版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
人教版8年級(jí)數(shù)學(xué)上冊(cè)《全等三角形》重點(diǎn)解析考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計(jì)20分)1、如圖,BD=BC,BE=CA,∠DBE=∠C=62°,∠BDE=75°,則∠AFE的度數(shù)等于()A.148° B.140° C.135° D.128°2、已知圖中的兩個(gè)三角形全等,AD與CE是對(duì)應(yīng)邊,則A的對(duì)應(yīng)角是()A. B. C. D.3、“經(jīng)過已知角一邊上的一點(diǎn)作“個(gè)角等于已知角”的尺規(guī)作圖過程如下:已知:如圖(1),∠AOB和OA上一點(diǎn)C.求作:一個(gè)角等于∠AOB,使它的頂點(diǎn)為C,一邊為CA.作法:如圖(2),(1)在0A上取一點(diǎn)D(OD<OC),以點(diǎn)O為圓心,OD長為半徑畫弧,交OB于點(diǎn)E;(2)以點(diǎn)C為圓心,OD長為半徑畫弧,交CA于點(diǎn)F,以點(diǎn)F為圓心,DE長為半徑畫弧,兩弧交于點(diǎn)C;(3)作射線CC.所以∠CCA就是所求作的角此作圖的依據(jù)中不含有()A.三邊分別相等的兩個(gè)三角形全等 B.全等三角形的對(duì)應(yīng)角相等C.兩直線平行同位角相等 D.兩點(diǎn)確定一條直線4、下列語句中正確的是()A.斜邊和一銳角對(duì)應(yīng)相等的兩個(gè)直角三角形全等B.有兩邊對(duì)應(yīng)相等的兩個(gè)直角三角形全等C.有兩個(gè)角對(duì)應(yīng)相等的兩個(gè)直角三角形全等D.有一直角邊和一銳角對(duì)應(yīng)相等的兩個(gè)直角三角形全等5、在正方形網(wǎng)格中,∠AOB的位置如圖所示,到∠AOB兩邊距離相等的點(diǎn)應(yīng)是(
)A.點(diǎn)M B.點(diǎn)N C.點(diǎn)P D.點(diǎn)Q第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計(jì)30分)1、如圖,已知在△ABD和△ABC中,∠DAB=∠CAB,點(diǎn)A、B、E在同一條直線上,若使△ABD≌△ABC,則還需添加的一個(gè)條件是______.(只填一個(gè)即可)2、在△ABC中,AB=4,AC=3,AD是△ABC的角平分線,則△ABD與△ACD的面積之比是_____.3、如圖所示,點(diǎn)在一塊直角三角板上(其中),于點(diǎn),于點(diǎn),若,則_________度.4、如圖,在中,,AD是的角平分線,過點(diǎn)D作,若,則______.5、如圖,中,以點(diǎn)O為圓心,任意長為半徑作弧,交于點(diǎn)M,交于點(diǎn)N,分別以點(diǎn)M,N為圓心,以大于的長為半徑作弧,兩弧交于點(diǎn)C,作射線,過點(diǎn)C作于點(diǎn)D.交于點(diǎn)E,若,則的度數(shù)為_______________.三、解答題(5小題,每小題10分,共計(jì)50分)1、如圖,D是△ABC的邊AC上一點(diǎn),點(diǎn)E在AC的延長線上,ED=AC,過點(diǎn)E作EF∥AB,并截取EF=AB,連接DF.求證:DF=CB.2、如圖,點(diǎn)E在CD上,BC與AE交于點(diǎn)F,AB=CB,BE=BD,∠1=∠2.(1)求證:;(2)證明:∠1=∠3.3、在中,,直線經(jīng)過點(diǎn)C,且于D,于E,(1)當(dāng)直線繞點(diǎn)C旋轉(zhuǎn)到圖1的位置時(shí),顯然有:(不必證明);(2)當(dāng)直線繞點(diǎn)C旋轉(zhuǎn)到圖2的位置時(shí),求證:;(3)當(dāng)直線MN繞點(diǎn)C旋轉(zhuǎn)到圖3的位置時(shí),試問、、具有怎樣的等量關(guān)系?請(qǐng)直接寫出這個(gè)等量關(guān)系.4、如圖,在等腰三角形ABC中,∠A=90°,AB=AC=6,D是BC邊的中點(diǎn),點(diǎn)E在線段AB上從B向A運(yùn)動(dòng),同時(shí)點(diǎn)F在線段AC上從點(diǎn)A向C運(yùn)動(dòng),速度都是1個(gè)單位/秒,時(shí)間是t秒(0<t<6),連接DE、DF、EF.(1)請(qǐng)判斷△EDF形狀,并證明你的結(jié)論.(2)以A、E、D、F四點(diǎn)組成的四邊形面積是否發(fā)生變化?若不變,求出這個(gè)值;若變化,用含t的式子表示.5、在湖的兩岸A、B間建一座觀賞橋,由于條件限制,無法直接度量A、B兩點(diǎn)間的距離.請(qǐng)你用學(xué)過的數(shù)學(xué)知識(shí)按以下要求設(shè)計(jì)一測(cè)量方案.(1)畫出測(cè)量圖案;(2)寫出測(cè)量步驟(測(cè)量數(shù)據(jù)用字母表示);(3)計(jì)算AB的距離(寫出求解或推理過程,結(jié)果用字母表示).-參考答案-一、單選題1、A【解析】【分析】根據(jù)已知條件可知△ABC≌△EDB,由全等可得到∠A=∠E,并利用三角形內(nèi)角和可求得∠E,再應(yīng)用外角和求得∠AFE.【詳解】∵BD=BC,BE=CA,∠DBE=∠C,∴△ABC≌△EDB(SAS),∴∠A=∠E,∵∠DBE=62°,∠BDE=75°,∴∠E=180°﹣60°﹣75°=43°,∴∠A=43°,∵∠BDE+∠ADE=180°,∴∠ADE=105°,∴∠AFE=∠ADE+∠A=105°+43°=148°.故選:A.【考點(diǎn)】本題考查了全等三角形的判定和性質(zhì)、三角形外角和、內(nèi)角和定理,難度不大,但要注意數(shù)形結(jié)合思想的運(yùn)用.2、A【解析】【分析】觀察圖形,AD與CE是對(duì)應(yīng)邊,根據(jù)對(duì)應(yīng)邊去找對(duì)應(yīng)角.【詳解】觀察圖形知,AD與CE是對(duì)應(yīng)邊∴∠B與∠ACD是對(duì)應(yīng)角又∠D與∠E是對(duì)應(yīng)角∴∠A與∠BCE是對(duì)應(yīng)角.故選:A.【考點(diǎn)】本題考查了全等三角形的性質(zhì),正確的識(shí)別圖形是解題的關(guān)鍵.3、C【解析】【分析】根據(jù)題意知,作圖依據(jù)有全等三角形的判定定理SSS,全等三角形的性質(zhì)和兩點(diǎn)確定一條直線,直接判斷即可.【詳解】解:由題意可得:由全等三角形的判定定理SSS可以推知△EOD≌△GCF,故A正確;結(jié)合該全等三角形的性質(zhì)對(duì)應(yīng)角相等,故B正確;作射線CG,利用兩點(diǎn)確定一條直線,故D正確;故選:C.【考點(diǎn)】本題考查作一個(gè)角等于已知角和三角形全等的判定與性質(zhì),解題關(guān)鍵是明確作圖原理,準(zhǔn)確進(jìn)行判斷.4、A【解析】【分析】根據(jù)全等三角形的判定定理,用排除法以每一個(gè)選項(xiàng)進(jìn)行分析從而確定最終答案.【詳解】A、正確,利用AAS來判定全等;B、不正確,兩邊的位置不確定,不一定全等;C、不正確,兩個(gè)三角形不一定全等;D、不正確,有一直角邊和一銳角對(duì)應(yīng)相等不一定能推出兩直角三角形全等,沒有相關(guān)判定方法對(duì)應(yīng).故選A【考點(diǎn)】本題考核知識(shí)點(diǎn):全等三角形的判定.解題關(guān)鍵點(diǎn):熟記全等三角形的相關(guān)判定.5、A【解析】【分析】利用到角的兩邊的距離相等的點(diǎn)在角的平分線上進(jìn)行判斷.【詳解】點(diǎn)P、Q、M、N中在∠AOB的平分線上的是M點(diǎn).故選:A.【考點(diǎn)】本題主要考查了角平分線的性質(zhì),根據(jù)正方形網(wǎng)格看出∠AOB平分線上的點(diǎn)是解答問題的關(guān)鍵.二、填空題1、AD=AC(∠D=∠C或∠ABD=∠ABC等)【解析】【分析】利用全等三角形的判定方法添加條件即可求解.【詳解】解:∵∠DAB=∠CAB,AB=AB,∴當(dāng)添加AD=AC時(shí),可根據(jù)“SAS”判斷△ABD≌△ABC;當(dāng)添加∠D=∠C時(shí),可根據(jù)“AAS”判斷△ABD≌△ABC;當(dāng)添加∠ABD=∠ABC時(shí),可根據(jù)“ASA”判斷△ABD≌△ABC.故答案為AD=AC(∠D=∠C或∠ABD=∠ABC等).【考點(diǎn)】本題考查了全等三角形的判定:熟練掌握全等三角形的5種判定方法,選用哪一種方法,取決于題目中的已知條件.2、4:3【解析】【分析】根據(jù)角平分線的性質(zhì),可得出△ABD的邊AB上的高與△ACD的AC上的高相等,估計(jì)三角形的面積公式,即可得出△ABD與△ACD的面積之比等于對(duì)應(yīng)邊之比.【詳解】∵AD是△ABC的角平分線,∴設(shè)△ABD的邊AB上的高與△ACD的AC上的高分別為h1,h2,∴h1=h2,∴△ABD與△ACD的面積之比=AB:AC=4:3,故答案為4:3.3、15【解析】【分析】根據(jù),,判斷OB是的角平分線,即可求解.【詳解】解:由題意,,,,即點(diǎn)O到BC、AB的距離相等,∴OB是的角平分線,∵,∴.故答案為:15.【考點(diǎn)】本題考查角平分線的定義及判定,熟練掌握“到一個(gè)角的兩邊距離相等的點(diǎn)在這個(gè)角的平分線上”是解題的關(guān)鍵.4、7【解析】【分析】先利用角平分線性質(zhì)證明CD=DE,再求出的值即可.【詳解】解:∵AD平分∠BAC交BC于點(diǎn)D,,DE⊥AB,∴CD=ED.∵,∴BD+CD=7,∴,故答案為:7.【考點(diǎn)】本題主要考查了角平分線的性質(zhì),解題的關(guān)鍵是熟練掌握角平分線的性質(zhì).5、65°或65度【解析】【分析】根據(jù)作圖先得出OC平分∠AOB,根據(jù),得出,根據(jù)為的外角,得出,即可求出,根據(jù),得出,即可求解.【詳解】解:根據(jù)作圖可知,OC平分∠AOB,∴,∵,,,為的外角,,,,,.故答案為:.【考點(diǎn)】本題主要考查了角平分線的基本作圖,平行線的性質(zhì),三角形外角的性質(zhì),直角三角形的性質(zhì),根據(jù)題意求出是解題的關(guān)鍵.三、解答題1、證明過程見解析【解析】【分析】根據(jù)EF∥AB,得到,再根據(jù)已知條件證明,即可得解;【詳解】∵EF∥AB,∴,在和中,,∴,∴;【考點(diǎn)】本題主要考查了全等三角形的判定與性質(zhì),準(zhǔn)確分析判斷是解題的關(guān)鍵.2、(1)證明見解析;(2)證明見解析.【解析】【分析】(1)先根據(jù)角的和差可得,再根據(jù)三角形全等的判定定理即可得證;(2)先根據(jù)三角形全等的性質(zhì)可得,再根據(jù)對(duì)頂角相等可得,然后根據(jù)三角形的內(nèi)角和定理、等量代換即可得證.【詳解】(1),,即,在和中,,;(2)由(1)已證:,,由對(duì)頂角相等得:,又,.【考點(diǎn)】本題考查了三角形全等的判定定理與性質(zhì)、對(duì)頂角相等、三角形的內(nèi)角和定理等知識(shí)點(diǎn),熟練掌握三角形全等的判定定理與性質(zhì)是解題關(guān)鍵.3、(1)見解析;(2)見解析;(3)DE=BE-AD【解析】【分析】(1)由于△ABC中,∠ACB=90°,AC=BC,直線MN經(jīng)過點(diǎn)C,且AD⊥MN于D,BE⊥MN于E,由此即可證明△ADC≌△CEB,然后利用全等三角形的性質(zhì)即可解決問題;(2)由于△ABC中,∠ACB=90°,AC=BC,直線MN經(jīng)過點(diǎn)C,且AD⊥MN于D,BE⊥MN于E,由此仍然可以證明△ADC≌△CEB,然后利用全等三角形的性質(zhì)也可以解決問題;(3)當(dāng)直線MN繞點(diǎn)C旋轉(zhuǎn)到圖(3)的位置時(shí),仍然△ADC≌△CEB,然后利用全等三角形的性質(zhì)可以得到DE=BE-AD.【詳解】解:(1)∵△ABC中,∠ACB=90°,∴∠ACD+∠BCE=90°,又直線MN經(jīng)過點(diǎn)C,且AD⊥MN于D,BE⊥MN于E,∴∠ADC=∠CEB=90°∴∠ACD+∠DAC=90°,∴∠BCE=∠DAC,在△ADC和△CEB中,,∴△ADC≌△CEB(AAS),∴CD=BE,CE=AD,∴DE=CD+CE=AD+BE;(2)∵△ABC中,∠ACB=90°,直線MN經(jīng)過點(diǎn)C,且AD⊥MN于D,BE⊥MN于E,∴∠ADC=∠CEB=90°,∠ACD+∠BCE=∠BCE+∠CBE=90°,而AC=BC,∴△ADC≌△CEB,∴CD=BE,CE=AD,∴DE=CE-CD=AD-BE;(3)如圖3,∵△ABC中,∠ACB=90°,直線MN經(jīng)過點(diǎn)C,且AD⊥MN于D,BE⊥MN于E,∴∠ADC=∠CEB=90°,∠ACD+∠BCE=∠BCE+∠CBE=90°,∴∠ACD=∠CBE,∵AC=BC,∴△ADC≌△CEB,∴CD=BE,CE=AD,∴DE=CD-CE=BE-AD;DE、AD、BE之間的關(guān)系為DE=BE-AD.【考點(diǎn)】此題需要考查了全等三角形的判定與性質(zhì),也利用了直角三角形的性質(zhì),是一個(gè)探究性題目,對(duì)于學(xué)生的能力要求比較高.4、(1)△EDF為等腰直角三角形,證明見解析;(2)四邊形AEDF面積不變,9.【解析】【分析】(1)連接AD,利用等腰直角三角形的性質(zhì)根據(jù)SAS證明△BDE≌△ADF,即可得到結(jié)論;(2)根據(jù)(1)得到S△BDE=S△ADF,推出S四邊形AEDF=S△ADF+S△ADE=S△ABD=S△ABC,根據(jù)公式計(jì)算即可得到答案.【詳解】解:(1)△EDF為等腰直角三角形,理由如下:連接AD,∵AB=AC,∠BAC=90°,點(diǎn)D是BC中點(diǎn),∴AD=BD=CD=BC,AD平分∠BAC,∴∠B=∠C=∠BAD=∠CAD=45°,∵點(diǎn)E、F速度都是1個(gè)單位秒,時(shí)間是t秒,∴BE=AF,又∵∠B=∠DAF=45°,AD=BD,∴△BDE≌△ADF(SAS),∴DE=DF,∠BDE=∠ADF.∵∠BDE+∠ADE=90°,∴∠ADF+∠ADE=90°,∴∠EDF=90°,∴△EDF為等腰直角三角形;(2)四邊形AEDF面積不變,理由:∵由(1)可知,△BDE≌△ADF,∴S△BDE=S△ADF,∴S四邊形AEDF=S△ADF+S△ADE=S△ABD=S△ABC,∴S四邊形AEDF=××AC×AB=9.【考點(diǎn)】此題考查等腰直角三角形的性質(zhì),等腰三角形三線合一的性質(zhì),全等三角形的判定及性質(zhì).5、(1)見解析;(2)見解析;(3)設(shè)DC=m,則AB=m.【解析】【分析】本題讓我
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 三角形中位線教學(xué)精粹
- 河的第三條岸探索
- 《GB-T 17780.2-2012紡織機(jī)械 安全要求 第2部分:紡紗準(zhǔn)備和紡紗機(jī)械》專題研究報(bào)告
- 云平臺(tái)升級(jí)運(yùn)維合同
- 智能電網(wǎng)調(diào)度工程師招聘筆試考試試卷和答案
- 2025年海洋測(cè)量儀器項(xiàng)目合作計(jì)劃書
- 遼寧省2025秋九年級(jí)英語全冊(cè)Unit4Iusedtobeafraidofthedark易錯(cuò)考點(diǎn)專練課件新版人教新目標(biāo)版
- 幽門狹窄的飲食護(hù)理方案
- 腹瀉與免疫力:護(hù)理干預(yù)措施
- 護(hù)理實(shí)習(xí)中的常見問題及對(duì)策
- 2025年沈陽華晨專用車有限公司公開招聘筆試歷年參考題庫附帶答案詳解
- 2026(蘇教版)數(shù)學(xué)五上期末復(fù)習(xí)大全(知識(shí)梳理+易錯(cuò)題+壓軸題+模擬卷)
- 2024廣東廣州市海珠區(qū)琶洲街道招聘雇員(協(xié)管員)5人 備考題庫帶答案解析
- 蓄電池安全管理課件
- 建筑業(yè)項(xiàng)目經(jīng)理目標(biāo)達(dá)成度考核表
- 2025廣東肇慶四會(huì)市建筑安裝工程有限公司招聘工作人員考試參考題庫帶答案解析
- 第五單元國樂飄香(一)《二泉映月》課件人音版(簡(jiǎn)譜)初中音樂八年級(jí)上冊(cè)
- 簡(jiǎn)約物業(yè)交接班管理制度
- 收購摩托駕校協(xié)議書
- 2025年浙江省中考數(shù)學(xué)試卷(含答案)
- 汽車行業(yè)可信數(shù)據(jù)空間方案
評(píng)論
0/150
提交評(píng)論