考點解析-北師大版9年級數(shù)學上冊期末試題及完整答案詳解【奪冠】_第1頁
考點解析-北師大版9年級數(shù)學上冊期末試題及完整答案詳解【奪冠】_第2頁
考點解析-北師大版9年級數(shù)學上冊期末試題及完整答案詳解【奪冠】_第3頁
考點解析-北師大版9年級數(shù)學上冊期末試題及完整答案詳解【奪冠】_第4頁
考點解析-北師大版9年級數(shù)學上冊期末試題及完整答案詳解【奪冠】_第5頁
已閱讀5頁,還剩28頁未讀, 繼續(xù)免費閱讀

付費下載

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

北師大版9年級數(shù)學上冊期末試題考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題24分)一、單選題(6小題,每小題2分,共計12分)1、一元二次方程,配方后可形為(

)A. B.C. D.2、如圖,直線與雙曲線交于兩點,則當線段的長度取最小值時,的值為(

)A. B. C. D.3、如圖,ABC是等邊三角形,點D、E分別在BC、AC上,且∠ADE=60°,AB=9,BD=3,則CE的長等于()A.1 B. C. D.24、如圖,平行四邊形ABCD的對角線AC,BD相交于點O,添加下列條件仍不能判斷四邊形ABCD是矩形的是(

)A.AB+BC=AC B.AB=AD C.OA=OD D.∠ABC+∠ADC=180°5、如圖,在中,,,將繞點C順時針旋轉(zhuǎn)得到,點在上,交于F,則圖中與相似的三角形有(不再添加其他線段)(

)A.1個 B.2個 C.3個 D.4個6、對于反比例函數(shù)y=﹣,下列說法錯誤的是()A.圖象經(jīng)過點(1,﹣5)B.圖象位于第二、第四象限C.當x<0時,y隨x的增大而減小D.當x>0時,y隨x的增大而增大二、多選題(6小題,每小題2分,共計12分)1、如圖,在矩形ABCD中,對角線AC、BD相交于G,E為AD的中點,連接BE交AC于F,連接FD,若∠BFA=90°,則下列四對三角形中相似的為()A.△BEA與△ACD B.△FED與△DEB C.△CFD與△ABG D.△ADF與△EFD2、不能說明△ABC∽△A’B’C’的條件是(

)A.或 B.且C.且 D.且3、平行四邊形ABCD的對角線相交于點O,分別添加下列條件使得四邊形ABCD是矩形的條件有(

)是菱形的條件有(

)A.∠ABC=90° B.AC⊥BD C.AB=BC D.AC平分∠BAD E.AO=DO4、如圖所示是△ABC位似圖形的幾種畫法,正確的是()A. B.C. D.5、如圖,在△ABC中,∠BAC=90°,D是BC的中點,AE⊥AD交CB的延長線于點E.下列結(jié)論不正確的是(

)A.△AED∽△ACB B.△AEB∽△ACDC.△BAE∽△ACE D.△AEC∽△DAC6、如圖,不能判定為菱形的是(

)A. B.C. D.第Ⅱ卷(非選擇題76分)三、填空題(8小題,每小題2分,共計16分)1、如圖,點E、F分別是矩形ABCD邊BC和CD上的點,把△CEF沿直線EF折疊得到△GEF,再把△BEG沿直線BG折疊,點E的對應點H恰好落在對角線BD上,若此時F、G、H三點在同一條直線上,且線段HF與HD也恰好關于某條直線對稱,則的值為______.2、據(jù)統(tǒng)計,2021年第一季度宜賓市實現(xiàn)地區(qū)生產(chǎn)總值約652億元,若使該市第三季度實現(xiàn)地區(qū)生產(chǎn)總值960億元,設該市第二、三季度地區(qū)生產(chǎn)總值平均增長率為x,則可列方程__________.3、如圖,已知在平面直角坐標系中,直線分別交軸,軸于點和點,分別交反比例函數(shù),的圖象于點和點,過點作軸于點,連結(jié).若的面積與的面積相等,則的值是_____.4、如果一個直角三角形斜邊上的中線與斜邊所成的銳角為角,那么這個直角三角形的較小的內(nèi)角是________.5、已知菱形的邊長為,兩條對角線的長度的比為3:4,則兩條對角線的長度分別是_____________.6、你知道嗎,對于一元二次方程,我國古代數(shù)學家還研究過其幾何解法呢!以方程即為例加以說明.數(shù)學家趙爽(公元3~4世紀)在其所著的《勾股圓方圖注》中記載的方法是:構(gòu)造圖(如下面左圖)中大正方形的面積是,其中它又等于四個矩形的面積加上中間小正方形的面積,即,據(jù)此易得.那么在下面右邊三個構(gòu)圖(矩形的頂點均落在邊長為1的小正方形網(wǎng)格格點上)中,能夠說明方程的正確構(gòu)圖是_____.(只填序號)7、如圖,一塊飛鏢游戲板由大小相等的小等邊三角形構(gòu)成,向游戲板隨機投擲一枚飛鏢(飛鏢每次都落在游戲板上),則擊中黑色區(qū)域的概率是____________.8、已知方程x2﹣3x+1=0的根是x1和x2,則x1+x2﹣x1x2=___.四、解答題(6小題,每小題10分,共計60分)1、已知a、b、c是△ABC的三邊,且滿足,且a+b+c=12,請你探索△ABC的形狀.2、陜西某景區(qū)吸引了大量中外游客前來參觀,如果游客過多,對進景區(qū)的游客健康檢查、擁堵等問題會產(chǎn)生不利影響,但也要保證一定的門票收入,因此景區(qū)采取了漲浮門票價格的方法來控制旅游人數(shù),在該方法實施過程中發(fā)現(xiàn):每周旅游人數(shù)與票價之間存在著如圖所示的一次函數(shù)關系.在這種情況下,如果要保證每周3000萬元的門票收入,那么每周應限定旅游人數(shù)是多少萬人?門票價格應是多少元?3、在等邊三角形中,,D為的中點.連接,E,F(xiàn)分別為,的中點,將繞點C逆時針旋轉(zhuǎn),記旋轉(zhuǎn)角為,直線和直線交于點G.(1)如圖1,線段和線段的數(shù)量關系是________________,直線與直線相交所成的較小角的度數(shù)是________________.(2)將圖1中的繞點C逆時針旋轉(zhuǎn)到圖2所示位置時,判斷(1)中的結(jié)論是否仍然成立?若成立,請僅就圖2的情形給出證明;若不成立,請說明理由.(3)在(2)的條件下,當以點C,F(xiàn),E,G為頂點的四邊形是矩形時,請直接寫出的長.4、已知點P(2,2)在反比例函數(shù)y=(k≠0)的圖象上.(1)當x=-3時,求y的值;(2)當1<x<3時,求y的取值范圍.5、如圖,平行四邊形的對角線、相較于點O,且,,.求證:四邊形是矩形.6、如圖,與交于點O,,E為延長線上一點,過點E作,交的延長線于點F.(1)求證;(2)若,求的長.-參考答案-一、單選題1、A【解析】【分析】把常數(shù)項移到方程右邊,再把方程兩邊加上16,然后把方程作邊寫成完全平方形式即可【詳解】解:x2-8x=2,x2-8x+16=18,(x-4)2=18.故選:A.【考點】本題考查了解一元二次方程-配方法:將一元二次方程配成(x+m)2=n的形式,再利用直接開平方法求解,這種解一元二次方程的方法叫配方法.2、C【解析】【分析】當直線經(jīng)過原點時,線段AB的長度取最小值,依此可得關于的方程,解方程即可求得的值.【詳解】∵根據(jù)反比例函數(shù)的對稱性可知,要使線段AB的長度取最小值,則直線經(jīng)過原點,∴,解得:.故選:C.【考點】考查了反比例函數(shù)與一次函數(shù)的交點問題,本題的關鍵是理解當直線經(jīng)過原點時,線段AB的長度取最小值.3、D【解析】【分析】通過△ABD∽△DCE,可得,即可求解.【詳解】解:∵△ABC是等邊三角形,∴AB=BC=9,∠ABC=∠ACB=60°,∵BD=3,∴CD=6,∵∠ADC=∠ABC+∠BAD=∠ADE+∠CDE,∴∠BAD=∠CDE,∴△ABD∽△DCE,∴,∴∴CE=2,故選:D.【考點】本題考查了三角形的相似,做題的關鍵是△ABD∽△DCE.4、B【解析】【分析】由勾股定理的逆定理證得∠ABC=90°,根據(jù)有一個角是直角的平行四邊形是矩形可判斷A;根據(jù)有一組鄰邊相等的平行四邊形是菱形可判斷B;根據(jù)對角線相等的平行四邊形是矩形可判斷C;根據(jù)有一個角是直角的平行四邊形是矩形可判斷D.【詳解】解:A.∵AB2+BC2=AC2,∴∠ABC=90°,∴?ABCD為矩形,故本選項不符合題意;B.∵AB=AD,∴?ABCD為菱形,故本選項符合題意;C.∵四邊形ABCD是平行四邊形,∴OA=OC,OB=OD,∵OA=OD,∴AC=BD,∴?ABCD是矩形,故本選項不符合題意;D.∵四邊形ABCD是平行四邊形,∴∠ABC=∠ADC,∵∠ABC+∠ADC=180°,∴∠ABC=∠ADC=90°,∴?ABCD為矩形,故本選項不符合題意;故選:B.【考點】本題考查了矩形的判定定理,勾股定理的逆定理,平行四邊形的性質(zhì),熟練掌握矩形的判定方法是解決問題的關鍵.5、D【解析】【分析】根據(jù)旋轉(zhuǎn)的性質(zhì)及相似三角形的判定方法進行分析,找出存在的相似三角形即可.【詳解】根據(jù)題意得:BC=B′C,AB=A′B′,AC=A′C,∠B=∠B′,∠A=∠A′=30°,∠ACB=∠A′CB′=90°∵∠A=30°,∠ACB=90°∴∠B=60°∴BB′=BC=B′C,∠B=∠BCB′=∠BB′C=60°∴∠B′CA=30°,∠ACA′=60°,A′B′∥BC∴∠B′FC=∠B′FA=90°∴△AB′F∽△ABC∽△A′B′C∽△A′CF∽△CFB′∴有4個故選D.【考點】考查了相似三角形的判定:①如果兩個三角形的三組對應邊的比相等,那么這兩個三角形相似;②如果兩個三角形的兩條對應邊的比相等,且夾角相等,那么這兩個三角形相似;③如果兩個三角形的兩個對應角相等,那么這兩個三角形相似.平行于三角形一邊的直線截另兩邊或另兩邊的延長線所組成的三角形與原三角形相似.6、C【解析】【分析】根據(jù)題目中的函數(shù)解析式和反比例函數(shù)的性質(zhì),可以判斷各個選項中的說法是否正確,從而可以解答本題.【詳解】解:反比例函數(shù)y=﹣,A、當x=1時,y=﹣=﹣5,圖像經(jīng)過點(1,-5),故選項A不符合題意;B、∵k=﹣5<0,故該函數(shù)圖象位于第二、四象限,故選項B不符合題意;C、當x<0時,y隨x的增大而增大,故選項C符合題意;D、當x>0時,y隨x的增大而增大,故選項D不符合題意;故選C.【考點】本題考查的是反比例函數(shù)的性質(zhì),熟練掌握反比例函數(shù)的性質(zhì)是解題的關鍵.二、多選題1、ABCD【解析】【分析】根據(jù)判定三角形相似的條件對選項逐一進行判斷.【詳解】解:根據(jù)題意得:∠BAE=∠ADC=∠AFE=90°∴∠AEF+∠EAF=90°,∠DAC+∠ACD=90°∴∠AEF=∠ACD∴△BEA∽△ACD;∵∠AEB=∠FEA,∠AFE=∠EAB=90°,∴△AFE∽△BAE,∴,又∵AE=ED,∴而∠BED=∠BED,∴△FED∽△DEB;∵ABCD,∴∠BAC=∠GCD,∵∠ABE=∠DAF,∠EBD=∠EDF,且∠ABG=∠ABE+∠EBD,∴∠ABG=∠DAF+∠EDF=∠DFC;∵∠ABG=∠DFC,∠BAG=∠DCF,∴△CFD∽△ABG;∵△FED∽△DEB,∴∠EFD=∠EDB,∵AG=DG,∴∠DAF=∠ADG,∴∠DAF=∠EFD,∴△ADF∽△EFD.故選:ABCD.【考點】此題考查了相似三角形的判定:①有兩個對應角相等的三角形相似;②有兩個對應邊的比相等,且其夾角相等,則兩個三角形相似;③三組對應邊的比相等,則兩個三角形相似.2、ABD【解析】【分析】根據(jù)相似三角形的判定方法求解即可.【詳解】解:A、或,不能判定,符合題意;B、且,不能判定,符合題意;C、且,能判定,不符合題意;D、且,不能判定,符合題意.故選:ABD.【考點】此題考查了相似三角形的判定方法,解題的關鍵是熟練掌握相似三角形的判定方法.相似三角形的判定方法:兩邊對應成比例且夾角相等的兩個三角形相似;三邊對應成比例的兩個三角形相似;兩角對應相等的兩個三角形相似.3、AEBCD【解析】【分析】因為四邊形ABCD是平行四邊形,要成為矩形加上一個角為直角或?qū)蔷€相等即可;要使其成為菱形,加上一組鄰邊相等或?qū)蔷€垂直均可.【詳解】A選項:∵∠ABC=90°,四邊形ABCD是平行四邊形,∴四邊形ABCD是矩形.(有一個角是直角的平行四邊形是矩形)B選項:∵AC⊥BD,四邊形ABCD是平行四邊形,∴四邊形ABCD是菱形.(對角線互相垂直的平行四邊形是菱形)C選項:∵AB=BC,四邊形ABCD是平行四邊形,∴四邊形ABCD是菱形.(鄰邊相等的平行四邊形是菱形)D選項:如圖:∵四邊形ABCD是平行四邊形,∴AD∥BC,∴∠DAC=∠ACB,∵AC平分∠BAD,∴∠DAC=∠BAC,∴∠BAC=∠ACB,∴AB=BC,∴?ABCD是菱形;E選項:∵AO=DO,四邊形ABCD是平行四邊形,∴AC=BD,∴四邊形ABCD是矩形.(對角線互相平分且相等的平行四邊形是矩形)故選:AE,BCD.【考點】考查了菱形和矩形的判定,解題關鍵是掌握平行四邊形的性質(zhì)和菱形、矩形的判定方法.4、ABCD【解析】【分析】利用位似圖形的畫法:①確定位似中心;②分別連接并延長位似中心和能代表原圖的關鍵點;③根據(jù)位似比,確定能代表所作的位似圖形的關鍵點;④順次連接上述各點,得到放大或縮小的圖形.【詳解】解:第一個圖形中的位似中心為A點,第二個圖形中的位似中心為BC上的一點,第三個圖形中的位似中心為O點,第四個圖形中的位似中心為O點.故選:ABCD.【考點】本題主要考查了位似變換,正確把握位似圖形的定義是解題關鍵.5、ABD【解析】【分析】先利用直角三角形斜邊上的中線等于斜邊的一半得到DA=DC,則∠DAC=∠C,再利用等角的余角相等得到∠EAB=∠DAC,從而有∠EAB=∠C,再加上公共角即可判斷△BAE∽△ACE.【詳解】解:∵∠BAC=90°,D是BC中點,∴DA=DC,∴∠DAC=∠C,又∵AE⊥AD,∴∠EAB+∠BAD=90°,∠CAD+∠BAD=90°,∴∠EAB=∠DAC,∴∠EAB=∠C,而∠E是公共角,∴△BAE∽△ACE∴C選項正確,ABD選項錯誤,故選ABD.【考點】此題主要考查學生對相似三角形判定定理的掌握和應用.6、ABC【解析】【分析】根據(jù)題意先判斷可以判定是菱形的條件即可.【詳解】解:根據(jù)菱形的判定定理知:當∠DCA=∠BCA,∵四邊形為平行四邊形,∴∠ADC=∠ABC,AC=AC,∴,∴BC=DC,∴?ABCD為菱形,故其他三項不能判定,故答案選:ABC.【考點】此題考查菱形的判定定理,熟練掌握定理并應用是關鍵.三、填空題1、【解析】【分析】根據(jù)線段HF與HD也恰好關于某條直線對稱,可得HF=HD,由折疊和同角的余角相等得,然后證明,再利用設元法即可解決問題.【詳解】解:∵線段HF與HD也恰好關于某條直線對稱,∴HF=HD,∴∠HFD=∠FDH,∴∠BHF=2∠HFD由折疊可知:GF=CF,HG=CE=EG,,∠BHG=∠BEG,∠CEF=∠GEF,∵∠BEG+∠CEF+∠GEF=180°,∴2∠HFD+2∠CEF=180°∴∠HFD+∠CEF=90°,又∵∠CFE+∠CEF=90°∴,又∵HF=HD,∴△DHF是等邊三角形,∴∠CBD=∠CEF=30°,∴,設GF=CF=x,HF=DF=y,則HG=CE=EG=,HF=HG+GF=GE+CF,即y=x+,∵,∴.【考點】本題主要考查折疊的性質(zhì)、軸對稱的性質(zhì)、相似三角形的判定與性質(zhì).解決本題的關鍵是掌握翻折的性質(zhì).2、【解析】【分析】根據(jù)題意,第一季度地區(qū)生產(chǎn)總值平均增長率第三季度地區(qū)生產(chǎn)總值,按照數(shù)量關系列方程即可得解.【詳解】解:根據(jù)題意,第一季度地區(qū)生產(chǎn)總值平均增長率第三季度地區(qū)生產(chǎn)總值列方程得:,故答案為:.【考點】本題主要考查了增長率的實際問題,熟練掌握相關基本等量關系是解決本題的關鍵.3、2.【解析】【分析】過點作軸于.根據(jù)k的幾何意義,結(jié)合三角形面積之間的關系,求出交點D的坐標,代入即可求得k的值.【詳解】如圖,過點作軸于.把y=0代入得:x=2,故OA=2由反比例函數(shù)比例系數(shù)的幾何意義,可得,.∵,

∴,∴.易證,從而,即的橫坐標為,而在直線上,∴∴.故答案為2【考點】本題是一次函數(shù)與反比例函數(shù)的交點問題,主要考查了一次函數(shù)和反比例函數(shù)的圖象與性質(zhì),反比例函數(shù)“k“的幾何意義,一次函數(shù)圖象與反比例函數(shù)圖象的交點問題,關鍵是根據(jù)兩個三角形的面積相等列出k的方程.4、25【解析】【分析】由直角三角形斜邊上的中線等于斜邊的一半的性質(zhì),證明得到,再利用外角性質(zhì)求出,再得到,從而得解.【詳解】如圖所示,∵是斜邊上的中線,∴,∴,∵斜邊上的中線與斜邊所成的銳角為,即,∴,解得:,另一個銳角,∴這個直角三角形的較小內(nèi)角是.故答案為:.【考點】本題考查了直角三角形的性質(zhì)和外角的性質(zhì),比較基礎.5、,【解析】【分析】如圖BD:AC=3:4,AB=10cm,設BD=3x,則AC=4x,根據(jù)菱形的性質(zhì),DO=BO=,AO=CO=2x,在RtΔAOD中,AD2+DO2+AO2,,求出x,BD=3x,AC=4x即可.【詳解】如圖BD:AC=3:4,AB=10cm,設BD=3x,則AC=4x,根據(jù)菱形的性質(zhì),DO=BO=,AO=CO=2x,AC垂直BD在RtΔAOD中,AD2+DO2+AO2,,x=4,AC=4×4=16,BD=3×4=12,則兩條對角線的長度分別是12cm,16cm.故答案為:12cm,16cm.【考點】本題考查菱形的對角線問題,掌握菱形的性質(zhì),利用對角線之間的關系,和勾股定理構(gòu)造方程是解題關鍵.6、②【解析】【分析】仿造案例,構(gòu)造面積是的大正方形,由它的面積為,可求出,此題得解.【詳解】解:即,構(gòu)造如圖②中大正方形的面積是,其中它又等于四個矩形的面積加上中間小正方形的面積,即,據(jù)此易得.故答案為②.【考點】本題考查了一元二次方程的應用,仿造案例,構(gòu)造出合適的大正方形是解題的關鍵.7、【解析】【分析】根據(jù)幾何概率的求法:飛鏢落在陰影部分的概率就是陰影區(qū)域的面積與總面積的比值.【詳解】解:∵總面積為9個小等邊形的面積,其中陰影部分面積為3個小等邊形的面積,∴飛鏢落在陰影部分的概率是=,故答案為:.【考點】本題主要考查了概率求解問題,準確分析計算是解題的關鍵.8、2【解析】【分析】根據(jù)根與系數(shù)的關系可得出x1+x2=3、x1x2=1,將其代入x1+x2﹣x1x2中即可求出結(jié)論.【詳解】解:∵方程x2﹣3x+1=0的兩個實數(shù)根為x1、x2,∴x1+x2=3、x1x2=1,∴x1+x2﹣x1x2=3﹣1=2,故答案為:2.【考點】本題考查了根與系數(shù)的關系,一元二次方程ax2+bx+c=0(a≠0)的根與系數(shù)的關系為:x1+x2=﹣,x1?x2=.四、解答題1、△ABC是直角三角形,理由見解析【解析】【分析】根據(jù),可以設=k,然后根據(jù)a+b+c=12,可以求得k的值,進而求得a、b、c的值,再根據(jù)勾股定理的逆定理,即可判斷△ABC的形狀.【詳解】解:令=k,∴a+4=3k,b+3=2k,c+8=4k,∴a=3k﹣4,b=2k﹣3,c=4k﹣8,又∵a+b+c=12,∴(3k﹣4)+(2k﹣3)+(4k﹣8)=12,∴k=3,∴a=5,b=3,c=4,∵32+42=52,∴△ABC是直角三角形.【考點】本題考查因式分解的應用、勾股定理的逆定理,解答此類問題的關鍵是明確題意,求出a、b、c的值.2、10萬人、300元【解析】【分析】設門票價格為x元,每周旅游人數(shù)為y萬人,根據(jù)題中的圖中信息,利用待定系數(shù)法即可求解出每周旅游人數(shù)y與票價x之間存在一次函數(shù)關系,再根據(jù)題意列出一元二次方程即可求解.【詳解】解:設門票價格為x元,每周旅游人數(shù)為y萬人,∵每周旅游人數(shù)與票價之間存在一次函數(shù)關系,∴設一次函數(shù)為y=kx+b,則有,解得:,∴.由題意得:,解得=100,=300.當x=100時,y=30;當x=300時,y=10.∵既要控制人數(shù)又要保證收入,∴每周應限定旅游人數(shù)是10萬人,門票價格應是300元.【考點】本題主要考查一次函數(shù)與一元二次方程的實際應用,根據(jù)等量關系,列出一次函數(shù)解析式和方程,是解題的關鍵.3、(1),;(2)結(jié)論仍然成立;證明見解析;(3)或.【解析】【分析】(1)先根據(jù)等邊三角形的性質(zhì)可得,再根據(jù)含角的直角三角形的性質(zhì)以及三角形中位線定理求解即可;(2)由(1)的結(jié)論以及旋轉(zhuǎn)的性質(zhì)證明,根據(jù)相似三角形的性質(zhì)即解答即可;(3)當以點C、F、E、G為頂點的四邊形是矩形時,分兩種情況討論

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論