版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
中考數(shù)學(xué)總復(fù)習(xí)《圓》達(dá)標(biāo)測試考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計(jì)20分)1、如圖,在中,,,,以點(diǎn)為圓心,為半徑的圓與相交于點(diǎn),則的長為(
)A.2 B. C.3 D.2、如圖,點(diǎn)在上,,則(
)A. B. C. D.3、下列語句,錯(cuò)誤的是()A.直徑是弦 B.相等的圓心角所對的弧相等C.弦的垂直平分線一定經(jīng)過圓心 D.平分弧的半徑垂直于弧所對的弦4、如圖,AB為的直徑,C,D為上的兩點(diǎn),若,則的度數(shù)為(
)A. B. C. D.5、如圖,AB是⊙O的直徑,BC與⊙O相切于點(diǎn)B,AC交⊙O于點(diǎn)D,若∠ACB=50°,則∠BOD等于()A.40° B.50° C.60° D.80°第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計(jì)30分)1、如圖,在⊙O中,CD是直徑,弦ABCD,垂足為E,連接BC,若AB=cm,,則圓O的半徑為_______cm.2、數(shù)學(xué)課上,老師讓學(xué)生用尺規(guī)作圖畫Rt△ABC,使其斜邊AB=c,一條直角邊BC=a.小明的作法如圖所示,你認(rèn)為小明這種作法中判斷∠ACB是直角的依據(jù)是_____.3、如圖,在甲,,,,以點(diǎn)為圓心,的長為半徑作圓,交于點(diǎn),交于點(diǎn),陰影部分的面積為__________(結(jié)果保留).4、如圖,在矩形中,是邊上一點(diǎn),連接,將矩形沿翻折,使點(diǎn)落在邊上點(diǎn)處,連接.在上取點(diǎn),以點(diǎn)為圓心,長為半徑作⊙與相切于點(diǎn).若,,給出下列結(jié)論:①是的中點(diǎn);②⊙的半徑是2;③;④.其中正確的是________.(填序號(hào))5、如圖,PA,PB分別切⊙O于A,B,并與⊙O的切線,分別相交于C,D,已知△PCD的周長等于10cm,則PA=__________cm.三、解答題(5小題,每小題10分,共計(jì)50分)1、如圖,一根長的繩子,一端拴在柱子上,另一端拴著一只羊(羊只能在草地上活動(dòng)),請畫出羊的活動(dòng)區(qū)域.2、如圖,四邊形OABC中,.OA=OC,BA=BC.以O(shè)為圓心,以O(shè)A為半徑作☉O(1)求證:BC是☉O的切線:(2)連接BO并延長交⊙O于點(diǎn)D,延長AO交⊙O于點(diǎn)E,與此的延長線交于點(diǎn)F若.①補(bǔ)全圖形;②求證:OF=OB.3、如圖,在⊙O中,,∠ACB=60°,求證∠AOB=∠BOC=∠COA.4、如圖,半徑為6的⊙O與Rt△ABC的邊AB相切于點(diǎn)A,交邊BC于點(diǎn)C,D,∠B=90°,連接OD,AD.(1)若∠ACB=20°,求的長(結(jié)果保留).(2)求證:AD平分∠BDO.5、如圖,,比較與的長度,并證明你的結(jié)論.-參考答案-一、單選題1、C【解析】【分析】過C點(diǎn)作CH⊥AB于H點(diǎn),在△ABC、△CBH中由分別求出BC和BH,再由垂徑定理求出BD,進(jìn)而AD=AB-BD即可求解.【詳解】解:過C點(diǎn)作CH⊥AB于H點(diǎn),如下圖所示:∵∠ACB=90°,∠A=30°,∴△ABC、△CBH均為30°、60°、90°直角三角形,其三邊之比為,Rt△ABC中,,Rt△BCH中,,由垂徑定理可知:,∴,故選:C.【考點(diǎn)】本題考查了直角三角形30°角所對直角邊等于斜邊的一半,垂徑定理等知識(shí)點(diǎn),熟練掌握垂徑定理是解決本題的關(guān)鍵.2、D【解析】【分析】先證明再利用等弧的性質(zhì)及圓周角定理可得答案.【詳解】解:點(diǎn)在上,,故選:【考點(diǎn)】本題考查的兩條弧,兩個(gè)圓心角,兩條弦之間的關(guān)系,圓周角定理,等弧的概念與性質(zhì),掌握同弧或等弧的概念與性質(zhì)是解題的關(guān)鍵.3、B【解析】【分析】將每一句話進(jìn)行分析和處理即可得出本題答案.【詳解】A.直徑是弦,正確.B.∵在同圓或等圓中,相等的圓心角所對的弧相等,∴相等的圓心角所對的弧相等,錯(cuò)誤.C.弦的垂直平分線一定經(jīng)過圓心,正確.D.平分弧的半徑垂直于弧所對的弦,正確.故答案選:B.【考點(diǎn)】本題考查了圓中弦、圓心角、弧度之間的關(guān)系,熟練掌握該知識(shí)點(diǎn)是本題解題的關(guān)鍵.4、B【解析】【分析】連接AD,如圖,根據(jù)圓周角定理得到,,然后利用互余計(jì)算出,從而得到的度數(shù).【詳解】解:連接AD,如圖,AB為的直徑,,,.故選B.【考點(diǎn)】本題主要考查了同弦所對的圓周角相等,直徑所對的圓周角是直角,解題的關(guān)鍵在于能夠熟練掌握相關(guān)知識(shí)進(jìn)行求解.5、D【解析】【分析】根據(jù)切線的性質(zhì)得到∠ABC=90°,根據(jù)直角三角形的性質(zhì)求出∠A,根據(jù)圓周角定理計(jì)算即可.【詳解】∵BC是⊙O的切線,∴∠ABC=90°,∴∠A=90°-∠ACB=40°,由圓周角定理得,∠BOD=2∠A=80°,故選D.【考點(diǎn)】本題考查的是切線的性質(zhì)、圓周角定理,掌握圓的切線垂直于經(jīng)過切點(diǎn)的半徑是解題的關(guān)鍵.二、填空題1、2【解析】【詳解】解:如圖,連接OB∵∴∵在⊙O中,CD是直徑,弦ABCD∴AE=BE,且△OBE是等腰直角三角形∵AB=cm∴BE=cm∴OB=2cm故答案為:2.【考點(diǎn)】本題考查了垂徑定理:平分弦的直徑平分這條弦,并且平分弦所對的兩條?。部疾榱藞A周角定理和等腰直角三角形的性質(zhì).2、直徑所對的圓周角是直角【解析】【分析】根據(jù)圓周角定理即可得出結(jié)論.【詳解】解:根據(jù)“直徑所對的圓周角是直角”得出.故答案為直徑所對的圓周角是直角.【考點(diǎn)】本題考查的是圓周角定理,熟知直徑所對的圓周角是直角是解答此題的關(guān)鍵.3、【解析】【分析】連接BE,根據(jù)正切的定義求出∠A,根據(jù)扇形面積公式、三角形的面積公式計(jì)算即可.【詳解】解:連接BE,在Rt△ABC中,∠ABC=90°,∴tanA=,∴∠A=60°,∵BA=BE,∴△ABE為等邊三角形,∴∠ABE=30°,∴∠EBC=30°,∴陰影部分的面積=×2×2×+=故答案為.【考點(diǎn)】本題考查的是扇形面積計(jì)算、等邊三角形的判定和性質(zhì),掌握扇形面積公式是解題的關(guān)鍵.4、①②④.【解析】【詳解】解:①∵AF是AB翻折而來,∴AF=AB=6.∵AD=BC=,∴DF==3,∴F是CD中點(diǎn);∴①正確;②連接OP,∵⊙O與AD相切于點(diǎn)P,∴OP⊥AD.∵AD⊥DC,∴OP∥CD,∴,設(shè)OP=OF=x,則,解得:x=2,∴②正確;③∵Rt△ADF中,AF=6,DF=3,∴∠DAF=30°,∠AFD=60°,∴∠EAF=∠EAB=30°,∴AE=2EF.∵∠AFE=90°,∴∠EFC=90°﹣∠AFD=30°,∴EF=2EC,∴AE=4CE,∴③錯(cuò)誤;④連接OG,作OH⊥FG,∵∠AFD=60°,OF=OG,∴△OFG為等邊△.同理△OPG為等邊△,∴∠POG=∠FOG=60°,OH=OG=,S扇形OPG=S扇形OGF,∴S陰影=(S矩形OPDH﹣S扇形OPG﹣S△OGH)+(S扇形OGF﹣S△OFG)=S矩形OPDH﹣S△OFG==,∴④正確;故答案為①②④.5、5【解析】【詳解】如圖,設(shè)DC與⊙O的切點(diǎn)為E,∵PA、PB分別是⊙O的切線,且切點(diǎn)為A、B,∴PA=PB,同理,可得:DE=DA,CE=CB,則△PCD的周長=PD+DE+CE+PC=PD+DA+PC+CB=PA+PB=10(cm),∴PA=PB=5cm,故答案為:5.三、解答題1、見解析【解析】【分析】根據(jù)題意畫出兩個(gè)扇形即可得到羊的活動(dòng)區(qū)域.【詳解】解:如圖,以點(diǎn)O為圓心,5m長的繩子為半徑畫弧交草地左邊界于點(diǎn)A,交OD的延長線于點(diǎn)B,再以D為圓心,DB長為半徑畫弧交草地的右邊界于點(diǎn)C,則扇形AOB和扇形BDC部分即為羊的活動(dòng)區(qū)域.【考點(diǎn)】本題考查了作圖﹣應(yīng)用與設(shè)計(jì)作圖、扇形面積,根據(jù)題意畫扇形是解決本題的關(guān)鍵.2、(1)證明見解析(2)①圖見解析(2)證明見解析【解析】【分析】(1)連接AC,根據(jù)等腰三角形的性質(zhì)得到∠OAC=∠OCA,∠BAC=∠BCA,得到∠OCB=∠OAB=90°,根據(jù)切線的判定定理證明;(2)①根據(jù)題意畫出圖形;②根據(jù)切線長定理得到BA=BC,得到BD是AC的垂直平分線,根據(jù)垂徑定理、圓心角和弧的關(guān)系定理得到∠AOC=120°,根據(jù)等腰三角形的判定定理證明結(jié)論.【詳解】(1)證明:如圖1,連接AC,∵OA=OC,∴∠OAC=∠OCA,∵BA=BC,∴∠BAC=∠BCA,∴∠OAC+∠BCA=∠OCA+∠BCA,即∠OCB=∠OAB=90°,∴OC⊥BC,∴BC是⊙O的切線;(2)①解:補(bǔ)全圖形如圖2;②證明:∵∠OAB=90°,∴BA是⊙O的切線,又BC是⊙O的切線,∴BA=BC,∵BA=BC,OA=OC,∴BD是AC的垂直平分線,∴,∵,∴=,∴∠AOC=120°,∴∠AOB=∠COB=∠COE=60°,∴∠OBF=∠F=30°,∴OF=OB.【考點(diǎn)】本題考查的是切線的判定、垂徑定理、切線長定理的應(yīng)用,掌握切線的判定定理、圓心角和弧之間的關(guān)系定理是解題的關(guān)鍵.3、詳見解析.【解析】【詳解】試題分析:根據(jù)弧相等,則對應(yīng)的弦相等從而證明AB=AC,則△ABC易證是等邊三角形,然后根據(jù)同圓中弦相等,則對應(yīng)的圓心角相等即可證得.試題解析:證明:∵,∴AB=AC,△ABC為等腰三角形(相等的弧所對的弦相等)∵∠ACB=60°∴△ABC為等邊三角形,AB=BC=CA∴∠AOB=∠BOC=∠COA(相等的弦所對的圓心角相等)4、(1)(2)見解析【解析】【分析】(1)連接,由,得,由弧長公式即得的長為;(2)根據(jù)切于點(diǎn),,可得,有,而,即可得,從而平分.(1)解:連接OA,∵∠ACB=20°,∴∠AOD=4
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 基于大數(shù)據(jù)的閱讀趨勢預(yù)測
- 2025年海南省公需課學(xué)習(xí)-醫(yī)療衛(wèi)生服務(wù)體系規(guī)劃1119
- 2025年八大特殊作業(yè)安全填空題試題庫及答案(共50題)
- 2025年新疆初中語文題庫及答案
- 2025年策畫師游戲測試題及答案
- 租賃公司租房合同范本
- 超市員工安全 合同范本
- 資產(chǎn)收購公司合同范本
- 因政策終止合同范本
- 荒地旱地出租合同范本
- 加盟2025年房地產(chǎn)經(jīng)紀(jì)協(xié)議合同
- 2025至2030中國商業(yè)攝影行業(yè)市場發(fā)展分析及發(fā)展前景預(yù)測與投資風(fēng)險(xiǎn)報(bào)告
- 地球系統(tǒng)多源數(shù)據(jù)融合-洞察及研究
- 香水銷售知識(shí)培訓(xùn)內(nèi)容課件
- 工業(yè)產(chǎn)品早期可制造性評估標(biāo)準(zhǔn)
- DB45-T 2757.1-2023 交通運(yùn)輸行業(yè)安全風(fēng)險(xiǎn)評估規(guī)范 第1部分:總則
- 3.6運(yùn)動(dòng)和能量課件-科學(xué)三年級(jí)上冊教科版-1
- 2025年酒店行業(yè)全球酒店管理與酒店服務(wù)創(chuàng)新研究報(bào)告
- 2025年及未來5年中國銅鋁復(fù)合板帶行業(yè)市場供需格局及行業(yè)前景展望報(bào)告
- Unit6Ouranimalfriends單詞詞匯(課件)-Joinin外研劍橋英語四年級(jí)上冊
- 第9課 約束教學(xué)設(shè)計(jì)-2025-2026學(xué)年初中日語人教版2024七年級(jí)全一冊-人教版
評論
0/150
提交評論