版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
北師大版9年級數(shù)學(xué)上冊期中試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(7小題,每小題2分,共計14分)1、如圖,在矩形ABCD中,AB=3,BC=5,點E為CB上一動點(不與點C重合),將△CDE沿DE所在直線折疊,點C的對應(yīng)點C'恰好落在AE上,則CE的長是()A. B.1 C.2 D.2、某軌道列車共有3節(jié)車廂,設(shè)乘客從任意一節(jié)車廂上車的機會均等,某天甲、乙兩位乘客同時乘同一列軌道列車,則甲和乙從同一節(jié)車廂上車的概率是(
)A. B. C. D.3、妙妙上學(xué)經(jīng)過兩個路口,如果每個路口可直接通過和需等待的可能性相等,那么妙妙上學(xué)時在這兩個路口都直接通過的概率是(
)A. B. C. D.4、如圖,E,F(xiàn)是正方形ABCD的邊BC上兩個動點,BE=CF.連接AE,BD交于點G,連接CG,DF交于點M.若正方形的邊長為1,則線段BM的最小值是(
)A. B. C. D.5、若m,n是方程x2-x-2022=0的兩個根,則代數(shù)式(m2-2m-2022)(-n2+2n+2022)的值為(
)A.2023 B.2022 C.2021 D.20206、如圖,平行四邊形ABCD的對角線AC,BD相交于點O,添加下列條件仍不能判斷四邊形ABCD是矩形的是(
)A.AB+BC=AC B.AB=AD C.OA=OD D.∠ABC+∠ADC=180°7、下列方程中,一定是關(guān)于x的一元二次方程的是(
)A. B.C. D.二、多選題(3小題,每小題2分,共計6分)1、已知直角三角形的兩條邊長恰好是方程的兩個根,則此直角三角形斜邊長是(
)A. B. C.3 D.52、下列方程中,關(guān)于x的一元二次方程有(
)A.x2=0 B.a(chǎn)x2+bx+c=0 C.x2-3=x D.a(chǎn)2+a-x=0E.(m-1)x2+4x+=0 F. G.=2 H.(x+1)2=x2-93、等腰三角形三邊長分別為a,b,3,且a,b是關(guān)于x的一元二次方程x2﹣8x﹣1+m=0的兩根,則m的值為()A.15 B.16 C.17 D.18第Ⅱ卷(非選擇題80分)三、填空題(10小題,每小題2分,共計20分)1、在四邊形ABCD中,ABCD,ADBC,添加一個條件________,即可判定該四邊形是菱形.2、如圖,點E為矩形ABCD的邊BC長上的一點,作DF⊥AE于點F,且滿足DF=AB.下面結(jié)論:①△DEF≌△DEC;②S△ABE=S△ADF;③AF=AB;④BE=AF.其中正確的結(jié)論是_____.3、已知一元二次方程ax2+bx+c=0(a≠0),下列結(jié)論:①若方程兩根為-1和2,則2a+c=0;②若b>a+c,則方程有兩個不相等的實數(shù)根;③若b=2a+3c,則方程有兩個不相等的實數(shù)根;④若m是方程的一個根,則一定有b2-4ac=(2am+b)2成立.其中結(jié)論正確的序號是__________.4、若正方形的對角線的長為4,則該正方形的面積為_________.5、已知關(guān)于的不等式組無解,且關(guān)于y的一元二次方程有兩個實數(shù)根,則整數(shù)的值可以是______6、若m,n是關(guān)于x的方程x2-3x-3=0的兩根,則代數(shù)式m2+n2-2mn=_____.7、已知關(guān)于x的一元二次方程的一個根比另一個根大2,則m的值為_____.8、如圖,在矩形紙片ABCD中,AB=12,AD=5,P為DC邊上的動點(點P不與點D,C重合),將紙片沿AP折疊(1)當四邊形ADPD′是正方形時,CD′的長為___.(2)當CD′的長最小時,PC的長為___.9、如圖,在長方形ABCD中,AD=8,AB=6,點E為線段DC上一個動點,把△ADE沿AE折疊,使點D落在點F處,若△CEF為直角三角形時,則DE的長為___.10、一元二次方程的解為__________.四、解答題(6小題,每小題10分,共計60分)1、如圖,在菱形ABCD中,對角線AC與BD交于點O.過點C作BD的平行線,過點D作AC的平行線,兩直線相交于點E.(1)求證:四邊形OCED是矩形;(2)若CE=1,DE=2,ABCD的面積是.2、在菱形中,,點在的延長線上,點是直線上的動點,連接,將線段繞點逆時針得到線段,連接,.(1)如圖1,當點與點重合時,請直接寫出線段與的數(shù)量關(guān)系;(2)如圖2,當點在上時,線段,,之間有怎樣的數(shù)量關(guān)系?請寫出結(jié)論并給出證明;(3)當點在直線上時,若,,,請直接寫出線段的長.3、用適當?shù)姆椒ń庀铝蟹匠蹋海?)
(2)4、如圖,在?ABCD中,各內(nèi)角的平分線相交于點E,F(xiàn),G,H.(1)求證:四邊形EFGH是矩形;(2)若AB=6,BC=4,∠DAB=60°,求四邊形EFGH的面積.5、用適當?shù)姆椒ń庀铝蟹匠蹋?1)x2-x-1=0;(2)3x(x-2)=x-2;(3)x2-2x+1=0;(4)(x+8)(x+1)=-12.6、端午節(jié)是我國的傳統(tǒng)節(jié)日,益民食品廠為了解市民對去年銷量較好的花生粽子、水果粽子、豆沙粽子、紅棗粽子(分別用A、B、C、D表示)這四種不同口味的粽子的喜愛情況,對某居民區(qū)的市民進行了抽樣調(diào)查,并根據(jù)調(diào)查結(jié)果繪制了如下兩幅不完整的統(tǒng)計圖.(1)本次參加抽樣調(diào)查的居民有多少人?(2)將兩幅統(tǒng)計圖補充完整;(3)小明喜歡吃花生粽子和紅棗粽子,媽媽為他準備了四種粽子各一個,請用“列表法”或“畫樹形圖”的方法,求出小明同時選中花生粽子和紅棗粽子的概率.-參考答案-一、單選題1、B【解析】【分析】由矩形的性質(zhì)得出∠B=∠C=90°,AD=BC=5,CD=AB=3,由折疊的性質(zhì)得C'D=CD=3,C'E=CE,由勾股定理得出AC',在Rt△ABE中,由勾股定理得出方程,解方程即可.【詳解】解:∵四邊形ABCD是矩形,∴∠B=∠C=90°,AD=BC=5,CD=AB=3,由折疊的性質(zhì)得:C'D=CD=3,C'E=CE,∠DC'E=∠C=90°,∴∠AC'D=90°,∴AC'==4,設(shè)CE=C'E=x,在Rt△ABE中,BE=5-x,AE=x+4,由勾股定理得:(5-x)2+32=(x+4)2,解得:x=1,故選:B.【考點】本題考查了翻折變換的性質(zhì)、矩形的性質(zhì)、勾股定理等知識;熟練掌握翻折變換和矩形的性質(zhì),由勾股定理得出方程是解題的關(guān)鍵.2、C【解析】【分析】用樹狀圖表示所有等可能的結(jié)果,再求得甲和乙從同一節(jié)車廂上車的概率.【詳解】解:將3節(jié)車廂分別記為1號車廂,2號車廂,3號車廂,用樹狀圖表示所有等可能的結(jié)果,共有9種等可能的結(jié)果,其中,甲和乙從同一節(jié)車廂上車的有3可能,即甲和乙從同一節(jié)車廂上車的概率是,故選:C.【考點】本題考查概率,涉及畫樹狀圖求概率,是重要考點,難度較易,掌握相關(guān)知識是解題關(guān)鍵.3、A【解析】【分析】根據(jù)題意畫出樹形圖,求出在這兩個路口都直接通過的概率為即可求解.【詳解】解:由題意畫樹形圖得,由樹形圖得共有4種等可能性,其中在這兩個路口都直接通過的概率是P=.故選:A【考點】本題考查了列表或畫樹形圖求概率,理解題意,正確列表或畫樹形圖得到所有等可能的結(jié)果是解題關(guān)鍵.4、D【解析】【分析】先證明△ABE≌△DCF(SAS),由全等三角形的性質(zhì)得出∠BAE=∠CDF,證明△ABG≌△CBG(SAS),由全等三角形的性質(zhì)得出∠BAG=∠BCG,取CD的中點O,連接OB、OF,則OF=CO=CD=,由勾股定理求出OB的長,當O、M、B三點共線時,BM的長度最小,則可求出答案.【詳解】解:如圖,在正方形ABCD中,AB=AD=CB,∠EBA=∠FCD,∠ABG=∠CBG,在△ABE和△DCF中,,∴△ABE≌△DCF(SAS),∴∠BAE=∠CDF,在△ABG和△CBG中,,∴△ABG≌△CBG(SAS),∴∠BAG=∠BCG,∴∠CDF=∠BCG,∵∠DCM+∠BCG=∠FCD=90°,∴∠CDF+∠DCM=90°,∴∠DMC=180°﹣90°=90°,取CD的中點O,連接OB、OF,則OF=CO=CD=,在Rt△BOC中,OB===,根據(jù)三角形的三邊關(guān)系,OF+BM>OB,∴當O、M、B三點共線時,BM的長度最小,∴BM的最小值=OB﹣OF==.故選:D.【考點】本題主要考查了直角三角形的性質(zhì),勾股定理,正方形的性質(zhì),全等三角形的判定與性質(zhì)等知識,熟練掌握全等三角形的判定與性質(zhì)是解題的關(guān)鍵.5、B【解析】【詳解】解:∵m、n是方程x2-x-2022=0的兩個根,∴m2-m-2022=0,n2-n-2022=0,mn=-2022,∴m2-m=2022,n2-n=2022,∴(m2-2m-2022)(-n2+2n+2022)=(m2-m-m-2022)(-(n2-n)+n+2022)=(2022-m-2022)((-2022+n+2022)=-mn=2022,故選:B.【考點】本題考查了一元二次方程的解的定義和一元二次方程根與系數(shù)的關(guān)系,能根據(jù)已知條件得出m2-m-2022=0,n2-n-2022=0,mn=-2022是解此題的關(guān)鍵.6、B【解析】【分析】由勾股定理的逆定理證得∠ABC=90°,根據(jù)有一個角是直角的平行四邊形是矩形可判斷A;根據(jù)有一組鄰邊相等的平行四邊形是菱形可判斷B;根據(jù)對角線相等的平行四邊形是矩形可判斷C;根據(jù)有一個角是直角的平行四邊形是矩形可判斷D.【詳解】解:A.∵AB2+BC2=AC2,∴∠ABC=90°,∴?ABCD為矩形,故本選項不符合題意;B.∵AB=AD,∴?ABCD為菱形,故本選項符合題意;C.∵四邊形ABCD是平行四邊形,∴OA=OC,OB=OD,∵OA=OD,∴AC=BD,∴?ABCD是矩形,故本選項不符合題意;D.∵四邊形ABCD是平行四邊形,∴∠ABC=∠ADC,∵∠ABC+∠ADC=180°,∴∠ABC=∠ADC=90°,∴?ABCD為矩形,故本選項不符合題意;故選:B.【考點】本題考查了矩形的判定定理,勾股定理的逆定理,平行四邊形的性質(zhì),熟練掌握矩形的判定方法是解決問題的關(guān)鍵.7、B【解析】【分析】根據(jù)一元二次方程的概念(只含一個未知數(shù),并且含有未知數(shù)的項的次數(shù)最高為2次的整式方程是一元二次方程)逐一進行判斷即可得.【詳解】解:A、,當時,不是一元二次方程,故不符合題意;B、,是一元二次方程,符合題意;C、,不是整式方程,故不符合題意;D、,整理得:,不是一元二次方程,故不符合題意;故選:B.【考點】本題考查了一元二次方程的定義,熟練掌握其定義是解題的關(guān)鍵.二、多選題1、AC【解析】【分析】先解出一元二次方程,再根據(jù)勾股定理計算即可;【詳解】,,∴或,當2、3是直角邊時,斜邊;∵,∴3可以是三角形斜邊;故選AC.【考點】本題主要考查了一元二次方程的求解、勾股定理,準確計算是解題的關(guān)鍵.2、AC【解析】【分析】根據(jù)一元二次方程的定義逐個判斷即可.【詳解】解:A.x2=0,C.x2-3=x符合一元二次方程的定義;B.ax2+bx+c=0中,當a=0時,不是一元二次方程;D.a2+a-x=0是關(guān)于x的一元一次方程;E.(m-1)x2+4x+=0,當m=1時為關(guān)于x的一元一次方程;F.+=分母中含有字母,是分式方程;G.=2是無理方程;H.(x+1)2=x2-9展開后為x2+2x+1=x2-9,即2x+1=-9是一元一次方程.故選AC.【考點】本題考查了一元二次方程的定義,一元二次方程具有以下三個特點:(1)只含有一個未知數(shù);(2)未知數(shù)的最高次數(shù)是2;(3)是整式方程.3、BC【解析】【分析】分3為底邊長或腰長兩種情況考慮:當3為底時,由a=b及a+b=8即可求出a、b的值,利用三角形的三邊關(guān)系確定此種情況存在,再利用根與系數(shù)的關(guān)系即可求得的值;當3為腰時,則a、b中有一個為3,a+b=8即可求出b,再利用根與系數(shù)的關(guān)系即可求得的值.【詳解】解:當3為腰時,此時a=3或b=3,把x=3代入方程x2﹣8x﹣1+m=0得9﹣24﹣1+m=0,解得m=16,此時方程為x2﹣8x+15=0,解得x1=3,x2=5;當3為底時,此時a=b,Δ=82﹣4(﹣1+m)=0,解得m=17,此時方程為x2﹣8x+16=0,解得x1=x2=4;綜上所述,m的值為16或17.故答案為:BC.【考點】本題考查了一元二次方程根與系數(shù)的關(guān)系,等腰三角形的定義,分3為底邊長或腰長兩種情況討論是解題的關(guān)鍵.三、填空題1、AB=AD(答案不唯一)【解析】【分析】根據(jù)平行四邊形的判定證出四邊形ABCD是平行四邊形,根據(jù)菱形的判定證出即可.【詳解】解:添加的條件是AB=AD.理由如下:∵ABCD,ADBC,∴四邊形ABCD是平行四邊形,若AB=AD,∴四邊形ABCD是菱形.【考點】本題主要考查了菱形的判定、平行四邊形的判定等,能根據(jù)菱形的判定定理正確地添加條件是解此題的關(guān)鍵.2、①②④.【解析】【分析】證明Rt△DEF≌Rt△DEC得出①正確;在證明△ABE≌△DFA得出S△ABE=S△ADF;②正確;得出BE=AF,④正確,③不正確;即可得出結(jié)論.【詳解】解:四邊形是矩形,,在和中,,①正確在和中,;②正確,④正確,③不正確故答案為:①②④.【考點】本題考查了矩形的性質(zhì)、全等三角形的判定與性質(zhì)等知識,熟練掌握矩形的性質(zhì),證明三角形全等是解題的關(guān)鍵.3、①③④【解析】【分析】利用根與系數(shù)的關(guān)系判斷①;由Δ=b2-4ac判斷②;由判別式可判斷③;將x=m代入方程得am2=-(bm+c),再代入=(2am+b)2變形可判斷④.【詳解】解:若方程兩根為-1和2,則=-1×2=-2,即c=-2a,2a+c=2a-2a=0,故①正確;由b>a+c不能判斷Δ=b2-4ac值的大小情況,故②錯誤;若b=2a+3c,則Δ=b2-4ac=4(a+c)2+5c2>0,一元二次方程ax2+bx+c=0有兩個不相等的實數(shù)根,故③正確.若m是方程ax2+bx+c=0的一個根,所以有am2+bm+c=0,即am2=-(bm+c),而(2am+b)2=4a2m2+4abm+b2=4a[-(bm+c)]+4abm+b2=4abm-4abm-4ac+b2=b2-4ac.故④正確;故答案為:①③④.【考點】本題考查了一元二次方程ax2+bx+c=0(a≠0)的根與系數(shù)的關(guān)系及根的判別式Δ=b2-4ac:當Δ>0,方程有兩個不相等的實數(shù)根;當Δ=0,方程有兩個相等的實數(shù)根;當Δ<0,方程沒有實數(shù)根.4、8【解析】【分析】根據(jù)正方形的面積等于對角線乘積的一半列式計算即可得解.【詳解】解:∵正方形的一條對角線的長為4,∴這個正方形的面積=×42=8.故答案為:8.【考點】本題考查了正方形的性質(zhì),熟練掌握正方形的面積的兩種求法是解題的關(guān)鍵.5、3,4.【解析】【分析】先利用不等式組的解集情況可確定m≥3,再根據(jù)一元二次方程的定義和判別式的意義得到m≠0且△=42-4m≥0,解得m≤4且m≠0,所以m的范圍為3≤m≤4,然后找出此范圍內(nèi)的整數(shù)即可.【詳解】解:,解不等式①,得x>m,解不等式②,得x<3,∵關(guān)于x的不等式組無解,∴m≥3,∵關(guān)于y的一元二次方程有兩個實數(shù)根,∴△=42-4m≥0,且m≠0,解得m≤4且m≠0,∴3≤m≤4,∴符合條件的整數(shù)m為3,4.故答案為:3,4.【考點】本題考查了根的判別式:一元二次方程ax2+bx+c=0(a≠0)的根與△=b2-4ac有如下關(guān)系:當△>0時,方程有兩個不相等的實數(shù)根;當△=0時,方程有兩個相等的實數(shù)根;當△<0時,方程無實數(shù)根.也考查了解一元一次不等式組.熟練掌握一元二次方程根的判別式及一元一次不等式組的解法是解題的關(guān)鍵.6、21【解析】【分析】先根據(jù)根與系數(shù)的關(guān)系得到m+n=3,mn=﹣3,再根據(jù)完全平方公式變形得到m2+n2﹣2mn=(m+n)2﹣4mn,然后利用整體代入的方法計算.【詳解】解:∵m,n是關(guān)于x的方程x2-3x-3=0的兩根,∴m+n=3,mn=﹣3,∴m2+n2﹣2mn=(m+n)2﹣4mn=32﹣4×(﹣3)=21.故答案為:21.【考點】本題考查了根與系數(shù)的關(guān)系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的兩根時,x1+x2,x1x2.7、1【解析】【分析】利用因式分解法求出x1,x2,再根據(jù)根的關(guān)系即可求解.【詳解】解(x-3m)(x-m)=0∴x-3m=0或x-m=0解得x1=3m,x2=m,∴3m-m=2解得m=1故答案為:1.【考點】此題主要考查解一元二次方程,解題的關(guān)鍵是熟知因式分解法的運用.8、
【解析】【分析】(1)根據(jù)四邊形是正方形,得到從而得到再利用勾股定理求解即可得到答案;(2)如圖:連接,運用矩形的性質(zhì)和折疊的性質(zhì)求出的最小值,再設(shè),則,最后在中運用勾股定理解答即可【詳解】解:(1)如圖所示,∵四邊形是正方形∴∵∴∵四邊形ABCD是矩形∴,∠B=90°∴(2)如圖:連接,當點在上時,有最小值.∵四邊形是矩形,,,∴,,∴.由折疊性質(zhì),得,,∴的最小值.設(shè),則.在中,,即,解得,∴的長為.故答案為:.【考點】本題主要考查矩形的性質(zhì)和折疊的性質(zhì),正方形的性質(zhì),勾股定理,根據(jù)矩形的性質(zhì)和折疊的性質(zhì)確定的最小值成為解答本題的關(guān)鍵.9、或8或或【解析】【分析】當△CEF為直角三角形時,有兩種情況:①當點F落在矩形內(nèi)部時,如答圖1所示.先利用勾股定理計算出AC=10,根據(jù)折疊的性質(zhì)得∠AFE=∠D=90°,設(shè)DE=x,則EF=x,CE=6-x,然后在Rt△CEF中運用勾股定理可計算出x即可.②當點F落在AB邊上時,如答圖2所示.此時四邊形ADEF為正方形,得出DE=AD=8.③當點F落在BC邊上時,利用勾股定理即可解決問題;④如圖4中,當點F在CB的延長線上時,根據(jù)勾股定理列出方程求解即可.【詳解】解:∵四邊形ABCD是矩形,∴∠D=∠B=90°,CD=AB=6,,當△CEF為直角三角形時,有兩種情況:①當點F落在矩形內(nèi)部時,F(xiàn)落在AC上,如圖1所示.由折疊的性質(zhì)得:EF=DE,AF=AD=8,設(shè)DE=x,則EF=x,CE=6-x,在Rt△CEF中,由勾股定理得:∵EF2+CF2=CE2,∴x2+22=(6-x)2,解得x=,∴DE=;②當點F落在AB邊上時,如圖2所示.此時ADEF為正方形,∴DE=AD=8.③如圖4,當點F落在BC邊上時,易知BF,設(shè)DE=EF=x,在Rt△EFC中,,,,④如圖3中,當點F在CB的延長線上時,設(shè)DE=EF=x,則BF,在Rt△CEF中,,解得x=,綜上所述,BE的長為或8或或.【考點】本題考查了折疊的性質(zhì)、矩形的性質(zhì)、勾股定理、正方形的判定與性質(zhì)等知識;熟練掌握折疊和矩形的性質(zhì)是解決問題的關(guān)鍵.10、x=或x=2【解析】【分析】根據(jù)一元二次方程的解法解出答案即可.【詳解】當x-2=0時,x=2,當x-2≠0時,4x=1,x=,故答案為:x=或x=2.【考點】本題考查解一元二次方程,本題關(guān)鍵在于分情況討論.四、解答題1、(1)證明見解析;(2)4【解析】【分析】(1)欲證明四邊形OCED是矩形,只需推知四邊形OCED是平行四邊形,且有一內(nèi)角為90度即可;(2)由菱形的對角線互相垂直平分和菱形的面積公式解答.【詳解】(1)∵四邊形ABCD是菱形,∴AC⊥BD,∴∠COD=90°.∵CE∥OD,DE∥OC,∴四邊形OCED是平行四邊形,又∠COD=90°,∴平行四邊形OCED是矩形;(2)由(1)知,平行四邊形OCED是矩形,則CE=OD=1,DE=OC=2.∵四邊形ABCD是菱形,∴AC=2OC=4,BD=2OD=2,∴菱形ABCD的面積為:AC?BD=×4×2=4,故答案為:4.【考點】本題考查了矩形的判定與性質(zhì),菱形的性質(zhì),熟練掌握矩形的判定及性質(zhì)、菱形的性質(zhì)是解題的關(guān)鍵.2、(1)AM=DF;(2),證明見解析;(3)1或5【解析】【分析】(1)可通過證明,即可利用全等三角形的性質(zhì)得出結(jié)論;(2)通過作輔助線,構(gòu)造等邊三角形DMN,再通過全等證明出DF=EN,利用等邊三角形得出DN=DM,DA=DB,求出AM=BN,即可證明題中三線段之間的關(guān)系;(3)分別討論當E點在線段BD和DB的延長線上兩種情況,利用全等以及等邊三角形的相關(guān)結(jié)論即可求出DF的長.【詳解】解:(1)AM=DF;理由:∵菱形ABCD中,∠ABC=120°,可得△BCD和△ABD都是等邊三角形;∴BD=BA,∠DBA=60°,又由旋轉(zhuǎn)可知ME=MF,∠EMF=60°,得△MEF也是等邊三角形,∴EF=EM,∠MEF=60°,∴∠MEA=∠FED,可證:;∴AM=DF.(2)結(jié)論:證明:過點作交延長線于.∵四邊形是菱形∴,∴∵∴∴是等邊三角形∴,∵∴,∴是等邊三角形∴∵,∴是等邊三角形∴,,∴∴∴即:∵,∴∴.(3)1或5當E點在線段BD上時,由(2)知,,∵AB=6,∴BD=AD=6,∵BD=2BE,AD=3AM,∴BE=3,AM=2,∴DF=5;當E點在線段DB的延長線上時,如圖所示:作MN∥AB與DE交于點N,∵∠MDN=∠DAB=60°,利用平行線的性質(zhì)可得出∠DMN=60°,則△DMN是等邊三角形,∴MN=MD,又由∠DMN=∠EMF,∴∠EMN=∠FMD,∵ME=MF,∴,∴DF=EN∵EN=EB-BN=BD-AM=3-AD=3-2=1;綜上可得:DF的長為1或5.【考點】本題涉及到了幾何圖形的動點問題,綜合考查了等邊三角形的判定與性質(zhì)、菱形的性質(zhì)、全等三角形的判定與性質(zhì)、旋轉(zhuǎn)的性質(zhì)等內(nèi)容,要求學(xué)生理解相關(guān)概念與性質(zhì),能利用相關(guān)知識進行邊角之間的轉(zhuǎn)化,本題難點在于作輔助線,考查了學(xué)生的綜合分析的能力,對學(xué)生推理分析能力有較高要求.3、(1),;(2),【解析】【分析】(1)根據(jù)因式分解法求解一元二次方程的性質(zhì)計算,通過計算即可得到答案;(2)根據(jù)公式法求解一元二次方程的性質(zhì)計算,即可得到答案.【詳解】(1)∵∴∴∴,;(2)∵∴∴,.【考點】本題考查了一元二次方程的知識;解題的關(guān)鍵是熟練掌握一元二次方程的性質(zhì),從而完成求解.4、(1)證明見解析;(2)矩形EFGH的面積=.【解析】【分析】(1)根據(jù)角平分線的定義以及平行四邊形的性質(zhì),即可得出∠AGB=90°,∠DEC=90°,∠AHD=90°=∠EHG,進而判定四邊形EFGH是矩形;(2)根據(jù)含30°角的直角三角形的性質(zhì),得到BGAB=3,AG=3CE,BFBC=2,CF=2,進而得出EF和GF的長,可得四邊形EFGH的面積.【詳解】(1)∵GA平分∠BAD,GB平分∠ABC,∴∠GAB∠BAD,∠GBA∠ABC.∵?ABCD中,∠DAB+∠ABC=180°,∴∠GAB+∠GBA(∠DAB+∠A
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 教師用電腦協(xié)議書
- 旅游協(xié)議合同模板
- 旅行團用餐協(xié)議書
- 日用租車合同范本
- 舊房拆除合同范本
- 合同面積更改協(xié)議
- 鏈家入職合同范本
- 改裝車協(xié)議書范本
- 撤銷網(wǎng)簽合同協(xié)議
- 2025年高科技農(nóng)業(yè)自動化解決方案可行性研究報告
- 鐵路車務(wù)培訓(xùn)課件
- 2025至2030軍工自動化行業(yè)市場深度研究及發(fā)展前景投資可行性分析報告
- 老舊小區(qū)消防系統(tǒng)升級改造方案
- 起重機械應(yīng)急救援預(yù)案演練記錄
- 新專業(yè)申報答辯課件
- 護理事業(yè)十五五發(fā)展規(guī)劃(2026-2030年)
- 關(guān)于酒店掛賬管理辦法
- DBJ50-T-200-2024 建筑樁基礎(chǔ)技術(shù)標準
- 教科版科學(xué)小學(xué)五年級上冊《機械擺鐘》教學(xué)設(shè)計
- 學(xué)校旱地龍舟賽活動方案
- 2025年北京第一次高中學(xué)業(yè)水平合格考數(shù)學(xué)試卷真題(含答案詳解)
評論
0/150
提交評論