎn)共線,∴∠BEC=135°,∵△ACG∽△BCE,∴∠AGC=∠BEC=135°,∴∠AGH=∠CAH=45°,∵∠CHA=∠AHG,∴△AHG∽△CHA,∴,設(shè)BC=CD=AD=a,則AC=a,則由得,∴AH=a,則DH=AD﹣AH=a,CH==a,∴由得,解得:a=3,即BC=3,故答案為3.【點(diǎn)睛】本題考查了正方形的性質(zhì)與判定,相似三角形的判定與性質(zhì)等,綜合性較強(qiáng),有一定的難度,正確添加輔助線,熟練掌握正方形的判定與性質(zhì)、相似三角形的判定與性質(zhì)是解題的關(guān)鍵.15.(1)(探究發(fā)現(xiàn))如圖1,的頂點(diǎn)在正方形兩條對角線的交點(diǎn)處,,將繞點(diǎn)旋轉(zhuǎn),旋轉(zhuǎn)過程中,的兩邊分別與正方形的邊和交于點(diǎn)和點(diǎn)(點(diǎn)與點(diǎn),不重合).則之間滿足的數(shù)量關(guān)系是.(2)(類比應(yīng)用)如圖2,若將(1)中的“正方形”改為“的菱形”,其他條件不變,當(dāng)時(shí),上述結(jié)論是否仍然成立?若成立,請給出證明;若不成立,請猜想結(jié)論并說明理由.(3)(拓展延伸)如圖3,,,,平分,,且,點(diǎn)是上一點(diǎn),,求的長.解析:(1)(2)結(jié)論不成立.(3)【分析】(1)結(jié)論:.根據(jù)正方形性質(zhì),證,根據(jù)全等三角形性質(zhì)可得結(jié)論;(2)結(jié)論不成立..連接,在上截取,連接.根據(jù)菱形性質(zhì),證,四點(diǎn)共圓,分別證是等邊三角形,是等邊三角形,根據(jù)等邊三角形性質(zhì)證,根據(jù)全等三角形性質(zhì)可得結(jié)論;(3)由可知是鈍角三角形,,作于,設(shè).根據(jù)勾股定理,可得到,由,得四點(diǎn)共圓,再證是等邊三角形,由(2)可知:,故可得.【詳解】(1)如圖1中,結(jié)論:.理由如下:∵四邊形是正方形,∴,,,∵,∴,∴,∴,∴.故答案為.(2)如圖2中,結(jié)論不成立..理由:連接,在上截取,連接.∵四邊形是菱形,,∴,∵,∴四點(diǎn)共圓,∴,∵,∴是等邊三角形,∴,,∵,,∴是等邊三角形,∴,,∴,∴,∴,∴,(3)如圖3中,由可知是鈍角三角形,,作于,設(shè).在中,,∵,∴,解得(舍棄)或,∴,∵,∴四點(diǎn)共圓,∵平分,∴,∴,∵,∴是等邊三角形,由(2)可知:,∴.【點(diǎn)睛】考核知識點(diǎn):正方形性質(zhì),全等三角形判定和性質(zhì),等邊三角形判定和性質(zhì),圓的性質(zhì).綜合運(yùn)用各個(gè)幾何性質(zhì)定理是關(guān)鍵;此題比較綜合.16.(1)證明推斷:如圖(1),在正方形中,點(diǎn),分別在邊,上,于點(diǎn),點(diǎn),分別在邊,上,.①求證:;②推斷:的值為;(2)類比探究:如圖(2),在矩形中,(為常數(shù)).將矩形沿折疊,使點(diǎn)落在邊上的點(diǎn)處,得到四邊形,交于點(diǎn),連接交于點(diǎn).試探究與CP之間的數(shù)量關(guān)系,并說明理由;(3)拓展應(yīng)用:在(2)的條件下,連接,當(dāng)時(shí),若,,求的長.解析:(1)①證明見解析;②解:結(jié)論:.理由見解析;(2)結(jié)論:.理由見解析;(3).【解析】【分析】(1)①由正方形的性質(zhì)得AB=DA,∠ABE=90°=∠DAH.所以∠HAO+∠OAD=90°,又知∠ADO+∠OAD=90°,所以∠HAO=∠ADO,于是△ABE≌△DAH,可得AE=DQ.②證明四邊形DQFG是平行四邊形即可解決問題.(2)結(jié)論:如圖2中,作GM⊥AB于M.證明:△ABE∽△GMF即可解決問題.(3)如圖2-1中,作PM⊥BC交BC的延長線于M.利用相似三角形的性質(zhì)求出PM,CM即可解決問題.【詳解】(1)①證明:∵四邊形是正方形,∴,.∴.∵,∴.∴.∴≌,∴.②解:結(jié)論:.理由:∵,,∴,∵,∴四邊形是平行四邊形,∴,∵,∴,∴.故答案為1.(2)解:結(jié)論:.理由:如圖2中,作于.∵,∴,∴,,∴,∴∽,∴,∵,∴四邊形是矩形,∴,∴.(3)解:如圖2﹣1中,作交的延長線于.∵,,∴,∴,∴可以假設(shè),,,∵,,∴,∴,∴或﹣1(舍棄),∴,,∵,∴,∴,,∵,∴,,∴,∴∽,∴,∴,∴,,∴,∴.【點(diǎn)睛】本題屬于相似形綜合題,考查了正方形的性質(zhì),矩形的性質(zhì),全等三角形的判定和性質(zhì),相似三角形的判定和性質(zhì),解直角三角形等知識,解題的關(guān)鍵是正確尋找全等三角形或相似三角形解決問題,學(xué)會利用參數(shù)構(gòu)建方程解決問題,屬于中考壓軸題.17.如圖,四邊形是正方形,點(diǎn)為對角線的中點(diǎn).(1)問題解決:如圖①,連接,分別取,的中點(diǎn),,連接,則與的數(shù)量關(guān)系是_____,位置關(guān)系是____;(2)問題探究:如圖②,是將圖①中的繞點(diǎn)按順時(shí)針方向旋轉(zhuǎn)得到的三角形,連接,點(diǎn),分別為,的中點(diǎn),連接,.判斷的形狀,并證明你的結(jié)論;(3)拓展延伸:如圖③,是將圖①中的繞點(diǎn)按逆時(shí)針方向旋轉(zhuǎn)得到的三角形,連接,點(diǎn),分別為,的中點(diǎn),連接,.若正方形的邊長為1,求的面積.解析:(1),;(2)的形狀是等腰直角三角形,理由見解析;(3)【分析】(1)根據(jù)題意可得PQ為△BOC的中位線,再根據(jù)中位線的性質(zhì)即可求解;(2)連接并延長交于點(diǎn),根據(jù)題意證出,為等腰直角三角形,也為等腰直角三角形,由且可得是等腰直角三角形;(3)延長交邊于點(diǎn),連接,.證出四邊形是矩形,為等腰直角三角形,,再證出為等腰直角三角形,根據(jù)圖形的性質(zhì)和勾股定理求出O′A,O′B和BQ的長度,即可計(jì)算出的面積.【詳解】解:(1)∵點(diǎn)P和點(diǎn)Q分別為,的中點(diǎn),∴PQ為△BOC的中位線,∵四邊形是正方形,∴AC⊥BO,∴,;故答案為:,;(2)的形狀是等腰直角三角形.理由如下:連接并延長交于點(diǎn),由正方形的性質(zhì)及旋轉(zhuǎn)可得,∠,是等腰直角三角形,,.∴,.又∵點(diǎn)是的中點(diǎn),∴.∴.∴,.∴,∴.∴為等腰直角三角形.∴,.∴也為等腰直角三角形.又∵點(diǎn)為的中點(diǎn),∴,且.∴的形狀是等腰直角三角形.(3)延長交邊于點(diǎn),連接,.∵四邊形是正方形,是對角線,∴.由旋轉(zhuǎn)得,四邊形是矩形,∴,.∴為等腰直角三角形.∵點(diǎn)是的中點(diǎn),∴,,.∴.∴,.∴.∴.∴為等腰直角三角形.∵是的中點(diǎn),∴,.∵,∴,,∴.∴.【點(diǎn)睛】本題考查正方形的性質(zhì)、等腰直角三角形的判定與性質(zhì)、旋轉(zhuǎn)圖形的性質(zhì)、三角形中位線定理、全等三角形的判定與性質(zhì)和勾股定理,根據(jù)題意作出輔助線構(gòu)造全等三角形是解題的關(guān)鍵.18.小明將兩個(gè)直角三角形紙片如圖(1)那樣拼放在同一平面上,抽象出如圖(2)的平面圖形,與恰好為對頂角,,連接,,點(diǎn)F是線段上一點(diǎn).探究發(fā)現(xiàn):(1)當(dāng)點(diǎn)F為線段的中點(diǎn)時(shí),連接(如圖(2),小明經(jīng)過探究,得到結(jié)論:.你認(rèn)為此結(jié)論是否成立?_________.(填“是”或“否”)拓展延伸:(2)將(1)中的條件與結(jié)論互換,即:若,則點(diǎn)F為線段的中點(diǎn).請判斷此結(jié)論是否成立.若成立,請寫出證明過程;若不成立,請說明理由.問題解決:(3)若,求的長.解析:(1)是;(2)結(jié)論成立,理由見解析;(3)【分析】(1)利用等角的余角相等求出∠A=∠E,再通過AB=BD求出∠A=∠ADB,緊接著根據(jù)直角三角形斜邊的中線等于斜邊的一半求出FD=FE=FC,由此得出∠E=∠FDE,據(jù)此進(jìn)一步得出∠ADB=∠FDE,最終通過證明∠ADB+∠EDC=90°證明結(jié)論成立即可;(2)根據(jù)垂直的性質(zhì)可以得出90°,90°,從而可得,接著證明出,利用可知,從而推出,最后通過證明得出,據(jù)此加以分析即可證明結(jié)論;(3)如圖,設(shè)G為的中點(diǎn),連接GD,由(1)得,故而,在中,利用勾股定理求出,由此得出,緊接著,繼續(xù)通過勾股定理求出,最后進(jìn)一步證明,再根據(jù)相似三角形性質(zhì)得出,從而求出,最后進(jìn)一步分析求解即可.【詳解】(1)∵∠ABC=∠CDE=90°,∴∠A+∠ACB=∠E+∠ECD,∵∠ACB=∠ECD,∴∠A=∠E,∵AB=BD,∴∠A=∠ADB,在中,∵F是斜邊CE的中點(diǎn),∴FD=FE=FC,∴∠E=∠FDE,∵∠A=∠E,∴∠ADB=∠FDE,∵∠FDE+∠FDC=90°,∴∠ADB+∠FDC=90°,即∠FDB=90°,∴BD⊥DF,結(jié)論成立,故答案為:是;(2)結(jié)論成立,理由如下:∵,∴90°,90°,∴,∵,∴.∴.又∵,∴.∴.又90°,90°,,∴,∴.∴.∴F為的中點(diǎn);(3)如圖,設(shè)G為的中點(diǎn),連接GD,由(1)可知,∴,又∵,在中,,∴,在中,,在與中,∵∠ABC=∠EDC,∠ACB=∠ECD,∴,∴,∴,∴.【點(diǎn)睛】本題主要考查了直角三角形的性質(zhì)和相似三角形的性質(zhì)及判定的綜合運(yùn)用,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 初級中藥學(xué)試題及答案
- 辦公設(shè)備回收合同(2025年)
- 辦公空間租賃合同協(xié)議2025
- 2025年河北省公需課學(xué)習(xí)-環(huán)境影響評價(jià)制度改革專題642
- 2025年招錄政府專職消防文員筆試判讀題130題及答案
- 2025年口腔外科重點(diǎn)題庫及答案
- 文藝美學(xué)考試題型及答案
- 市立中學(xué)考試題庫及答案
- 忻州高三考試題目及答案
- 北京司機(jī)勞務(wù)合同范本
- 蛋糕店充值卡合同范本
- 消防系統(tǒng)癱瘓應(yīng)急處置方案
- 《美國和巴西》復(fù)習(xí)課
- 模切機(jī)個(gè)人工作總結(jié)
- 尿道損傷教學(xué)查房
- 北師大版九年級中考數(shù)學(xué)模擬試卷(含答案)
- 三國殺游戲介紹課件
- 開放大學(xué)土木工程力學(xué)(本)模擬題(1-3)答案
- 醫(yī)療機(jī)構(gòu)遠(yuǎn)程醫(yī)療服務(wù)實(shí)施管理辦法
- 情感性精神障礙護(hù)理課件
- 從投入產(chǎn)出表剖析進(jìn)出口貿(mào)易結(jié)構(gòu)
評論
0/150
提交評論