重難點解析青島版8年級數(shù)學(xué)下冊期末試題完美版附答案詳解_第1頁
重難點解析青島版8年級數(shù)學(xué)下冊期末試題完美版附答案詳解_第2頁
重難點解析青島版8年級數(shù)學(xué)下冊期末試題完美版附答案詳解_第3頁
重難點解析青島版8年級數(shù)學(xué)下冊期末試題完美版附答案詳解_第4頁
重難點解析青島版8年級數(shù)學(xué)下冊期末試題完美版附答案詳解_第5頁
已閱讀5頁,還剩21頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

青島版8年級數(shù)學(xué)下冊期末試題考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計16分)1、一個直角三角形的兩直角邊長分別為3,4,則第三邊長是(

)A.3 B.4 C.5 D.5或2、如圖,在平面直角坐標系中,O為原點,點A,C,E的坐標分別為(0,4),(8,0),(8,2),點P,Q是OC邊上的兩個動點,且PQ=2,要使四邊形APQE的周長最小,則點P的坐標為(

)A.(2,0) B.(3,0) C.(4,0) D.(5,0)3、下列圖案中,是軸對稱圖形但不是中心對稱圖形的是(

)A. B. C. D.4、若m=1+,則以下對m的值估算正確的是()A.0<m<1 B.1<m<2 C.2<m<3 D.3<m<45、在平面直角坐標系中,坐標原點O是線段AB的中點,若點A的坐標為(﹣1,2),則點B的坐標為(

)A.(2,﹣1) B.(﹣1,﹣2) C.(1,﹣2) D.(﹣2,1)6、2022年新年賀詞中提到“人不負青山,青山定不負人”,下列四個有關(guān)環(huán)保的圖形中,是軸對稱圖形,但不是中心對稱圖形的是(

)A. B. C. D.7、下列各數(shù)中,無理數(shù)是()A. B.3.14 C. D.8、下列各式中,與是同類二次根式的是(

)A. B. C. D.25第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計14分)1、已知函數(shù)y1=-2x與y2=x+b的圖像相交于點A(-1,2),則關(guān)于x的不等式-2x>x+b的解集是_____.2、如圖,直線AB的解析式為y=﹣x+b分別與x,y軸交于A,B兩點,點A的坐標為(3,0),過點B的直線交x軸負半軸于點C,且,在x軸上方存在點D,使以點A,B,D為頂點的三角形與△ABC全等,則點D的坐標為_____.3、如圖,在平面直角坐標系中,∠ACB=90°,∠A=30°,點A(-3,0),B(1,0).根據(jù)教材第65頁“思考”欄目可以得到這樣一個結(jié)論:在Rt△ABC中,AB=2BC.請在這一結(jié)論的基礎(chǔ)上繼續(xù)思考:若點D是AB邊上的動點,則CD+AD的最小值為______.4、如圖,直線y=﹣x+8與坐標軸分別交于A、B兩點,P是AB的中點,則OP的長為_____.5、如果單項式3xmy和﹣5x3yn是同類項,那么______(填“>”“<”或“=”)(2021m﹣n)0.6、已知,則x的值為_________.7、如圖,直線與直線交于點,由圖象可知,不等式的解為______.三、解答題(7小題,每小題10分,共計70分)1、如圖,矩形ABCD中,E、F分別為邊AD和BC上的點,BE=DF,求證:DE=BF.2、如圖1,在Rt△ABC中,∠ACB=90°,E是邊AC上任意一點(點E與點A,C不重合),以CE為一直角邊作Rt△ECD,∠ECD=90°,連接BE,AD.若AC=BC,CE=CD.(1)猜想線段BE,AD之間的數(shù)量關(guān)系及所在直線的位置關(guān)系,寫出結(jié)論并說明理由;(2)現(xiàn)將圖1中的Rt△ECD繞著點C順時針旋轉(zhuǎn)銳角α,得到圖2,請判斷①中的結(jié)論是否仍然成立,若成立,請證明;若不成立,請說明理由.3、如圖,,分別為銳角邊,上的點,把沿折疊,點落在所在平面內(nèi)的點處.(1)如圖1,點在的內(nèi)部,若,,求的度數(shù).(2)如圖2,若,,折疊后點在直線上方,與交于點,且,求折痕的長.(3)如圖3,若折疊后,直線,垂足為點,且,,求此時的長.4、若一個正數(shù)的平方根分別是m﹣3和m﹣7,求:(1)求這個正數(shù);(2)求m2+2的立方根.5、已知:如圖,在中,,是的角平分線,,,垂足分別為、.求證:四邊形是正方形.6、如圖,已知線段,利用尺規(guī)作圖的方法作一個正方形,使為正方形的對角線(保留作圖痕跡,不要求寫作法).7、求下列各式中的(1)(2)-參考答案-一、單選題1、C【解析】【分析】根據(jù)題意已知兩直角邊長分別為3,4,勾股定理即可求得第三邊即斜邊的長【詳解】解:一個直角三角形的兩直角邊長分別為3,4,第三邊長是故選C【點睛】本題考查了勾股定理,掌握勾股定理是解題的關(guān)鍵.2、C【解析】【分析】先分析四邊形APQE的周長最小,則最小,如圖,把沿軸正方向平移2個單位長度得作關(guān)于軸的對稱點則連接交軸于則所以當重合時,最小,即最小,再利用一次函數(shù)的性質(zhì)求解一次函數(shù)與軸的交點的坐標即可得到答案.【詳解】解:四邊形APQE的周長PQ=2,是定值,所以四邊形APQE的周長最小,則最小,如圖,把沿軸正方向平移2個單位長度得則則作關(guān)于軸的對稱點則連接交軸于則所以當重合時,最小,即最小,設(shè)的解析式為:解得:所以的解析式為:令則則即故選C【點睛】本題考查的是利用軸對稱的性質(zhì)求解四邊形的周長的最小值時點的坐標,平移的性質(zhì),利用待定系數(shù)法求解一次函數(shù)的解析式,掌握Q的位置使周長最小是解本題的關(guān)鍵.3、B【解析】【分析】根據(jù)軸對稱圖形與中心對稱圖形的概念逐一判斷即可得答案.【詳解】A.既不是軸對稱圖形也不是中心對稱圖形,不符合題意,B.是軸對稱圖形但不是中心對稱圖形,符合題意,C.不是軸對稱圖形但是中心對稱圖形,不符合題意,D.既不是軸對稱圖形也不是中心對稱圖形,不符合題意,故選:B.【點睛】本題考查了中心對稱圖形與軸對稱圖形的概念:軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分沿對稱軸折疊后可重合;中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后與原圖重合.4、C【解析】【分析】根據(jù)的范圍進行估算解答即可.【詳解】解:∵1<<2,∴2<1+<3,即2<m<3,故選:C.【點睛】此題主要考查了無理數(shù)的估算能力,現(xiàn)實生活中經(jīng)常需要估算,估算應(yīng)是我們具備的數(shù)學(xué)能力,“夾逼法”是估算的一般方法,也是常用方法.5、C【解析】【分析】因為坐標原點O是線段AB的中點,所以AB兩點關(guān)于原點對稱.根據(jù)關(guān)于原點對稱的點的橫坐標互為相反數(shù),縱坐標互為相反數(shù),可得答案.【詳解】解:∵坐標原點O是線段AB的中點,∴AB兩點關(guān)于原點對稱,∵點A的坐標為(﹣1,2),∴點B的坐標為(1,-2)故選:C【點睛】本題考查了關(guān)于原點對稱點的性質(zhì).解題的關(guān)鍵是知道關(guān)于原點對稱點的橫坐標互為相反數(shù),縱坐標也互為相反數(shù).6、D【解析】【分析】軸對稱圖形:如果一個平面圖形沿著一條直線折疊后,直線兩旁的部分能夠互相重合,那么這個圖形叫做軸對稱圖形.中心對稱圖形:在平面內(nèi),把一個圖形繞著某個點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形與另一個圖形重合,那么就說明這兩個圖形的形狀關(guān)于這個點成中心對稱.根據(jù)軸對稱圖形、和中心對稱圖形的概念,即可完成解題.【詳解】解:根據(jù)軸對稱和中心對稱的概念,選項A、B、C、D中,是軸對稱圖形的是B、D,是中心對稱圖形的是B.故選:B.【點睛】本題主要軸對稱圖形、中心對稱圖形的概念,熟練掌握知識點是解答本題的關(guān)鍵.7、D【解析】【分析】根據(jù)無理數(shù)是無限不循環(huán)小數(shù)進行逐項判斷即可.【詳解】解:A、-2是有理數(shù),不符合題意;B、3.14是有理數(shù),不符合題意;C、是有理數(shù),不符合題意;D、是無理數(shù),符合題意,故選:D.【點睛】本題主要考查無理數(shù),解答的關(guān)鍵掌握無理數(shù)與有理數(shù)的概念:有理數(shù)包含整數(shù)和分數(shù)、無理數(shù)為無限不循環(huán)小數(shù).8、B【解析】【分析】先把各選項化成最簡二次根式,然后根據(jù)同類二次根式判斷即可.【詳解】∵,,∴與是同類二次根式的是.故選:B.【點睛】本題考查了最簡二次根式和同類二次根式的定義,把各個選項化簡是解題的關(guān)鍵.二、填空題1、x<-1【解析】【分析】在同一坐標系中畫出兩個函數(shù)的圖象,根據(jù)圖象即可得出答案.【詳解】解:函數(shù)y1=-2x與y2=x+b的圖象如圖所示:要滿足-2x>x+b,即y1>y2,則圖象上兩直線交點的左邊符合題意,即x<-1,故答案為:x<-1.【點睛】此題考查了一元一次不等式與一次函數(shù)圖象的關(guān)系,用一次函數(shù)的函數(shù)思想求不等式的解集是比較常見的題型,關(guān)鍵在于理解不等關(guān)系反映在函數(shù)圖象上的幾何意義.2、(4,3)或(3,4)【解析】【分析】求出的坐標,分平行軸,不平行軸兩種情況,求解計算即可.【詳解】解:將點A的坐標代入函數(shù)表達式得:0=﹣3+b,解得:b=3∴直線AB的表達式為:y=﹣x+3,∴點B(0,3)∵OB:OC=3:1∴OC=1,∴點C(﹣1,0);①如圖,當BD平行x軸時,以點為頂點的三角形與全等,則四邊形為平行四邊形則BD=AC=1+3=4,則點D(4,3);②當BD不平行x軸時,則S△ABD=S△ABD′,則點D、D′到AB的距離相等,∴直線DD′∥AB,設(shè)直線DD′的表達式為:y=﹣x+n,將點D的坐標代入y=﹣x+n中解得:n=7,∴直線DD′的表達式為:y=﹣x+7,設(shè)點D′(m,7﹣m),∵A,B,D′為頂點的三角形與△ABC全等,則BD′=BC=,解得:m=3,故點D′(3,4);故答案為:(4,3)或(3,4).【點睛】本題考查了一次函數(shù)圖象上點的坐標特征,三角形全等,平行線的性質(zhì),勾股定理等知識.解題的關(guān)鍵與難點在于分情況求解.3、3【解析】【分析】作射線AG,使得∠BAG=30°,過D作DE⊥AG于E,過C作CF⊥AG于F,故DE=AD,故CD+AD=CD+DE≥CF,求出CF即可.【詳解】解:∵點A(-3,0),B(1,0),∠CAO=30°,∴AO=3,BO=1,AC=2OC,∵AC2=AO2+OC2,即(2OC)2=32+OC2,解得:OC=,∴AC=2OC2,作射線AG,使得∠BAG=30°,過D作DE⊥AG于E,過C作CF⊥AG于F,∴DE=AD,∴CD+AD=CD+DE≥CF,∵∠CAG=∠CAB+∠BAG=60°,即∠ACF=30°,且AC=2,∴AF=AC=,CF==3,∴CD+AD的最小值為3.故答案為:3.【點睛】本題考查了坐標與圖形,含30°直角三角形中,30°所對的直角邊等于斜邊一半,作出射線AG,使得∠BAG=30°是本題的關(guān)鍵.4、5【解析】【分析】先求直線與兩軸的交點點A(6,0),點B(0,8),然后利用勾股定理求出AB,利用直角三角形斜邊中線性質(zhì)計算即可.【詳解】解:∵直線y=﹣x+8與坐標軸分別交于A、B兩點,∴令x=0,y=8,令y=0,﹣x+8=0,解得x=6,∴點A(6,0),點B(0,8),∴OA=6,OB=8,在Rt△AOB中,根據(jù)勾股定理AB=,∵P是AB的中點,∠AOB=90°,∴OP=,故答案為:5.【點睛】本題考查一次函數(shù)與兩軸交點問題,勾股定理,直角三角形斜邊中線,掌握一次函數(shù)與兩軸交點問題,勾股定理,直角三角形斜邊中線是解題關(guān)鍵.5、>【解析】【分析】根據(jù)同類項的定義列出方程,解方程求得m、n的值,再代入計算即可得到答案.【詳解】解:因為單項式和是同類項,所以,,代入得,因為任何不等于0的數(shù)的0次冪都等于1,且,所以,,故答案為:.【點睛】本題考查了算術(shù)平方根、零指數(shù)冪、同類項的概念.所含字母相同,并且相同字母的指數(shù)也相同,這樣的項叫做同類項.6、5【解析】【分析】利用立方根的定義,可得,即可求解.【詳解】解:∵,∴,解得:.故答案為:5【點睛】本題主要考查了立方根的定義,熟練掌握若一個數(shù)的立方等于,則這個數(shù)稱為的立方根是解題的關(guān)鍵.7、【解析】【分析】觀察圖象知,直線的圖象位于直線的圖象上方或兩直線相交時,函數(shù)的函數(shù)值大于或等于函數(shù)的函數(shù)值,從而可求得的解.【詳解】由圖象知:不等式的解為故答案為:【點睛】本題考查了兩直線相交與一元一次不等式的關(guān)系,數(shù)形結(jié)合是關(guān)鍵.三、解答題1、見解析【解析】【分析】先利用四邊形ABCD是矩形,得出AB=CD,AD=BC,∠A=∠D=90°,然后證明△ABE≌△CDF即可.【詳解】證明:∵四邊形ABCD是矩形,∴AB=CD,AD=BC,∠A=∠D=90°,在Rt△ABE和Rt△CDF中,,∴Rt△ABE≌Rt△CDF(HL),∴AE=CF,∴DE=BF.【點睛】本題考查矩形的性質(zhì)以及直角三角形全等的判定.熟練掌握利用證三角形全等來證線段相等方法是解題的關(guān)鍵.2、(1)BE=AD,BE⊥AD;理由見解析(2)BE=AD,BE⊥AD仍然成立;證明見解析【解析】【分析】(1)延長BE,交AD于點F,證明△BCE≌△ACD,得到∠EBC+∠ADC=90°,從而得到∠BFD=90°即可得證.(2)仿照(1)的思路,證明△ACD≌△BCE,得到∠AFG+∠CAD=90°,從而得證∠AGF=90°.(1)BE=AD,BE⊥AD;理由:在△BCE和△ACD中,,∴△BCE≌△ACD(SAS),∴BE=AD,∠BEC=∠ADC,∵∠EBC+∠BEC=90°,∴∠EBC+∠ADC=90°,延長BE,交AD于點F,∴∠BFD=90°,∴BE⊥AD.(2)BE=AD,BE⊥AD仍然成立;理由:設(shè)BE與AC的交點為點F,BE與AD的交點為點G,如圖,∵∠ACB=∠ECD=90°,∴∠ACD=∠BCE.在△ACD和△BCE中,,∴△ACD≌△BCE(SAS).∴AD=BE,∠CAD=∠CBE.∵∠BFC=∠AFG,∠BFC+∠CBE=90°,∴∠AFG+∠CAD=90°.∴∠AGF=90°.∴BE⊥AD.【點睛】本題考查了直角三角形的全等證明和性質(zhì),運用兩角互余證明垂直,旋轉(zhuǎn)的性質(zhì),熟練掌握全等三角形的判定,靈活運用互余關(guān)系是解題的關(guān)鍵.3、(1)(2)(3)或10【解析】【分析】(1)根據(jù)折疊知,,根據(jù)三角形內(nèi)角和定理即可求得答案;(2)根據(jù),由等邊對等角可得,設(shè)度,根據(jù)三角形內(nèi)角和為180°,建立一元一次方程解方程求解即可求得,過作于,根據(jù)勾股定理求得,根據(jù)含30度角的直角三角形的性質(zhì)即可求得的長;(3)①當點在上方時,②當點在下方時,設(shè),則,勾股定理求解即可;(1)由折疊知,,同理得,∴.(2)如圖,∵,∴,設(shè)度,∵,∴度,∴,解得,即,過作于,∵,∴,∴.(3)當點在上方時,如圖3-1∵,,直線,∴,設(shè),則,又由折疊知:,,∴,在中,根據(jù)勾股定理,得解得,即;當點在下方時,如圖3-2由折疊知:,,∴,設(shè),則,在中,根據(jù)勾股定理,得,解得,即.【點睛】本題考查了折疊的性質(zhì),三角形內(nèi)角和定理,等邊對等角求角度,勾股定理,分類討論是解題的關(guān)鍵.4、(1)4(2)3【解析】【分析】(1)首先根據(jù)正數(shù)的兩個平方

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論