版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
廣東省高州市中考數學真題分類(勾股定理)匯編同步訓練考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題14分)一、單選題(7小題,每小題2分,共計14分)1、如圖,△ABC中,,以其三邊分別向外側作正方形,然后將整個圖形放置于如圖所示的長方形中,若要求圖中兩個陰影部分面積之和,則只需知道(
)A.以BC為邊的正方形面積 B.以AC為邊的正方形面積C.以AB為邊的正方形面積 D.△ABC的面積2、如圖所示,將一根長為24cm的筷子,置于底面直徑為5cm,高為12cm的圓柱形水杯中,設筷子露在外面的長為hcm,則h的取值范圍是()A.0<h≤11 B.11≤h≤12 C.h≥12 D.0<h≤123、小明想知道學校旗桿的高,他發(fā)現旗桿上的繩子垂到地面還多1m,當它把繩子的下端拉開4m后,發(fā)現下端剛好接觸地面,則旗桿的高為(
)A.7m B.7.5m C.8m D.9m4、如圖,△OAB的頂點O(0,0),頂點A,B分別在第一、四象限,且AB⊥x軸,若AB=6,OA=OB=5,則點A的坐標是(
)A. B. C. D.5、下列各組數:①3、4、5
②4、5、6
③2.5、6、6.5
④8、15、17,其中是勾股數的有(
)A.4組 B.3組 C.2組 D.1組6、“趙爽弦圖”巧妙地利用面積關系證明了勾股定理,是我國古代數學的驕傲,如圖所示的“趙爽弦圖”是由四個全等的直角三角形和一個小正方形拼成的一個大正方形,設直角三角形較長直角邊長為a,較短直角邊長為b,若,大正方形的面積為13,則小正方形的面積為()A.3 B.4 C.5 D.67、如圖,在中,,,,為邊上一動點,于,于,為中點,則的最小值為(
).A. B. C. D.第Ⅱ卷(非選擇題86分)二、填空題(8小題,每小題2分,共計16分)1、《九章算術》中記載著這樣一個問題:已知甲、乙兩人同時從同一地點出發(fā),甲的速度為7步/分,乙的速度為3步/分,乙一直向東走,甲先向南走10步,后又斜向北偏東方向走了一段后與乙相遇,那么相遇時,甲、乙各走了多遠?解:如圖,設甲乙兩人出發(fā)后x分鐘相遇.根據勾股定理可列得方程為______.2、如圖,某農舍的大門是一個木制的長方形柵欄,它的高為2m,寬為1.5m,現需要在相對的頂點間用一塊木板加固,則木板的長為________.3、勘測隊按實際需要構建了平面直角坐標系,并標示了A,B,C三地的坐標,數據如圖(單位:km).筆直鐵路經過A,B兩地.(1)A,B間的距離為______km;(2)計劃修一條從C到鐵路AB的最短公路l,并在l上建一個維修站D,使D到A,C的距離相等,則C,D間的距離為______km.4、在Rt△ABC中,∠C=90°,且AC∶BC=1∶7,AB=100米,則AC=_________米.5、如圖,學校有一塊長方形草坪,有極少數人為了避開拐角走“捷徑”,在草坪內走出了一條“路”,他們僅僅少走了________步路(假設步為米),卻踩傷了花草.6、如圖,臺風過后,某希望小學的旗桿在離地某處斷裂,且旗桿頂部落在離旗桿底部8m處,已知旗桿原長16m,你能求出旗桿在離底部________m位置斷裂.7、把兩個同樣大小含角的三角尺按如圖所示的方式放置,其中一個三角尺的銳角頂點與另一個三角尺的直角頂點重合于點,且另外三個銳角頂點在同一直線上.若,則____.8、我國古代的數學名著《九章算術》中有這樣一道題目“今有立木,系索其末,委地三尺.引索卻行,去本八尺而索盡.問索長幾何?”譯文為“今有一豎立著的木柱,在木柱的上端系有繩索,繩索從木柱上端順木柱下垂后,堆在地面的部分尚有3尺,牽索沿地面退行,在離木柱根部8尺處時,繩索用盡問繩索長是多少?”示意圖如下圖所示,設繩索的長為尺,根據題意,可列方程為__________.三、解答題(7小題,每小題10分,共計70分)1、如圖是一個長方形的大門,小強拿著一根竹竿要通過大門.他把竹竿豎放,發(fā)現竹竿比大門高1尺;然后他把竹竿斜放,竹竿恰好等于大門的對角線的長.已知大門寬4尺,請求出竹竿的長.2、在邊長為8的等邊ABC中,點D是邊AB上的一動點,點E在邊AC上,且CE=2AD,射線DE繞點D順時針旋轉60°交BC邊于F.(1)如圖1,求證:∠AED=∠BDF;(2)如圖2,在射線DF上取DP=DE,連接BP,①求∠DBP的度數;②取邊BC的中點M,當PM取最小值時,求AD的長.3、如圖,在△ABC和△DCE中,AC=DE,∠B=∠DCE=90°,點A,C,D依次在同一直線上,且AB∥DE.(1)求證:△ABC≌△DCE;(2)連結AE,當BC=5,AC=12時,求AE的長.4、如圖所示,△ABC的兩條高AD,BE相交于點F,AC=BC.(1)求證:△ADC≌△BEC.(2)若CD=1,BE=2,求線段AC的長.5、設直角三角形的兩條直角邊長及斜邊上的高分別為a,b及h,求證:.6、如圖,點是內一點,把繞點順時針旋轉得到,且,,.(1)判斷的形狀,并說明理由;(2)求的度數.7、(1)圖1是由有20個邊長為1的正方形組成的,把它按圖1的分割方法分割成5部分后可拼接成一個大正方形(內部的粗實線表示分割線),請你在圖2的網格中畫出拼接成的大正方形.(2)如果(1)中分割成的直角三角形兩直角邊分別為a,b斜邊為c.請你利用圖2中拼成的大正方形證明勾股定理.(3)應用:測量旗桿的高度:校園內有一旗桿,小希想知道旗桿的高度,經觀察發(fā)現從頂端垂下一根拉繩,于是他測出了下列數據:①測得拉繩垂到地面后,多出的長度為0.5米;②他在距離旗桿4米的地方拉直繩子,拉繩的下端恰好距離地面0.5米.請你根據所測得的數據設計可行性方案,解決這一問題.(畫出示意圖并計算出這根旗桿的高度).-參考答案-一、單選題1、D【解析】【分析】如圖所示,過點C作CN⊥AB于N,延長AB、BA分別交正方形兩邊于H、E,證明△ADE≌△CAN得到,AE=CN同理可證△BGH≌△CBN,得到,BH=CN,則,即可推出由此即可得到答案.【詳解】解:如圖所示,過點C作CN⊥AB于N,延長AB、BA分別交正方形兩邊于H、E,∴∠CNA=∠DEA=∠DAC=90°,∴∠DAE+∠EDA=∠DAE+∠CAN=90°,∴∠ADE=∠CAN,又∵AD=CA,∴△ADE≌△CAN(AAS),∴,AE=CN同理可證△BGH≌△CBN,∴,BH=CN∴,∴,∴只需要知道△ABC的面積的面積即可求出陰影部分的面積,故選D【考點】本題主要考查了全等三角形的性質與判定,解題的關鍵在于能夠正確作出輔助線,構造全等三角形.2、B【解析】【分析】根據題意畫出圖形,先找出h的值為最大和最小時筷子的位置,再根據勾股定理解答即可.【詳解】解:當筷子與杯底垂直時h最大,h最大=24﹣12=12cm.當筷子與杯底及杯高構成直角三角形時h最小,如圖所示:此時,AB===13cm,∴h=24﹣13=11cm.∴h的取值范圍是11cm≤h≤12cm.故選:B.【考點】本題考查了勾股定理的實際應用問題,解答此題的關鍵是根據題意畫出圖形找出何時h有最大及最小值,同時注意勾股定理的靈活運用,有一定難度.3、B【解析】【分析】根據題意,畫出圖形,設旗桿AB=x米,則AC=(x+1)米,在Rt△ABC中,根據勾股定理的方程(x+1)2=x2+42,解方程求得x的值即可.【詳解】如圖所示:設旗桿AB=x米,則AC=(x+1)米,在Rt△ABC中,AC2=AB2+BC2,即(x+1)2=x2+42,解得:x=7.5.故選B.【考點】本題考查了勾股定理的應用,解決本題的基本思路是是畫出示意圖,利用勾股定理列方程求解.4、D【解析】【分析】利用HL證明△ACO≌△BCO,利用勾股定理得到OC=4,即可求解.【詳解】解:∵AB⊥x軸,∴∠ACO=∠BCO=90°,∵OA=OB,OC=OC,∴△ACO≌△BCO(HL),∴AC=BC=AB=3,∵OA=5,∴OC=4,∴點A的坐標是(4,3),故選:D.【考點】本題考查了坐標與圖形,全等三角形的判定和性質,勾股定理,解題的關鍵是靈活運用所學知識解決問題.5、C【解析】【詳解】解:∵32+42=52,①符合勾股數的定義;∵42+52≠62,②不符合勾股數的定義;∵2.5和6.5不是正整數,③不符合勾股數的定義;∵82+152=172,④符合勾股數的定義,是勾股數的有:①④,共2組,故選:C.6、C【解析】【詳解】解:如圖所示,∵(a+b)2=21∴a2+2ab+b2=21,∵大正方形的面積為13,即:a2+b2=13,∴2ab=21﹣13=8,∴小正方形的面積為13﹣8=5.故選C.7、D【解析】【分析】先根據矩形的判定得出AEPF是矩形,再根據矩形的性質得出EF,AP互相平分,且EF=AP,再根據垂線段最短的性質就可以得出AP⊥BC時,AP的值最小,即AM的值最小,根據面積關系建立等式求出其解即可.【詳解】解:如圖,連接AP,∵AB=3,AC=4,BC=5,∴∠EAF=90°,∵PE⊥AB于E,PF⊥AC于F,∴四邊形AEPF是矩形,∴EF,AP互相平分.且EF=AP,∴EF,AP的交點就是M點.∵當AP的值最小時,AM的值就最小,∴當AP⊥BC時,AP的值最小,即AM的值最?。逜P?BC=AB?AC,∴AP?BC=AB?AC,∵AB=3,AC=4,BC=5,∴5AP=3×4,∴AP=,∴AM=.故選:D.【考點】本題考查了矩形的性質的運用,勾股定理的運用,三角形的面積公式的運用,垂線段最短的性質的運用,解題的關鍵是求出AP的最小值.二、填空題1、【解析】【分析】設甲、乙二人出發(fā)后相遇的時間為x,然后利用勾股定理列出方程即可.【詳解】解:設經x秒二人在C處相遇,這時乙共行AC=3x,甲共行AB+BC=7x,∵AB=10,∴BC=7x-10,又∵∠A=90°,∴BC2=AC2+AB2,∴(7x-10)2=(3x)2+102,故答案是:(7x-10)2=(3x)2+102.【考點】本題考查了勾股定理的應用,解題的關鍵是從實際問題中抽象出直角三角形.2、2.5m【解析】【詳解】設木棒的長為xm,根據勾股定理可得:x2=22+1.52,解得x=2.5.故木棒的長為2.5m.故答案為2.5m.3、
20
13【解析】【分析】(1)由垂線段最短以及根據兩點的縱坐標相同即可求出AB的長度;(2)根據A、B、C三點的坐標可求出CE與AE的長度,設CD=x,根據勾股定理即可求出x的值.【詳解】(1)由A、B兩點的縱坐標相同可知:AB∥x軸,∴AB=12﹣(﹣8)=20;(2)過點C作l⊥AB于點E,連接AC,作AC的垂直平分線交直線l于點D,由(1)可知:CE=1﹣(﹣17)=18,AE=12,設CD=x,∴AD=CD=x,由勾股定理可知:x2=(18﹣x)2+122,∴解得:x=13,∴CD=13.故答案為(1)20;(2)13.【考點】本題考查了勾股定理,解題的關鍵是根據A、B、C三點的坐標求出相關線段的長度,本題屬于中等題型.4、【解析】【分析】首先根據BC,AC的比設出BC,AC,然后利用勾股定理列式計算求得a,即可求解.【詳解】解:∵AC∶BC=1∶7,∴設AC=a,則BC=7a,∵∠C=90°,∴AB2=AC2+BC2,∴1002=a2+(7a)2,解得:a=10,∴AC=10米.故答案為:10.【考點】本題主要考查勾股定理,掌握勾股定理的內容是解題的關鍵.5、【解析】【分析】少走的距離是AC+BC-AB,在直角△ABC中根據勾股定理求得AB的長即可.【詳解】解:如圖,∵在中,,∴米,則少走的距離為:米,∵步為米,∴少走了步.故答案為:.【考點】本題考查正確運用勾股定理.善于觀察題目的信息,掌握勾股定理是解題的關鍵.6、6【解析】【分析】設,則,在中,利用勾股定理列方程,即可求解.【詳解】解:如圖,由題意知,,,設,則,在中,,即,解得,因此旗桿在離底部6m位置斷裂.故答案為:6.【考點】本題考查勾股定理的實際應用,讀懂題意,根據勾股定理列出方程是解題的關鍵.7、.【解析】【分析】如圖,先利用等腰直角三角形的性質求出,,再利用勾股定理求出DF,即可得出結論.【詳解】如圖,過點作于,在中,,,,兩個同樣大小的含角的三角尺,,在中,根據勾股定理得,,,故答案為.【考點】此題主要考查了勾股定理,等腰直角三角形的性質,正確作出輔助線是解本題的關鍵.8、x2?(x?3)2=82【解析】【分析】設繩索長為x尺,根據勾股定理列出方程解答即可.【詳解】解:設繩索長為x尺,根據題意得:x2?(x?3)2=82,故答案為:x2?(x?3)2=82.【考點】本題考查了勾股定理的應用,找準等量關系,正確列出相應方程是解題的關鍵.三、解答題1、尺【解析】【分析】根據題中所給的條件可知,竹竿斜放恰好等于門的對角線長,可與門的寬和高構成直角三角形,運用勾股定理可求出門高,進而解答即可.【詳解】解:設門高為x尺,則竹竿長為(x+1)尺,根據勾股定理可得:x2+42=(x+1)2,即x2+16=x2+2x+1,解得:x=7.5,∴門高7.5尺,竹竿高=7.5+1=8.5(尺).故答案為尺.【考點】本題考查勾股定理的運用,正確運用勾股定理,將數學思想運用到實際問題中是解題關鍵.2、(1)見解析;(2)①30°;②2【解析】【分析】(1)根據等邊三角形的性質求解即可;(2)①方法一:連接EP,過點P作GQ∥BC分別交AB,AC于點G,Q,易知△AGQ和△DEP均為等邊三角形,得到△ADE≌△GPD≌△QEP(AAS),即可得解;方法二:在DB上取DG=AE,證明△ADE≌△GPD(SAS),即可得解;②在DB上取DG=AE,當時,PM取得最小值,得到PM=2,PB=2,過點G作GH⊥BP于點H,利用直角三角形的性質求解即可;【詳解】解:(1)在等邊△ABC中,∵AB=AC,∠A=∠ABC=∠C=60°,∵∠EDF=60°,∴∠ADE+∠BDF=∠ADE+∠AED=120°,∴∠AED=∠BDF;(2)①方法一:如答題圖1,連接EP,過點P作GQ∥BC分別交AB,AC于點G,Q,易知△AGQ和△DEP均為等邊三角形,∴BG=CQ,∠AGQ=60°,∴∠ADE+∠BDF=∠ADE+∠AED=120°,∴∠AED=∠BDF,同理∠BDF=∠EPQ,∴可證:△ADE≌△GPD≌△QEP(AAS),∴AD=GP=QE,∵CE=2AD=CQ+EQ=AD+BG,∴PG=BG,∴∠DBP=∠BPG=30°;方法二:如答題圖2,在DB上取DG=AE,∵∠AED=∠BDF又∵DP=DE,∴△ADE≌△GPD(SAS),∴PG=AD,∠PGD=60°,∵CE=AC-AE=AB-DG=AD+BG=2AD,∴BG=AD=PG,∴∠DBP=∠BPG=30°;②如答圖3,在DB上取DG=AE,由①可知∠MBP=30°,AD=BG=PG;當時,PM取得最小值;在Rt△BMP中,∠MBP=30°,BM=4,∴PM=2,PB=2;過點G作GH⊥BP于點H,∵BG=PG,∴BH=;在Rt△BGH中,∠GBP=30°,BH=∴BG=2,∴AD=BG=2.【考點】本題主要考查了全等三角形的判定與性質、等邊三角形的綜合應用,準確計算是解題的關鍵.3、(1)見解析;(2)13【解析】【分析】根據題意可知,本題考查平行的性質,全等三角形的判定和勾股定理,根據判定定理,運用兩直線平行內錯角相等再通過AAS以及勾股定理進行求解.【詳解】解:(1)∵∴在△ABC和△DCE中∴△ABC≌△DCE(2)由(1)可得BC=CE=5在直角三角形ACE中【考點】本題考查平行的性質,全等三角形的判定和勾股定理,熟練掌握判定定理運用以及平行的性質是解決此類問題的關鍵.4、(1)見解析(2)【解析】【分析】(1)由AD⊥BC,BE⊥AC得∠BEC=∠ADC=90°,可證∠DAC=∠CBE,根據AAS可證△ADC≌△BEC;(2)由△ADC≌△BEC,得CD=CE=1,根據勾股定理可求.(1)證明:∵AD⊥BC,BE⊥AC,∴∠BEC=∠ADC=90°∴∠C+∠DAC=90°=∠C+∠CBE,∴∠DAC=∠CBE在△ADC和△BEC中,∴△ADC≌△BEC(AAS);(2)解:∵△ADC≌△BEC,∴CD=CE=1,∴BC===,∴AC=BC=【考點】本題考查了全等三角形的判定與性質,勾股定理,熟練掌握全等三角形的判定與性質是解題的關鍵.5、見解析【解析】【分析】設斜邊為c,根據勾股定理即可得出c=,再由三角形的面積公式即可得出結論.【詳解】證明:設斜邊為c,根據勾股定理即可得出c=,∵ab=ch,∴ab=h,即a2b2=a2h2+b2h2,∴=,即.【考點】本題考查的是勾股定理,熟知在任何一個直角三角形中,兩條直角邊長的平方之
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 急性肺栓塞診療指南
- 《GB-T 38834.1-2020機器人 服務機器人性能規(guī)范及其試驗方法 第1部分:輪式機器人運動》專題研究報告
- 2026年湖南電子科技職業(yè)學院單招職業(yè)適應性考試題庫含答案詳解
- 《正常人體功能》課件-蛋白質的生物合成
- 《python語言程序設計》課件-項目實戰(zhàn) 塔吊智能螺母預警系統(tǒng)開發(fā)
- 運維人員培訓服務合同
- 鐘表行業(yè)智能手表軟件工程師崗位招聘考試試卷及答案
- 2025年9月21日陜西渭南社工面試題及答案解析
- 工業(yè)園區(qū)管理委員會2025年度應急管理工作情況報告
- 2025年電力金具合作協(xié)議書
- 文冠果整形修剪課件
- 2025年下半年上海當代藝術博物館公開招聘工作人員(第二批)參考筆試試題及答案解析
- 2026國家糧食和物資儲備局垂直管理局事業(yè)單位招聘應屆畢業(yè)生27人考試歷年真題匯編附答案解析
- 癌性疼痛的中醫(yī)治療
- 大學生就業(yè)面試培訓
- 2026年旅行社經營管理(旅行社管理)考題及答案
- 2026年北京第一次普通高中學業(yè)水平合格性考試化學仿真模擬卷01(考試版)
- 東北三省精準教學聯盟2025年12月高三聯考語文
- 物業(yè)服務協(xié)議轉讓合同
- 2024年江蘇省普通高中學業(yè)水平測試小高考生物、地理、歷史、政治試卷及答案(綜合版)
- 8 泵站設備安裝工程單元工程質量驗收評定表及填表說明
評論
0/150
提交評論