版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
一、解答題1.(了解概念)在平面直角坐標(biāo)系中,若,式子的值就叫做線段的“勾股距”,記作.同時(shí),我們把兩邊的“勾股距”之和等于第三邊的“勾股距”的三角形叫做“等距三角形”.(理解運(yùn)用)在平面直角坐標(biāo)系中,.(1)線段的“勾股距”;(2)若點(diǎn)在第三象限,且,求并判斷是否為“等距三角形”﹔(拓展提升)(3)若點(diǎn)在軸上,是“等距三角形”,請(qǐng)直接寫(xiě)出的取值范圍.解析:(1)5;(2)dAC=11,△ABC不是為“等距三角形”;(3)m≥4【分析】(1)根據(jù)兩點(diǎn)之間的直角距離的定義,結(jié)合O、P兩點(diǎn)的坐標(biāo)即可得出結(jié)論;(2)根據(jù)兩點(diǎn)之間的直角距離的定義,用含x、y的代數(shù)式表示出來(lái)d(O,Q)=4,結(jié)合點(diǎn)Q(x,y)在第一象限,即可得出結(jié)論;(3)由點(diǎn)N在直線y=x+3上,設(shè)出點(diǎn)N的坐標(biāo)為(m,m+3),通過(guò)尋找d(M,N)的最小值,得出點(diǎn)M(2,-1)到直線y=x+3的直角距離.【詳解】解:(1)由“勾股距”的定義知:dOA=|2-0|+|3-0|=2+3=5,故答案為:5;(2)∵dAB=|4-2|+|2-3|=2+1=3,∴2dAB=6,∵點(diǎn)C在第三象限,∴m<0,n<0,dOC=|m-0|+|n-0|=|m|+|n|=-m-n=-(m+n),∵dOC=2dAB,∴-(m+n)=6,即m+n=-6,∴dAC=|2-m|+|3-n|=2-m+3-n=5-(m+n)=5+6=11,dBC=|4-m|+|2-m|=4-m+2-n=6-(m+n)=6+6=12,∵5+11≠12,11+12≠5,12+5≠11,∴△ABC不是為“等距三角形”;(3)點(diǎn)C在x軸上時(shí),點(diǎn)C(m,0),則dAC=|2-m|+3,dBC=|4-m|+2,①當(dāng)m<2時(shí),dAC=2-m+3=5-m,dBC=4-m+2=6-m,若△ABC是“等距三角形”,∴5-m+6-m=11-2m=3,解得:m=4(不合題意),又∵5-m+3=8-m≠6-m,②當(dāng)2≤m<4時(shí),dAC=m-2+3=m+1,dBC=4-m+2=6-m,若△ABC是“等距三角形”,則m+1+6-m=7≠3,6-m+3=m+1,解得:m=4(不和題意),③當(dāng)m≥4時(shí),dAC=m+1,dBC=m-2,若△ABC是“等距三角形”,則m+1+m-2=3,解得:m=4,m-2+3=m+1恒成立,∴m≥4時(shí),△ABC是“等距三角形”,綜上所述:△ABC是“等距三角形”時(shí),m的取值范圍為:m≥4.【點(diǎn)睛】本題考查坐標(biāo)與圖形的性質(zhì),關(guān)鍵是對(duì)“勾股距”和“等距三角形”新概念的理解,運(yùn)用“勾股距”和“等距三角形”解題.2.如圖1,在平面直角坐標(biāo)系中,點(diǎn)O是坐標(biāo)原點(diǎn),邊長(zhǎng)為2的正方形ABCD(點(diǎn)D與點(diǎn)O重合)和邊長(zhǎng)為4的正方形EFGH的邊CO和GH都在x軸上,且點(diǎn)H坐標(biāo)為(7,0).正方形ABCD以3個(gè)單位長(zhǎng)度/秒的速度沿著x軸向右運(yùn)動(dòng),記正方形ABCD和正方形EFGH重疊部分的面積為S,假設(shè)運(yùn)動(dòng)時(shí)間為t秒,且t<4.(1)點(diǎn)F的坐標(biāo)為;(2)如圖2,正方形ABCD向右運(yùn)動(dòng)的同時(shí),動(dòng)點(diǎn)P在線段FE上,以1個(gè)單位長(zhǎng)度/秒的速度從F到E運(yùn)動(dòng).連接AP,AE.①求t為何值時(shí),AP所在直線垂直于x軸;②求t為何值時(shí),S=S△APE.解析:(1)(3,4);(2)①t=時(shí),AP所在直線垂直于x軸;②當(dāng)t為或時(shí),S=S△APE.【分析】(1)根據(jù)直角坐標(biāo)系得出點(diǎn)F的坐標(biāo)即可;(2)①根據(jù)AP所在直線垂直于x軸,得出關(guān)于t的方程,解答即可;②分和兩種情況,利用面積公式列出方程即可求解.【詳解】(1)由直角坐標(biāo)系可得:F坐標(biāo)為:(3,4);故答案為:(3,4);(2)①要使AP所在直線垂直于x軸.如圖1,只需要Px=Ax,則t+3=3t,解得:,所以即時(shí),AP所在直線垂直于x軸;②由題意知,OH=7,所以當(dāng)時(shí),點(diǎn)D與點(diǎn)H重合,所以要分以下兩種情況討論:情況一:當(dāng)時(shí),GD=3t﹣3,PF=t,PE=4﹣t,∵S=S△APE,∴BC×GD=,即:2×(3t﹣3)=,解得:;情況二:當(dāng)時(shí),如圖2,HD=3t﹣7,PF=t,PE=4﹣t,∵S=S△APE,∴BC×CH=,即:2×[2﹣(3t﹣7)]=,解得:,綜上所述,當(dāng)t為或時(shí),S=S△APE.【點(diǎn)睛】本題考查了平面直角坐標(biāo)系中點(diǎn)的移動(dòng),一元一次方程的應(yīng)用等問(wèn)題,理解題意,分類(lèi)討論是解題關(guān)鍵.3.如圖,A點(diǎn)的坐標(biāo)為(0,3),B點(diǎn)的坐標(biāo)為(﹣3,0),D為x軸上的一個(gè)動(dòng)點(diǎn)且不與B,O重合,將線段AD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°得線段AE,使得AE⊥AD,且AE=AD,連接BE交y軸于點(diǎn)M.(1)如圖,當(dāng)點(diǎn)D在線段OB的延長(zhǎng)線上時(shí),①若D點(diǎn)的坐標(biāo)為(﹣5,0),求點(diǎn)E的坐標(biāo).②求證:M為BE的中點(diǎn).③探究:若在點(diǎn)D運(yùn)動(dòng)的過(guò)程中,的值是否是定值?如果是,請(qǐng)求出這個(gè)定值;如果不是,請(qǐng)說(shuō)明理由.(2)請(qǐng)直接寫(xiě)出三條線段AO,DO,AM之間的數(shù)量關(guān)系(不需要說(shuō)明理由).解析:(1)①E(3,﹣2)②見(jiàn)解析;③,理由見(jiàn)解析;(2)OD+OA=2AM或OA﹣OD=2AM【分析】(1)①過(guò)點(diǎn)E作EH⊥y軸于H.證明△DOA≌△AHE(AAS)可得結(jié)論.②證明△BOM≌△EHM(AAS)可得結(jié)論.③是定值,證明△BOM≌△EHM可得結(jié)論.(2)根據(jù)點(diǎn)D在點(diǎn)B左側(cè)和右側(cè)分類(lèi)討論,分別畫(huà)出對(duì)應(yīng)的圖形,根據(jù)全等三角形的判定及性質(zhì)即可分別求出結(jié)論.【詳解】解:(1)①過(guò)點(diǎn)E作EH⊥y軸于H.∵A(0,3),B(﹣3,0),D(﹣5,0),∴OA=OB=3,OD=5,∵∠AOD=∠AHE=∠DAE=90°,∴∠DAO+∠EAH=90°,∠EAH+∠AEH=90°,∴∠DAO=∠AEH,∴△DOA≌△AHE(AAS),∴AH=OD=5,EH=OA=3,∴OH=AH﹣OA=2,∴E(3,﹣2).②∵EH⊥y軸,∴∠EHO=∠BOH=90°,∵∠BMO=∠EMH,OB=EH=3,∴△BOM≌△EHM(AAS),∴BM=EM.③結(jié)論:=.理由:∵△DOA≌△AHE,∴OD=AH,∵OA=OB,∴BD=OH,∵△BOM≌△EHM,∴OM=MH,∴OM=OH=BD.(2)結(jié)論:OA+OD=2AM或OA﹣OD=2AM.理由:當(dāng)點(diǎn)D在點(diǎn)B左側(cè)時(shí),∵△BOM≌△EHM,△DOA≌△AHE∴OM=MH,OD=AH∴OH=2OM,OD-OB=AH-OA∴BD=OH∴BD=2OM,∴OD﹣OA=2(AM﹣AO),∴OD+OA=2AM.當(dāng)點(diǎn)D在點(diǎn)B右側(cè)時(shí),過(guò)點(diǎn)E作EH⊥y軸于點(diǎn)H∵∠AOD=∠AHE=∠DAE=90°,∴∠DAO+∠EAH=90°,∠EAH+∠AEH=90°,∴∠DAO=∠AEH,∵AD=AE∴△DOA≌△AHE(AAS),∴EH=AO=3=OB,OD=AH∴∠EHO=∠BOH=90°,∵∠BMO=∠EMH,OB=EH=3,∴△BOM≌△EHM(AAS),∴OM=MH∴OA+OD=OA+AH=OH=OM+MH=2MH=2(AM+AH)=2(AM+OD)整理可得OA﹣OD=2AM.綜上:OA+OD=2AM或OA﹣OD=2AM.【點(diǎn)睛】此題考查的是全等三角形的判定及性質(zhì)、旋轉(zhuǎn)的性質(zhì)和平面直角坐標(biāo)系,掌握全等三角形的判定及性質(zhì)、旋轉(zhuǎn)的性質(zhì)和點(diǎn)的坐標(biāo)與線段長(zhǎng)度的關(guān)系是解決此題的關(guān)鍵.4.如圖:在四邊形ABCD中,A、B、C、D四個(gè)點(diǎn)的坐標(biāo)分別是:(-2,0)、(0,6)、(4,4)、(2,0)現(xiàn)將四邊形ABCD先向上平移1個(gè)單位,再向左平移2個(gè)單位,平移后的四邊形是A'B'C′D'(1)請(qǐng)畫(huà)出平移后的四邊形A'B'C′D'(不寫(xiě)畫(huà)法),并寫(xiě)出A'、B'、C′、D'四點(diǎn)的坐標(biāo).(2)若四邊形內(nèi)部有一點(diǎn)P的坐標(biāo)為(a,b)寫(xiě)點(diǎn)P的對(duì)應(yīng)點(diǎn)P′的坐標(biāo).(3)求四邊形ABCD的面積.解析:(1)圖見(jiàn)解析,A′(-4,1),B′(-2,7),C′(2,5),D′(0,1);(2)P′的坐標(biāo)為:(a-2,b+1);(3)四邊形ABCD的面積為22.【分析】(1)直接利用平移畫(huà)出圖形,再根據(jù)圖形寫(xiě)出對(duì)應(yīng)點(diǎn)的坐標(biāo)進(jìn)而得出答案;(2)利用平移規(guī)律進(jìn)而得出對(duì)應(yīng)點(diǎn)坐標(biāo)的變化規(guī)律:向上平移1個(gè)單位,縱坐標(biāo)加1;向左平移2個(gè)單位,橫坐標(biāo)減2;(3)利用四邊形ABCD所在的最小矩形面積減去周?chē)切蚊娣e進(jìn)而得出答案.【詳解】解:(1)如圖所示:A′(-4,1),B′(-2,7),C′(2,5),D′(0,1);(2)若四邊形內(nèi)部有一點(diǎn)P的坐標(biāo)為(a,b)寫(xiě)點(diǎn)P的對(duì)應(yīng)點(diǎn)P′的坐標(biāo)為:(a-2,b+1);(3)四邊形ABCD的面積為:6×6-×2×6-×2×4-×2×4=22.【點(diǎn)睛】此題主要考查了平移變換以及坐標(biāo)系內(nèi)四邊形面積求法,正確得出對(duì)應(yīng)點(diǎn)位置是解題關(guān)鍵.5.如圖,在平面直角坐標(biāo)系中,已知,將線段平移至,點(diǎn)在軸正半軸上,,且.連接,,,.(1)寫(xiě)出點(diǎn)的坐標(biāo)為;點(diǎn)的坐標(biāo)為;(2)當(dāng)?shù)拿娣e是的面積的3倍時(shí),求點(diǎn)的坐標(biāo);(3)設(shè),,,判斷、、之間的數(shù)量關(guān)系,并說(shuō)明理由.解析:(1),;(2)點(diǎn)D的坐標(biāo)為或;(3)之間的數(shù)量關(guān)系,或,理由見(jiàn)解析.【分析】(1)由二次根式成立的條件可得a和b的值,由平移的性質(zhì)確定BC∥OA,且BC=OA,可得結(jié)論;(2)分點(diǎn)D在線段OA和在OA延長(zhǎng)線兩種情況進(jìn)行計(jì)算;(3)分點(diǎn)D在線段OA上時(shí),α+β=θ和在OA延長(zhǎng)線α-β=θ兩種情況進(jìn)行計(jì)算;【詳解】解:(1)∵,∴a=2,b=3,∴點(diǎn)C的坐標(biāo)為(2,3),∵A(4,0),∴OA=BC=4,由平移得:BC∥x軸,∴B(6,3),故答案為:,;(2)設(shè)點(diǎn)D的坐標(biāo)為∵△ODC的面積是△ABD的面積的3倍∴∴①如圖1,當(dāng)點(diǎn)D在線段OA上時(shí),由,得解得∴點(diǎn)D的坐標(biāo)為②如圖2,當(dāng)點(diǎn)D在OA得延長(zhǎng)線上時(shí),由,得解得∴點(diǎn)D的坐標(biāo)為綜上,點(diǎn)D的坐標(biāo)為或.(3)①如圖1,當(dāng)點(diǎn)D在線段OA上時(shí),過(guò)點(diǎn)D作DE∥AB,與CB交于點(diǎn)E.由平移知OC∥AB,∴DE∥OC∴又∴.②如圖2,當(dāng)點(diǎn)D在OA得延長(zhǎng)線上時(shí),過(guò)點(diǎn)D作DE∥AB,與CB得延長(zhǎng)線交于點(diǎn)E由平移知OC∥AB,∴DE∥OC∴又∴.綜上,之間的數(shù)量關(guān)系,或.【點(diǎn)睛】此題考查四邊形和三角形的綜合題,點(diǎn)的坐標(biāo)和三角形面積的計(jì)算方法,平移得性質(zhì),平行線的性質(zhì)和判定,解題的關(guān)鍵是分點(diǎn)D在線段OA上,和OA延長(zhǎng)線上兩種情況.6.如圖,在平面直角坐標(biāo)系中,點(diǎn)的坐標(biāo)分別是,現(xiàn)同時(shí)將點(diǎn)分別向上平移2個(gè)單位長(zhǎng)度,再向右平移2個(gè)單位長(zhǎng)度,得到的對(duì)應(yīng)點(diǎn).連接.(1)寫(xiě)出點(diǎn)的坐標(biāo)并求出四邊形的面積.(2)在軸上是否存在一點(diǎn),使得的面積是面積的2倍?若存在,請(qǐng)求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.(3)若點(diǎn)是直線上一個(gè)動(dòng)點(diǎn),連接,當(dāng)點(diǎn)在直線上運(yùn)動(dòng)時(shí),請(qǐng)直接寫(xiě)出與的數(shù)量關(guān)系.解析:(1)點(diǎn),點(diǎn);12;(2)存在,點(diǎn)的坐標(biāo)為和;(3)∠OFC=∠FOB-∠FCD,見(jiàn)解析.【解析】【分析】(1)根據(jù)點(diǎn)平移的規(guī)律易得點(diǎn)C的坐標(biāo)為(0,2),點(diǎn)D的坐標(biāo)為(6,2);(2)設(shè)點(diǎn)E的坐標(biāo)為(x,0),根據(jù)△DEC的面積是△DEB面積的2倍和三角形面積公式得到,解得x=1或x=7,然后寫(xiě)出點(diǎn)E的坐標(biāo);(3)分類(lèi)討論:當(dāng)點(diǎn)F在線段BD上,作FM∥AB,根據(jù)平行線的性質(zhì)由MF∥AB得∠2=∠FOB,由CD∥AB得到CD∥MF,則∠1=∠FCD,所以∠OFC=∠FOB+∠FCD;同樣得到當(dāng)點(diǎn)F在線段DB的延長(zhǎng)線上,∠OFC=∠FCD-∠FOB;當(dāng)點(diǎn)F在線段BD的延長(zhǎng)線上,得到∠OFC=∠FOB-∠FCD.【詳解】解:(1)∵點(diǎn)A,B的坐標(biāo)分別是(-2,0),(4,0),現(xiàn)同時(shí)將點(diǎn)A、B分別向上平移2個(gè)單位長(zhǎng)度,再向右平移2個(gè)單位長(zhǎng)度得到A,B的對(duì)應(yīng)點(diǎn)C,D,∴點(diǎn)C的坐標(biāo)為(0,2),點(diǎn)D的坐標(biāo)為(6,2);四邊形ABDC的面積=2×(4+2)=12;(2)存在.設(shè)點(diǎn)E的坐標(biāo)為(x,0),∵△DEC的面積是△DEB面積的2倍,,解得x=1或x=7,∴點(diǎn)E的坐標(biāo)為(1,0)和(7,0);(3)當(dāng)點(diǎn)F在線段BD上,作FM∥AB,如圖1,∵M(jìn)F∥AB,∴∠2=∠FOB,∵CD∥AB,∴CD∥MF,∴∠1=∠FCD,∴∠OFC=∠1+∠2=∠FOB+∠FCD;當(dāng)點(diǎn)F在線段DB的延長(zhǎng)線上,作FN∥AB,如圖2,∵FN∥AB,∴∠NFO=∠FOB,∵CD∥AB,∴CD∥FN,∴∠NFC=∠FCD,∴∠OFC=∠NFC-∠NFO=∠FCD-∠FOB;同樣得到當(dāng)點(diǎn)F在線段BD的延長(zhǎng)線上,得到∠OFC=∠FOB-∠FCD.【點(diǎn)睛】本題考查了坐標(biāo)與圖形性質(zhì):利用點(diǎn)的坐標(biāo)得到線段的長(zhǎng)和線段與坐標(biāo)軸的關(guān)系.也考查了平行線的性質(zhì)和分類(lèi)討論的思想.7.如圖,以直角三角形AOC的直角頂點(diǎn)O為原點(diǎn),以O(shè)C、OA所在直線為x軸和y軸建立平面直角坐標(biāo)系,點(diǎn)A(0,a),C(b,0)滿足+|b﹣2|=0,D為線段AC的中點(diǎn).在平面直角坐標(biāo)系中,以任意兩點(diǎn)P(x1,y1)、Q(x2,y2)為端點(diǎn)的線段中點(diǎn)坐標(biāo)為(,).(1)則A點(diǎn)的坐標(biāo)為;點(diǎn)C的坐標(biāo)為,D點(diǎn)的坐標(biāo)為.(2)已知坐標(biāo)軸上有兩動(dòng)點(diǎn)P、Q同時(shí)出發(fā),P點(diǎn)從C點(diǎn)出發(fā)沿x軸負(fù)方向以1個(gè)單位長(zhǎng)度每秒的速度勻速移動(dòng),Q點(diǎn)從O點(diǎn)出發(fā)以2個(gè)單位長(zhǎng)度每秒的速度沿y軸正方向移動(dòng),點(diǎn)Q到達(dá)A點(diǎn)整個(gè)運(yùn)動(dòng)隨之結(jié)束.設(shè)運(yùn)動(dòng)時(shí)間為t(t>0)秒.問(wèn):是否存在這樣的t,使S△ODP=S△ODQ,若存在,請(qǐng)求出t的值;若不存在,請(qǐng)說(shuō)明理由.(3)點(diǎn)F是線段AC上一點(diǎn),滿足∠FOC=∠FCO,點(diǎn)G是第二象限中一點(diǎn),連OG,使得∠AOG=∠AOF.點(diǎn)E是線段OA上一動(dòng)點(diǎn),連CE交OF于點(diǎn)H,當(dāng)點(diǎn)E在線段OA上運(yùn)動(dòng)的過(guò)程中,請(qǐng)確定∠OHC,∠ACE和∠OEC的數(shù)量關(guān)系,并說(shuō)明理由.解析:(1),,;(2)存在,;(3)【分析】(1)根據(jù)絕對(duì)值和算術(shù)平方根的非負(fù)性,求得a,b的值,得出點(diǎn)A,C的坐標(biāo),再運(yùn)用中點(diǎn)公式求出點(diǎn)D的坐標(biāo);(2)根據(jù)題意可得CP=t,OP=2-t,OQ=2t,AQ=4-2t,再根據(jù)S△ODP=S△ODQ,列方程求解即可;(3)過(guò)點(diǎn)H作HP∥AC交x軸于點(diǎn)P,先證明OG∥AC,再根據(jù)角的和差關(guān)系以及平行線性質(zhì),得出∠PHO=∠GOF=∠1+∠2,∠OHC=∠OHP+∠PHC=∠GOF+∠4=∠1+∠2+∠4,最后代入可得.【詳解】解:(1),,,,,,,設(shè),為線段的中點(diǎn).,,,故答案為:,,;(2)存在,.由條件可知:點(diǎn)從點(diǎn)運(yùn)動(dòng)到點(diǎn)需要時(shí)間為2秒,點(diǎn)從點(diǎn)運(yùn)動(dòng)到點(diǎn)需要時(shí)間2秒,,點(diǎn)在線段上,,,,,,,,,.(3)如圖2,,,,,,,,如圖,過(guò)點(diǎn)作交軸于點(diǎn),則,,,,∴.【點(diǎn)睛】本題考查了平行線的性質(zhì),三角形面積,非負(fù)數(shù)的性質(zhì),中點(diǎn)坐標(biāo)公式等,是一道三角形綜合題,解題關(guān)鍵是學(xué)會(huì)添加輔助線,運(yùn)用轉(zhuǎn)化的思想思考問(wèn)題.8.已知,,.(1)如圖1,求證:;(2)如圖2,作的平分線交于點(diǎn),點(diǎn)為上一點(diǎn),連接,若的平分線交線段于點(diǎn),連接,若,過(guò)點(diǎn)作交的延長(zhǎng)線于點(diǎn),且,求的度數(shù).解析:(1)見(jiàn)解析;(2)【分析】(1)根據(jù)平行線的性質(zhì)得出,再根據(jù)等量代換可得,最后根據(jù)平行線的判定即可得證;(2)過(guò)點(diǎn)E作,延長(zhǎng)DC至Q,過(guò)點(diǎn)M作,根據(jù)平行線的性質(zhì)及等量代換可得出,再根據(jù)平角的含義得出,然后根據(jù)平行線的性質(zhì)及角平分線的定義可推出;設(shè),根據(jù)角的和差可得出,結(jié)合已知條件可求得,最后根據(jù)垂線的含義及平行線的性質(zhì),即可得出答案.【詳解】(1)證明:;(2)過(guò)點(diǎn)E作,延長(zhǎng)DC至Q,過(guò)點(diǎn)M作,,,AF平分FH平分設(shè),.【點(diǎn)睛】本題考查了平行線的判定及性質(zhì),角平分線的定義,能靈活根據(jù)平行線的性質(zhì)和判定進(jìn)行推理是解此題的關(guān)鍵.9.已知直線AB//CD,點(diǎn)P、Q分別在AB、CD上,如圖所示,射線PB按逆時(shí)針?lè)较蛞悦棵?2°的速度旋轉(zhuǎn)至PA便立即回轉(zhuǎn),并不斷往返旋轉(zhuǎn);射線QC按逆時(shí)針?lè)较蛎棵?°旋轉(zhuǎn)至QD停止,此時(shí)射線PB也停止旋轉(zhuǎn).(1)若射線PB、QC同時(shí)開(kāi)始旋轉(zhuǎn),當(dāng)旋轉(zhuǎn)時(shí)間10秒時(shí),PB'與QC'的位置關(guān)系為;(2)若射線QC先轉(zhuǎn)15秒,射線PB才開(kāi)始轉(zhuǎn)動(dòng),當(dāng)射線PB旋轉(zhuǎn)的時(shí)間為多少秒時(shí),PB′//QC′.解析:(1)PB′⊥QC′;(2)當(dāng)射線PB旋轉(zhuǎn)的時(shí)間為5秒或25秒或45秒時(shí),PB′∥QC′【分析】(1)求出旋轉(zhuǎn)10秒時(shí),∠BPB′和∠CQC′的度數(shù),設(shè)PB′與QC′交于O,過(guò)O作OE∥AB,根據(jù)平行線的性質(zhì)求得∠POE和∠QOE的度數(shù),進(jìn)而得結(jié)論;(2)分三種情況:①當(dāng)0<t≤15時(shí),②當(dāng)15<t≤30時(shí),③當(dāng)30<t<45時(shí),根據(jù)平行線的性質(zhì),得出角的關(guān)系,列出t的方程便可求得旋轉(zhuǎn)時(shí)間.【詳解】解:(1)如圖1,當(dāng)旋轉(zhuǎn)時(shí)間30秒時(shí),由已知得∠BPB′=10°×12=120°,∠CQC′=3°×10=30°,過(guò)O作OE∥AB,∵AB∥CD,∴AB∥OE∥CD,∴∠POE=180°﹣∠BPB′=60°,∠QOE=∠CQC′=30°,∴∠POQ=90°,∴PB′⊥QC′,故答案為:PB′⊥QC′;(2)①當(dāng)0<t≤15時(shí),如圖,則∠BPB′=12t°,∠CQC′=45°+3t°,∵AB∥CD,PB′∥QC′,∴∠BPB′=∠PEC=∠CQC′,即12t=45+3t,解得,t=5;②當(dāng)15<t≤30時(shí),如圖,則∠APB′=12t﹣180°,∠CQC'=3t+45°,∵AB∥CD,PB′∥QC′,∴∠BPB′=∠BEQ=∠CQC′,即12t﹣180=45+3t,解得,t=25;③當(dāng)30<t≤45時(shí),如圖,則∠BPB′=12t﹣360°,∠CQC′=3t+45°,∵AB∥CD,PB′∥QC′,∴∠BPB′=∠BEQ=∠CQC′,即12t﹣360=45+3t,解得,t=45;綜上,當(dāng)射線PB旋轉(zhuǎn)的時(shí)間為5秒或25秒或45秒時(shí),PB′∥QC′.【點(diǎn)睛】本題主要考查了平行線的性質(zhì),第(1)題關(guān)鍵是作平行線,第(2)題關(guān)鍵是分情況討論,運(yùn)用方程思想解決幾何問(wèn)題.10.如圖,直線,點(diǎn)是、之間(不在直線,上)的一個(gè)動(dòng)點(diǎn).(1)如圖1,若與都是銳角,請(qǐng)寫(xiě)出與,之間的數(shù)量關(guān)系并說(shuō)明理由;(2)把直角三角形如圖2擺放,直角頂點(diǎn)在兩條平行線之間,與交于點(diǎn),與交于點(diǎn),與交于點(diǎn),點(diǎn)在線段上,連接,有,求的值;(3)如圖3,若點(diǎn)是下方一點(diǎn),平分,平分,已知,求的度數(shù).解析:(1)見(jiàn)解析;(2);(3)75°【分析】(1)根據(jù)平行線的性質(zhì)、余角和補(bǔ)角的性質(zhì)即可求解.(2)根據(jù)平行線的性質(zhì)、對(duì)頂角的性質(zhì)和平角的定義解答即可.(3)根據(jù)平行線的性質(zhì)和角平分線的定義以及三角形內(nèi)角和解答即可.【詳解】解:(1)∠C=∠1+∠2,證明:過(guò)C作l∥MN,如下圖所示,∵l∥MN,∴∠4=∠2(兩直線平行,內(nèi)錯(cuò)角相等),∵l∥MN,PQ∥MN,∴l(xiāng)∥PQ,∴∠3=∠1(兩直線平行,內(nèi)錯(cuò)角相等),∴∠3+∠4=∠1+∠2,∴∠C=∠1+∠2;(2)∵∠BDF=∠GDF,∵∠BDF=∠PDC,∴∠GDF=∠PDC,∵∠PDC+∠CDG+∠GDF=180°,∴∠CDG+2∠PDC=180°,∴∠PDC=90°-∠CDG,由(1)可得,∠PDC+∠CEM=∠C=90°,∴∠AEN=∠CEM,∴,(3)設(shè)BD交MN于J.∵BC平分∠PBD,AM平分∠CAD,∠PBC=25°,∴∠PBD=2∠PBC=50°,∠CAM=∠MAD,∵PQ∥MN,∴∠BJA=∠PBD=50°,∴∠ADB=∠AJB-∠JAD=50°-∠JAD=50°-∠CAM,由(1)可得,∠ACB=∠PBC+∠CAM,∴∠ACB+∠ADB=∠PBC+∠CAM+50°-∠CAM=25°+50°=75°.【點(diǎn)睛】本題考查了平行線的性質(zhì)、余角和補(bǔ)角的性質(zhì),解題的關(guān)鍵是根據(jù)平行找出角度之間的關(guān)系.11.汛期即將來(lái)臨,防汛指揮部在某水域一危險(xiǎn)地帶兩岸各安置了一探照燈,便于夜間查看河水及兩岸河堤的情況.如圖1,燈射出的光束自順時(shí)針旋轉(zhuǎn)至便立即回轉(zhuǎn),燈射出的光束自順時(shí)針旋轉(zhuǎn)至便立即回轉(zhuǎn),兩燈不停交叉照射巡視.若燈射出的光束轉(zhuǎn)動(dòng)的速度是/秒,燈射出的光束轉(zhuǎn)動(dòng)的速度是/秒,且、滿足.假定這一帶水域兩岸河堤是平行的,即,且.(1)求、的值;(2)如圖2,兩燈同時(shí)轉(zhuǎn)動(dòng),在燈射出的光束到達(dá)之前,若兩燈射出的光束交于點(diǎn),過(guò)作交于點(diǎn),若,求的度數(shù);(3)若燈射線先轉(zhuǎn)動(dòng)30秒,燈射出的光束才開(kāi)始轉(zhuǎn)動(dòng),在燈射出的光束到達(dá)之前,燈轉(zhuǎn)動(dòng)幾秒,兩燈的光束互相平行?解析:(1),;(2)30°;(3)15秒或82.5秒【分析】(1)解出式子即可;(2)根據(jù),用含t的式子表示出,根據(jù)(2)中給出的條件得出方程式,求出t的值,進(jìn)而求出的度數(shù);(3)根據(jù)燈B的要求,t<150,在這個(gè)時(shí)間段內(nèi)A可以轉(zhuǎn)3次,分情況討論.【詳解】解:(1).又,.,;(2)設(shè)燈轉(zhuǎn)動(dòng)時(shí)間為秒,如圖,作,而,,,,,,(3)設(shè)燈轉(zhuǎn)動(dòng)秒,兩燈的光束互相平行.依題意得①當(dāng)時(shí),兩河岸平行,所以?xún)晒饩€平行,所以所以,即:,解得;②當(dāng)時(shí),兩光束平行,所以?xún)珊影镀叫?,所以所以,,解得;③?dāng)時(shí),圖大概如①所示,解得(不合題意)綜上所述,當(dāng)秒或82.5秒時(shí),兩燈的光束互相平行.【點(diǎn)睛】這道題考察的是平行線的性質(zhì)和一元一次方程的應(yīng)用.根據(jù)平行線的性質(zhì)找到對(duì)應(yīng)角列出方程是解題的關(guān)鍵.12.如圖,已知,是的平分線.(1)若平分,求的度數(shù);(2)若在的內(nèi)部,且于,求證:平分;(3)在(2)的條件下,過(guò)點(diǎn)作,分別交、于點(diǎn)、,繞著點(diǎn)旋轉(zhuǎn),但與、始終有交點(diǎn),問(wèn):的值是否發(fā)生變化?若不變,求其值;若變化,求其變化范圍.解析:(1)90°;(2)見(jiàn)解析;(3)不變,180°【分析】(1)根據(jù)鄰補(bǔ)角的定義及角平分線的定義即可得解;(2)根據(jù)垂直的定義及鄰補(bǔ)角的定義、角平分線的定義即可得解;(3),過(guò),分別作,,根據(jù)平行線的性質(zhì)及平角的定義即可得解.【詳解】解(1),分別平分和,,,,;(2),,即,,是的平分線,,,又,,又在的內(nèi)部,平分;(3)如圖,不發(fā)生變化,,過(guò),分別作,,則有,,,,,,,,,,,,不變.【點(diǎn)睛】此題考查了平行線的性質(zhì),熟記平行線的性質(zhì)及作出合理的輔助線是解題的關(guān)鍵.13.已知,.點(diǎn)在上,點(diǎn)在上.(1)如圖1中,、、的數(shù)量關(guān)系為:;(不需要證明);如圖2中,、、的數(shù)量關(guān)系為:;(不需要證明)(2)如圖3中,平分,平分,且,求的度數(shù);(3)如圖4中,,平分,平分,且,則的大小是否發(fā)生變化,若變化,請(qǐng)說(shuō)明理由,若不變化,求出么的度數(shù).解析:(1)∠BME=∠MEN?∠END;∠BMF=∠MFN+∠FND.(2)120°(3)∠FEQ的大小沒(méi)發(fā)生變化,∠FEQ=30°.【分析】(1)過(guò)E作EHAB,易得EHABCD,根據(jù)平行線的性質(zhì)可求解;過(guò)F作FHAB,易得FHABCD,根據(jù)平行線的性質(zhì)可求解;(2)根據(jù)(1)的結(jié)論及角平分線的定義可得2(∠BME+∠END)+∠BMF?∠FND=180°,可求解∠BMF=60°,進(jìn)而可求解;(3)根據(jù)平行線的性質(zhì)及角平分線的定義可推知∠FEQ=∠BME,進(jìn)而可求解.【詳解】解:(1)過(guò)E作EHAB,如圖1,∴∠BME=∠MEH,∵ABCD,∴HECD,∴∠END=∠HEN,∴∠MEN=∠MEH+∠HEN=∠BME+∠END,即∠BME=∠MEN?∠END.如圖2,過(guò)F作FHAB,∴∠BMF=∠MFK,∵ABCD,∴FHCD,∴∠FND=∠KFN,∴∠MFN=∠MFK?∠KFN=∠BMF?∠FND,即:∠BMF=∠MFN+∠FND.故答案為∠BME=∠MEN?∠END;∠BMF=∠MFN+∠FND.(2)由(1)得∠BME=∠MEN?∠END;∠BMF=∠MFN+∠FND.∵NE平分∠FND,MB平分∠FME,∴∠FME=∠BME+∠BMF,∠FND=∠FNE+∠END,∵2∠MEN+∠MFN=180°,∴2(∠BME+∠END)+∠BMF?∠FND=180°,∴2∠BME+2∠END+∠BMF?∠FND=180°,即2∠BMF+∠FND+∠BMF?∠FND=180°,解得∠BMF=60°,∴∠FME=2∠BMF=120°;(3)∠FEQ的大小沒(méi)發(fā)生變化,∠FEQ=30°.由(1)知:∠MEN=∠BME+∠END,∵EF平分∠MEN,NP平分∠END,∴∠FEN=∠MEN=(∠BME+∠END),∠ENP=∠END,∵EQNP,∴∠NEQ=∠ENP,∴∠FEQ=∠FEN?∠NEQ=(∠BME+∠END)?∠END=∠BME,∵∠BME=60°,∴∠FEQ=×60°=30°.【點(diǎn)睛】本題主要考查平行線的性質(zhì)及角平分線的定義,作輔助線是解題的關(guān)鍵.14.如圖1,點(diǎn)在直線、之間,且.(1)求證:;(2)若點(diǎn)是直線上的一點(diǎn),且,平分交直線于點(diǎn),若,求的度數(shù);(3)如圖3,點(diǎn)是直線、外一點(diǎn),且滿足,,與交于點(diǎn).已知,且,則的度數(shù)為_(kāi)_____(請(qǐng)直接寫(xiě)出答案,用含的式子表示).解析:(1)見(jiàn)解析;(2)10°;(3)【分析】(1)過(guò)點(diǎn)E作EF∥CD,根據(jù)平行線的性質(zhì),兩直線平行,內(nèi)錯(cuò)角相等,得出結(jié)合已知條件,得出即可證明;(2)過(guò)點(diǎn)E作HE∥CD,設(shè)由(1)得AB∥CD,則AB∥CD∥HE,由平行線的性質(zhì),得出再由平分,得出則,則可列出關(guān)于x和y的方程,即可求得x,即的度數(shù);(3)過(guò)點(diǎn)N作NP∥CD,過(guò)點(diǎn)M作QM∥CD,由(1)得AB∥CD,則NP∥CD∥AB∥QM,根據(jù)和,得出根據(jù)CD∥PN∥QM,DE∥NB,得出即根據(jù)NP∥AB,得出再由,得出由AB∥QM,得出因?yàn)?,代入的式子即可求出.【詳解】?)過(guò)點(diǎn)E作EF∥CD,如圖,∵EF∥CD,∴∴∵,∴∴EF∥AB,∴CD∥
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年綏化市教育學(xué)院輔導(dǎo)員招聘?jìng)淇碱}庫(kù)附答案
- 2024年西南財(cái)經(jīng)大學(xué)輔導(dǎo)員考試筆試題庫(kù)附答案
- 2024年陜西警察學(xué)院輔導(dǎo)員考試筆試題庫(kù)附答案
- 2024年黃岡師范學(xué)院輔導(dǎo)員考試筆試真題匯編附答案
- 2025下半年四川宜賓市翠屏區(qū)事業(yè)單位考核招聘74人備考題庫(kù)含答案解析(奪冠)
- 2025云南昭通市公安局第五輪招聘警務(wù)輔助人員88人參考題庫(kù)含答案
- 2025北京十一中關(guān)村科學(xué)城學(xué)校招聘參考題庫(kù)含答案
- 2025年云和縣公開(kāi)選調(diào)機(jī)關(guān)事業(yè)單位工作人員19人參考題庫(kù)附答案
- 2025年吉林職工醫(yī)科大學(xué)輔導(dǎo)員招聘考試真題匯編附答案
- 2025年沈陽(yáng)職業(yè)技術(shù)學(xué)院輔導(dǎo)員招聘考試真題匯編附答案
- 四川省德陽(yáng)市第五中學(xué)2025-2026學(xué)年上學(xué)期八年級(jí)數(shù)學(xué)第一次月考試題(無(wú)答案)
- (英語(yǔ))高一英語(yǔ)完形填空專(zhuān)題訓(xùn)練答案
- 公安副職競(jìng)聘考試題庫(kù)及答案
- 口腔診所勞務(wù)合同協(xié)議書(shū)
- 2025年度商鋪裝修工程總包與施工合同
- 門(mén)窗維修協(xié)議合同范本
- 子宮肌瘤課件超聲
- 2025年異丙醇行業(yè)當(dāng)前發(fā)展現(xiàn)狀及增長(zhǎng)策略研究報(bào)告
- 出租車(chē)頂燈設(shè)備管理辦法
- DB11∕T 637-2024 房屋結(jié)構(gòu)綜合安全性鑒定標(biāo)準(zhǔn)
- 2025年新疆中考數(shù)學(xué)真題試卷及答案
評(píng)論
0/150
提交評(píng)論