2025年安徽亳州闞疃金石中學數(shù)學高三上期末聯(lián)考模擬試題_第1頁
2025年安徽亳州闞疃金石中學數(shù)學高三上期末聯(lián)考模擬試題_第2頁
2025年安徽亳州闞疃金石中學數(shù)學高三上期末聯(lián)考模擬試題_第3頁
2025年安徽亳州闞疃金石中學數(shù)學高三上期末聯(lián)考模擬試題_第4頁
2025年安徽亳州闞疃金石中學數(shù)學高三上期末聯(lián)考模擬試題_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2025年安徽亳州闞疃金石中學數(shù)學高三上期末聯(lián)考模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知我市某居民小區(qū)戶主人數(shù)和戶主對戶型結(jié)構(gòu)的滿意率分別如圖和如圖所示,為了解該小區(qū)戶主對戶型結(jié)構(gòu)的滿意程度,用分層抽樣的方法抽取的戶主進行調(diào)查,則樣本容量和抽取的戶主對四居室滿意的人數(shù)分別為A.240,18 B.200,20C.240,20 D.200,182.若復(fù)數(shù)z滿足,則()A. B. C. D.3.在等腰直角三角形中,,為的中點,將它沿翻折,使點與點間的距離為,此時四面體的外接球的表面積為().A. B. C. D.4.我國古代數(shù)學家秦九韶在《數(shù)書九章》中記述了“三斜求積術(shù)”,用現(xiàn)代式子表示即為:在中,角所對的邊分別為,則的面積.根據(jù)此公式,若,且,則的面積為()A. B. C. D.5.博覽會安排了分別標有序號為“1號”“2號”“3號”的三輛車,等可能隨機順序前往酒店接嘉賓.某嘉賓突發(fā)奇想,設(shè)計兩種乘車方案.方案一:不乘坐第一輛車,若第二輛車的車序號大于第一輛車的車序號,就乘坐此車,否則乘坐第三輛車;方案二:直接乘坐第一輛車.記方案一與方案二坐到“3號”車的概率分別為P1,P2,則()A.P1?P2= B.P1=P2= C.P1+P2= D.P1<P26.某工廠利用隨機數(shù)表示對生產(chǎn)的600個零件進行抽樣測試,先將600個零件進行編號,編號分別為001,002,……,599,600.從中抽取60個樣本,下圖提供隨機數(shù)表的第4行到第6行:若從表中第6行第6列開始向右讀取數(shù)據(jù),則得到的第6個樣本編號是()A.324 B.522 C.535 D.5787.《九章算術(shù)》中記載,塹堵是底面為直角三角形的直三棱柱,陽馬指底面為矩形,一側(cè)棱垂直于底面的四棱錐.如圖,在塹堵中,,,當陽馬體積的最大值為時,塹堵的外接球的體積為()A. B. C. D.8.若復(fù)數(shù)滿足,則()A. B. C. D.9.南宋數(shù)學家楊輝在《詳解九章算法》和《算法通變本末》中,提出了一些新的垛積公式,所討論的高階等差數(shù)列與一般等差數(shù)列不同,前后兩項之差并不相等,但是逐項差數(shù)之差或者高次差成等差數(shù)列對這類高階等差數(shù)列的研究,在楊輝之后一般稱為“垛積術(shù)”.現(xiàn)有高階等差數(shù)列,其前7項分別為1,4,8,14,23,36,54,則該數(shù)列的第19項為()(注:)A.1624 B.1024 C.1198 D.156010.本次模擬考試結(jié)束后,班級要排一張語文、數(shù)學、英語、物理、化學、生物六科試卷講評順序表,若化學排在生物前面,數(shù)學與物理不相鄰且都不排在最后,則不同的排表方法共有()A.72種 B.144種 C.288種 D.360種11.如圖在直角坐標系中,過原點作曲線的切線,切點為,過點分別作、軸的垂線,垂足分別為、,在矩形中隨機選取一點,則它在陰影部分的概率為()A. B. C. D.12.函數(shù)在上的最大值和最小值分別為()A.,-2 B.,-9 C.-2,-9 D.2,-2二、填空題:本題共4小題,每小題5分,共20分。13.如圖,是圓的直徑,弦的延長線相交于點垂直的延長線于點.求證:14.已知,,且,則的最小值是______.15.若函數(shù)與函數(shù),在公共點處有共同的切線,則實數(shù)的值為______.16.若變量,滿足約束條件,則的最大值為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,四棱錐中,平面平面,若,四邊形是平行四邊形,且.(Ⅰ)求證:;(Ⅱ)若點在線段上,且平面,,,求二面角的余弦值.18.(12分)已知.(Ⅰ)若,求不等式的解集;(Ⅱ),,,求實數(shù)的取值范圍.19.(12分)已知橢圓:的左、右焦點分別為,,焦距為2,且經(jīng)過點,斜率為的直線經(jīng)過點,與橢圓交于,兩點.(1)求橢圓的方程;(2)在軸上是否存在點,使得以,為鄰邊的平行四邊形是菱形?如果存在,求出的取值范圍,如果不存在,請說明理由.20.(12分)已知函數(shù).(1)若在上單調(diào)遞增,求實數(shù)的取值范圍;(2)若,對,恒有成立,求實數(shù)的最小值.21.(12分)在如圖所示的四棱錐中,四邊形是等腰梯形,,,平面,,.(1)求證:平面;(2)已知二面角的余弦值為,求直線與平面所成角的正弦值.22.(10分)在銳角中,角A,B,C所對的邊分別為a,b,c.已知.(1)求的值;(2)當,且時,求的面積.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】

利用統(tǒng)計圖結(jié)合分層抽樣性質(zhì)能求出樣本容量,利用條形圖能求出抽取的戶主對四居室滿意的人數(shù).【詳解】樣本容量為:(150+250+400)×30%=240,∴抽取的戶主對四居室滿意的人數(shù)為:故選A.本題考查樣本容量和抽取的戶主對四居室滿意的人數(shù)的求法,是基礎(chǔ)題,解題時要認真審題,注意統(tǒng)計圖的性質(zhì)的合理運用.2.D【解析】

先化簡得再求得解.【詳解】所以.故選:D本題主要考查復(fù)數(shù)的運算和模的計算,意在考查學生對這些知識的理解掌握水平.3.D【解析】

如圖,將四面體放到直三棱柱中,求四面體的外接球的半徑轉(zhuǎn)化為求三棱柱外接球的半徑,然后確定球心在上下底面外接圓圓心連線中點,這樣根據(jù)幾何關(guān)系,求外接球的半徑.【詳解】中,易知,翻折后,,,設(shè)外接圓的半徑為,,,如圖:易得平面,將四面體放到直三棱柱中,則球心在上下底面外接圓圓心連線中點,設(shè)幾何體外接球的半徑為,,四面體的外接球的表面積為.故選:D本題考查幾何體的外接球的表面積,意在考查空間想象能力,和計算能力,屬于中檔題型,求幾何體的外接球的半徑時,一般可以用補形法,因正方體,長方體的外接球半徑容易求,可以將一些特殊的幾何體補形為正方體或長方體,比如三條側(cè)棱兩兩垂直的三棱錐,或是構(gòu)造直角三角形法,確定球心的位置,構(gòu)造關(guān)于外接球半徑的方程求解.4.A【解析】

根據(jù),利用正弦定理邊化為角得,整理為,根據(jù),得,再由余弦定理得,又,代入公式求解.【詳解】由得,即,即,因為,所以,由余弦定理,所以,由的面積公式得故選:A本題主要考查正弦定理和余弦定理以及類比推理,還考查了運算求解的能力,屬于中檔題.5.C【解析】

將三輛車的出車可能順序一一列出,找出符合條件的即可.【詳解】三輛車的出車順序可能為:123、132、213、231、312、321方案一坐車可能:132、213、231,所以,P1=;方案二坐車可能:312、321,所以,P1=;所以P1+P2=故選C.本題考查了古典概型的概率的求法,常用列舉法得到各種情況下基本事件的個數(shù),屬于基礎(chǔ)題.6.D【解析】

因為要對600個零件進行編號,所以編號必須是三位數(shù),因此按要求從第6行第6列開始向右讀取數(shù)據(jù),大于600的,重復(fù)出現(xiàn)的舍去,直至得到第六個編號.【詳解】從第6行第6列開始向右讀取數(shù)據(jù),編號內(nèi)的數(shù)據(jù)依次為:,因為535重復(fù)出現(xiàn),所以符合要求的數(shù)據(jù)依次為,故第6個數(shù)據(jù)為578.選D.本題考查了隨機數(shù)表表的應(yīng)用,正確掌握隨機數(shù)表法的使用方法是解題的關(guān)鍵.7.B【解析】

利用均值不等式可得,即可求得,進而求得外接球的半徑,即可求解.【詳解】由題意易得平面,所以,當且僅當時等號成立,又陽馬體積的最大值為,所以,所以塹堵的外接球的半徑,所以外接球的體積,故選:B本題以中國傳統(tǒng)文化為背景,考查四棱錐的體積、直三棱柱的外接球的體積、基本不等式的應(yīng)用,體現(xiàn)了數(shù)學運算、直觀想象等核心素養(yǎng).8.C【解析】

化簡得到,,再計算復(fù)數(shù)模得到答案.【詳解】,故,故,.故選:.本題考查了復(fù)數(shù)的化簡,共軛復(fù)數(shù),復(fù)數(shù)模,意在考查學生的計算能力.9.B【解析】

根據(jù)高階等差數(shù)列的定義,求得等差數(shù)列的通項公式和前項和,利用累加法求得數(shù)列的通項公式,進而求得.【詳解】依題意:1,4,8,14,23,36,54,……兩兩作差得:3,4,6,9,13,18,……兩兩作差得:1,2,3,4,5,……設(shè)該數(shù)列為,令,設(shè)的前項和為,又令,設(shè)的前項和為.易,,進而得,所以,則,所以,所以.故選:B本小題主要考查新定義數(shù)列的理解和運用,考查累加法求數(shù)列的通項公式,考查化歸與轉(zhuǎn)化的數(shù)學思想方法,屬于中檔題.10.B【解析】

利用分步計數(shù)原理結(jié)合排列求解即可【詳解】第一步排語文,英語,化學,生物4種,且化學排在生物前面,有種排法;第二步將數(shù)學和物理插入前4科除最后位置外的4個空擋中的2個,有種排法,所以不同的排表方法共有種.選.本題考查排列的應(yīng)用,不相鄰采用插空法求解,準確分步是關(guān)鍵,是基礎(chǔ)題11.A【解析】

設(shè)所求切線的方程為,聯(lián)立,消去得出關(guān)于的方程,可得出,求出的值,進而求得切點的坐標,利用定積分求出陰影部分區(qū)域的面積,然后利用幾何概型概率公式可求得所求事件的概率.【詳解】設(shè)所求切線的方程為,則,聯(lián)立,消去得①,由,解得,方程①為,解得,則點,所以,陰影部分區(qū)域的面積為,矩形的面積為,因此,所求概率為.故選:A.本題考查定積分的計算以及幾何概型,同時也涉及了二次函數(shù)的切線方程的求解,考查計算能力,屬于中等題.12.B【解析】

由函數(shù)解析式中含絕對值,所以去絕對值并畫出函數(shù)圖象,結(jié)合圖象即可求得在上的最大值和最小值.【詳解】依題意,,作出函數(shù)的圖象如下所示;由函數(shù)圖像可知,當時,有最大值,當時,有最小值.故選:B.本題考查了絕對值函數(shù)圖象的畫法,由函數(shù)圖象求函數(shù)的最值,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.證明見解析.【解析】試題分析:四點共圓,所以,又△∽△,所以,即,得證.試題解析:A.連接,因為為圓的直徑,所以,又,則四點共圓,所以.又△∽△,所以,即,∴.14.8【解析】

由整體代入法利用基本不等式即可求得最小值.【詳解】,當且僅當時等號成立.故的最小值為8,故答案為:8.本題考查基本不等式求和的最小值,整體代入法,屬于基礎(chǔ)題.15.【解析】

函數(shù)的定義域為,求出導函數(shù),利用曲線與曲線公共點為由于在公共點處有共同的切線,解得,,聯(lián)立解得的值.【詳解】解:函數(shù)的定義域為,,,設(shè)曲線與曲線公共點為,由于在公共點處有共同的切線,∴,解得,.由,可得.聯(lián)立,解得.故答案為:.本題考查函數(shù)的導數(shù)的應(yīng)用,切線方程的求法,考查轉(zhuǎn)化思想以及計算能力,是中檔題.16.【解析】

根據(jù)約束條件可以畫出可行域,從而將問題轉(zhuǎn)化為直線在軸截距最大的問題的求解,通過數(shù)形結(jié)合的方式可確定過時,取最大值,代入可求得結(jié)果.【詳解】由約束條件可得可行域如下圖陰影部分所示:將化為,則最大時,直線在軸截距最大;由直線平移可知,當過時,在軸截距最大,由得:,.故答案為:.本題考查線性規(guī)劃中最值問題的求解,關(guān)鍵是能夠?qū)栴}轉(zhuǎn)化為直線在軸截距的最值的求解問題,通過數(shù)形結(jié)合的方式可求得結(jié)果.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(Ⅰ)見解析(Ⅱ)【解析】

(Ⅰ)推導出BC⊥CE,從而EC⊥平面ABCD,進而EC⊥BD,再由BD⊥AE,得BD⊥平面AEC,從而BD⊥AC,進而四邊形ABCD是菱形,由此能證明AB=AD.(Ⅱ)設(shè)AC與BD的交點為G,推導出EC//FG,取BC的中點為O,連結(jié)OD,則OD⊥BC,以O(shè)為坐標原點,以過點O且與CE平行的直線為x軸,以BC為y軸,OD為z軸,建立空間直角坐標系,利用向量法能求出二面角A-BF-D的余弦值.【詳解】(Ⅰ)證明:,即,因為平面平面,所以平面,所以,因為,所以平面,所以,因為四邊形是平行四邊形,所以四邊形是菱形,故;解法一:(Ⅱ)設(shè)與的交點為,因為平面,平面平面于,所以,因為是中點,所以是的中點,因為,取的中點為,連接,則,因為平面平面,所以面,以為坐標原點,以過點且與平行的直線為軸,以所在直線為軸,以所在直線為軸建立空間直角坐標系.不妨設(shè),則,,,,,,,設(shè)平面的法向量,則,取,同理可得平面的法向量,設(shè)平面與平面的夾角為,因為,所以二面角的余弦值為.解法二:(Ⅱ)設(shè)與的交點為,因為平面,平面平面于,所以,因為是中點,所以是的中點,因為,,所以平面,所以,取中點,連接、,因為,所以,故平面,所以,即是二面角的平面角,不妨設(shè),因為,,在中,,所以,所以二面角的余弦值為.本題考查求空間角中的二面角的余弦值,還考查由空間中線面關(guān)系進而證明線線相等,屬于中檔題.18.(Ⅰ);(Ⅱ).【解析】

(Ⅰ)利用零點分段討論法把函數(shù)改寫成分段函數(shù)的形式,分三種情況分別解不等式,然后取并集即可;(Ⅱ)利用絕對值三角不等式求出的最小值,利用均值不等式求出的最小值,結(jié)合題意,只需即可,解不等式即可求解.【詳解】(Ⅰ)當時,,,或,或,或所以不等式的解集為;(Ⅱ)因為,又(當時等號成立),依題意,,,有,則,解之得,故實數(shù)的取值范圍是.本題考查由存在性問題求參數(shù)的范圍、零點分段討論法解絕對值不等式、利用絕對值三角不等式和均值不等式求最值;考查運算求解能力、分類討論思想、邏輯推理能力;屬于中檔題.19.(1)(2)存在;實數(shù)的取值范圍是【解析】

(1)根據(jù)橢圓定義計算,再根據(jù),,的關(guān)系計算即可得出橢圓方程;(2)設(shè)直線方程為,與橢圓方程聯(lián)立方程組,求出的范圍,根據(jù)根與系數(shù)的關(guān)系求出的中點坐標,求出的中垂線與軸的交點橫,得出關(guān)于的函數(shù),利用基本不等式得出的范圍.【詳解】(1)由題意可知,,.又,,,橢圓的方程為:.(2)若存在點,使得以,為鄰邊的平行四邊形是菱形,則為線段的中垂線與軸的交點.設(shè)直線的方程為:,,,,,聯(lián)立方程組,消元得:,△,又,故.由根與系數(shù)的關(guān)系可得,設(shè)的中點為,,則,,線段的中垂線方程為:,令可得,即.,故,當且僅當即時取等號,,且.的取值范圍是,.本題主要考查了橢圓的性質(zhì),考查直線與橢圓的位置關(guān)系,意在考查學生對這些知識的理解掌握水平和分析推理能力.20.(1)(2)【解析】

(1)求得,根據(jù)已知條件得到在恒成立,由此得到在恒成立,利用分離常數(shù)法求得的取值范圍.(2)構(gòu)造函數(shù)設(shè),利用求二階導數(shù)的方法,結(jié)合恒成立,求得的取值范圍,由此求得的最小值.【詳解】(1)因為在上單調(diào)遞增,所以在恒成立,即在恒成立,當時,上式成立,當,有,需,而,,,,故綜上,實數(shù)的取值范圍是(2)設(shè),,則,令,,在單調(diào)遞增,也就是在單調(diào)遞增,所以.當即時,,不符合;當即時,,符合當即時,根據(jù)零點存在定理,,使,有時,,在單調(diào)遞減,時,,在單調(diào)遞增,成立,故只需即可,有,得,符合綜上得,,實數(shù)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論