版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
浙江省建德市中考數(shù)學真題分類(勾股定理)匯編單元測評考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題14分)一、單選題(7小題,每小題2分,共計14分)1、如圖,在由邊長為1的7個正六邊形組成的網(wǎng)格中,點A,B在格點上.若再選擇一個格點C,使△ABC是直角三角形,且每個直角三角形邊長均大于1,則符合條件的格點C的個數(shù)是(
)A.2 B.4 C.5 D.62、如圖是一個三級臺階,它的每一級的長、寬、高分別為20dm、3dm、2dm,A和B是這個臺階上兩個相對的端點,點A處有一只螞蟻,想到點B處去吃可口的食物,則螞蟻沿著臺階面爬行到點B的最短路程為(
)A.20dm B.25dm C.30dm D.35dm3、如圖,已知點E在正方形ABCD內(nèi),滿足∠AEB=90°,AE=6,BE=8,則陰影部分的面積是()A.48 B.60C.76 D.804、下列各組數(shù):①3、4、5
②4、5、6
③2.5、6、6.5
④8、15、17,其中是勾股數(shù)的有(
)A.4組 B.3組 C.2組 D.1組5、如圖所示,圓柱的高AB=3,底面直徑BC=3,現(xiàn)在有一只螞蟻想要從A處沿圓柱表面爬到對角C處捕食,則它爬行的最短距離是()A. B. C. D.6、《九章算術》“勾股”章有一題:“今有戶高多于廣六尺八寸,兩隅相去適一丈.問戶高、廣各幾何.”大意是說:已知長方形門的高比寬多6尺8寸,門的對角線長1丈,那么門的高和寬各是多少(1丈=10尺,1尺=10寸)?若設門的寬為x寸,則下列方程中,符合題意的是()A.x2+12=(x+0.68)2 B.x2+(x+0.68)2=12C.x2+1002=(x+68)2 D.x2+(x+68)2=10027、如圖,在2×2的正方形網(wǎng)格中有9個格點,已經(jīng)取定點A和B,在余下的點中任取一點C,使△ABC為直角三角形的概率是(
)A. B. C. D.第Ⅱ卷(非選擇題86分)二、填空題(8小題,每小題2分,共計16分)1、附加題:觀察以下幾組勾股數(shù),并尋找規(guī)律:①3,4,5;②5,12,13;③7,24,25;④9,40,41;…請你寫出有以上規(guī)律的第⑤組勾股數(shù):________.2、我國古代數(shù)學著作《九章算術》中的一個問題:一根竹子高1丈(1丈=10尺),折斷后頂端落在離竹子底端3尺處,問折斷處離地面的高度為多少尺?如圖,設折斷處離地面的高度為x尺,根據(jù)題意,可列出關于x方程為:__________.3、如圖,一架長5米的梯子A1B1斜靠在墻A1C上,B1到墻底端C的距離為3米,此時梯子的高度達不到工作要求,因此把梯子的B1端向墻的方向移動了1.6米到B處,此時梯子的高度達到工作要求,那么梯子的A1端向上移動了_____米.4、我國古代有這樣一道數(shù)學問題:“枯木一根直立地上,高二丈,周三尺,有葛藤自根纏繞而上,五周而達其頂,問葛藤之長幾何?”題意是:如圖所示,把枯木看作一個圓柱體,因一丈是十尺,則該圓柱的高為20尺,底面周長為3尺,有葛藤自點A處纏繞而上,繞五周后其末端恰好到達點B處,則問題中葛藤的最短長度是_______尺.
5、如圖,分別以此直角三角形的三邊為直徑在三角形的外部畫半圓,,,則_________.6、如圖,在四邊形ABCD中,,,,,,那么四邊形ABCD的面積是___________.7、《九章算術》中有“折竹抵地”問題:“今有竹高一丈,末折抵地,去根三尺,問折者高幾何?”題意是:有一根竹子原來高1丈(1丈=10尺),中部有一處折斷,竹梢觸地面處離竹根3尺,試問折斷處離地面多高?如圖,設折斷處距離地面x尺,根據(jù)題意,可列方程為______.8、小聰準備測量河水的深度,他把一根竹竿插到離岸邊遠的水底,竹竿高出水面,把竹竿的頂端拉向岸邊,竹竿頂和岸邊的水面剛好相齊,則河水的深度為__________.三、解答題(7小題,每小題10分,共計70分)1、如圖所示的一塊地,已知,,,,,求這塊地的面積.2、如圖,在一次地震中,一棵垂直于地面且高度為16米的大樹被折斷,樹的頂部落在離樹根8米處,即,求這棵樹在離地面多高處被折斷(即求AC的長度)?3、若的三邊,,滿足條件,試判斷的形狀.4、如圖,一艘船由A港沿北偏東60°方向航行10km至B港,然后再沿北偏西30°方向航行10km至C港.(1)求A,C兩港之間的距離(結(jié)果保留到0.1km,參考數(shù)據(jù):≈1.414,≈1.732);(2)確定C港在A港的什么方向.5、閱讀下面材料:小明遇到這樣一個問題:∠MBN=30°,點A為射線BM上一點,且AB=4,點C為射線BN上動點,連接AC,以AC為邊在AC右側(cè)作等邊三角形ACD,連接BD.當AC⊥BN時,求BD的長.小明發(fā)現(xiàn):以AB為邊在左側(cè)作等邊三角形ABE,連接CE,能得到一對全等的三角形,再利用∠EBC=90°,從而將問題解決(如圖1).請回答:(1)在圖1中,小明得到的全等三角形是△≌△;BD的長為.(2)動點C在射線BN上運動,當運動到AC時,求BD的長;(3)動點C在射線BN上運動,求△ABD周長最小值.6、(1)圖1是由有20個邊長為1的正方形組成的,把它按圖1的分割方法分割成5部分后可拼接成一個大正方形(內(nèi)部的粗實線表示分割線),請你在圖2的網(wǎng)格中畫出拼接成的大正方形.(2)如果(1)中分割成的直角三角形兩直角邊分別為a,b斜邊為c.請你利用圖2中拼成的大正方形證明勾股定理.(3)應用:測量旗桿的高度:校園內(nèi)有一旗桿,小希想知道旗桿的高度,經(jīng)觀察發(fā)現(xiàn)從頂端垂下一根拉繩,于是他測出了下列數(shù)據(jù):①測得拉繩垂到地面后,多出的長度為0.5米;②他在距離旗桿4米的地方拉直繩子,拉繩的下端恰好距離地面0.5米.請你根據(jù)所測得的數(shù)據(jù)設計可行性方案,解決這一問題.(畫出示意圖并計算出這根旗桿的高度).7、已知,如圖,,C為上一點,與相交于點F,連接.,.(1)求證:;(2)已知,,,求的長度.-參考答案-一、單選題1、D【解析】【分析】分三種情況討論,當∠A=90°,或∠B=90°,或∠C=90°時,分別畫出符合條件的圖形,即可解答.【詳解】解:分三種情況討論,當∠A=90°,或∠B=90°,或∠C=90°如圖符合條件的格點C的個數(shù)是6個故選:D.【考點】本題考查正多邊形和圓的性質(zhì)、直角三角形的判定與性質(zhì)、直徑所對的圓周角是90°等知識,是基礎考點,掌握相關知識是解題關鍵.2、B【解析】【分析】先將圖形平面展開,再用勾股定理根據(jù)兩點之間線段最短進行解答.【詳解】三級臺階平面展開圖為長方形,長為20dm,寬為(2+3)×3dm,則螞蟻沿臺階面爬行到B點最短路程是此長方形的對角線長.可設螞蟻沿臺階面爬行到B點最短路程為xdm,由勾股定理得:x2=202+[(2+3)×3]2=252,解得x=25.故選B.【考點】本題考查了平面展開——最短路徑問題,用到臺階的平面展開圖,只要根據(jù)題意判斷出長方形的長和寬即可解答.3、C【解析】【詳解】解:∵∠AEB=90°,AE=6,BE=8,∴AB=∴S陰影部分=S正方形ABCD-SRt△ABE=102-=100-24=76.故選:C.4、C【解析】【詳解】解:∵32+42=52,①符合勾股數(shù)的定義;∵42+52≠62,②不符合勾股數(shù)的定義;∵2.5和6.5不是正整數(shù),③不符合勾股數(shù)的定義;∵82+152=172,④符合勾股數(shù)的定義,是勾股數(shù)的有:①④,共2組,故選:C.5、C【解析】【分析】要求最短路徑,首先要把圓柱的側(cè)面展開,利用兩點之間線段最短,然后利用勾股定理即可求解.【詳解】解:把圓柱側(cè)面展開,展開圖如圖所示,點A、C之間的最短距離為線段AC的長.在Rt△ADC中,∠ADC=90°,CD=AB=3,AD為底面半圓弧長,AD=π,∴AC=,故選C.【考點】本題考查了平面展開-最短路徑問題,解題的關鍵是會將圓柱的側(cè)面展開,并利用勾股定理解答.6、D【解析】【分析】1丈=100寸,6尺8寸=68寸,設門的寬為x寸,則門的高度為(x+68)寸,利用勾股定理及門的對角線長1丈(100寸),即可得出關于x的一元二次方程,此題得解.【詳解】解:1丈=100寸,6尺8寸=68寸.設門的寬為x寸,則門的高度為(x+68)寸,依題意得:x2+(x+68)2=1002.故選:D.【考點】本題主要考查了勾股定理的應用、由實際問題抽象出一元二次方程,準確計算是解題的關鍵.7、C【解析】【分析】找到可以組成直角三角形的點,根據(jù)概率公式解答即可.【詳解】解:如圖,,,,均可與點和組成直角三角形.,故選:C.【考點】本題考查了概率公式,解題的關鍵是掌握如果一個事件有種可能,而且這些事件的可能性相同,其中事件出現(xiàn)種結(jié)果,那么事件的概率(A).二、填空題1、11,60,61【解析】【分析】由所給勾股數(shù)發(fā)現(xiàn)第一個數(shù)是奇數(shù),且逐步遞增2,知第5組第一個數(shù)是11,第二、第三個數(shù)相差為1,設第二個數(shù)為x,則第三個數(shù)為,由勾股定理得:,計算求解即可.【詳解】解:由所給勾股數(shù)發(fā)現(xiàn)第一個數(shù)是奇數(shù),且逐步遞增2,∴知第5組第一個數(shù)是11,第二、第三個數(shù)相差為1,設第二個數(shù)為x,則第三個數(shù)為,由勾股定理得:,解得x=60,∴第5組數(shù)是:11、60、61故答案為:11、60、61.【考點】本題考查了數(shù)字類規(guī)律,勾股定理等知識.解題的關鍵在于推導規(guī)律.2、【解析】【分析】設折斷處離地面的高度為x尺,根據(jù)勾股定理列出方程即可【詳解】解:設折斷處離地面的高度為x尺,根據(jù)題意可得:故答案為:【考點】本題考查了勾股定理的應用,掌握勾股定理是解題的關鍵.3、0.8【解析】【分析】梯子的長是不變的,只要利用勾股定理解出梯子滑動前和滑動后的所構(gòu)成的兩直角三角形,分別得出AO,A1O的長即可.【詳解】解:在Rt△ABO中,根據(jù)勾股定理知,A1O==4(m),在Rt△ABO中,由題意可得:BO=1.4(m),根據(jù)勾股定理知,AO==4.8(m),所以AA1=AO-A1O=0.8(米).故答案為0.8.【考點】本題考查勾股定理的應用,解題關鍵是從題中抽象出勾股定理這一數(shù)學模型,畫出準確的示意圖.領會數(shù)形結(jié)合的思想的應用.4、25.【解析】【詳解】解:這種立體圖形求最短路徑問題,可以展開成為平面內(nèi)的問題解決,展開后可轉(zhuǎn)化下圖,所以是直角三角形求斜邊的問題.根據(jù)勾股定理可求出葛藤長為(尺).故答案為:25.5、【解析】【分析】根據(jù)題意設直角三角形的三邊為,分別表示出,得出,進而即可求解.【詳解】解:設直角三角形的三邊為,如圖,,,,,S1=18π,S3=50π,故答案為:.【考點】本題考查了勾股定理的應用,掌握勾股定理是解題的關鍵.6、+24【解析】【分析】連結(jié)BD,可求出BD=6,再根據(jù)勾股定理逆定理,得出△BDC是直角三角形,兩個三角形面積相加即可.【詳解】解:連結(jié)BD,∵,∴,∵,,∴BD=6,∵BD2=36,CD2=64,BC2=100,BD2+CD2=BC2,∴∠BDC=90°,S△ABD=,S△BDC=,四邊形ABCD的面積是=S△ABD+S△BDC=+24故答案為:+24.【考點】本題考查勾股定理以及逆定理,三角形的面積等知識,解題的關鍵是靈活運用所學知識解決問題,屬于中考??碱}型.7、【解析】【分析】根據(jù)勾股定理即可得出結(jié)論.【詳解】解:設未折斷的竹干長為尺,根據(jù)題意可列方程為:.故答案為:.【考點】本題考查的是勾股定理的應用,在應用勾股定理解決實際問題時勾股定理與方程的結(jié)合是解決實際問題常用的方法,關鍵是從題中抽象出勾股定理這一數(shù)學模型,畫出準確的示意圖.領會數(shù)形結(jié)合的思想的應用.8、2【解析】【分析】根據(jù)河水深度、竹竿到岸邊的距離、竹竿長構(gòu)成直角三角形,利用勾股定理進行計算即可.【詳解】根據(jù)題意畫出示意圖,如圖,則AC=0.5m,,,所以BC即為河水深度,,∵,∴是直角三角形,∴,∴,解得:BC=2(m),故答案為:2.【考點】本題考查了勾股定理,根據(jù)題意畫示意圖找出與所求邊長相關線段所構(gòu)成直角三角形是解題關鍵.三、解答題1、【解析】【分析】根據(jù)勾股定理求得的長,再根據(jù)勾股定理的逆定理判定為直角三角形,從而不難求得這塊地的面積.【詳解】解:連接.,,為直角三角形,,這塊地的面積.【考點】本題考查了學生對勾股定理及其逆定理的理解及運用能力,解題的關鍵是掌握勾股定理的知識.2、這棵樹在離地面6米處被折斷【解析】【分析】設,利用勾股定理列方程求解即可.【詳解】解:設,∵在中,,∴,∴.答:這棵樹在離地面6米處被折斷【考點】本題考查了勾股定理,熟練掌握勾股定理是解答本題的關鍵.直角三角形兩條直角邊的平方和等于斜邊的平方.當題目中出現(xiàn)直角三角形,且該直角三角形的一邊為待求量時,常使用勾股定理進行求解.有時也可以利用勾股定理列方程求解.3、三角形為直角三角形,理由見解析【解析】【分析】這是一道有關勾股定理的逆定理、完全平方公式的解答題.把已知條件寫成三個完全平方式的和的形式,再由非負數(shù)的性質(zhì)求得三邊,根據(jù)勾股定理的逆定理即可判斷△ABC的形狀.【詳解】,,即.,,,,,.,,.,,該三角形為直角三角形.【考點】此題主要考查了勾股定理的逆定理、完全平方公式.此題的關鍵就是靈活掌握完全平方公式的特點,用配方法進行恒等變形,在恒等變形的過程中不要改變式子的值.4、(1)A、C兩地之間的距離為14.1km;(2)C港在A港北偏東15°的方向上.【解析】【分析】(1)根據(jù)方位角的定義可得出∠ABC=90°,再根據(jù)勾股定理可求得AC的長為14.1.(2)由(1)可知△ABC為等腰直角三角形,從而得出∠BAC=45°,求出∠CAM=15°,所而確定C港在A港的什么方向.【詳解】(1)由題意可得,∠PBC=30°,∠MAB=60°,∴∠CBQ=60°,∠BAN=30°,∴∠ABQ=30°,∴∠ABC=90°.∵AB=BC=10,∴AC==≈14.1.答:A、C兩地之間的距離為14.1km.(2)由(1)知,△ABC為等腰直角三角形,∴∠BAC=45°,∴∠CAM=15°,∴C港在A港北偏東15°的方向上.【考點】本題考查了方位角的概念及勾股定理及其逆定理,正確理解方位角是解題的關鍵.5、(1)ABD,ACE,;(2)BD的長為;(3)+4.【解析】【分析】(1)根據(jù)SAS可證△ABD≌△ACE,得出BD=CE,利用勾股定理求出CE即可得出BD的長度;(2)作AH⊥BC于點H,以AB為邊在左側(cè)作等邊△ABE,連接CE,求出BH,HC即BC的長度,再利用勾股定理即可求出CE的長度,由(1)知BD=CE,據(jù)此得解;(3)作AH⊥BC于點H,以AB為邊在左側(cè)作等邊△ABE,延長EB至F,使BF=EB,連接AF交BN于C',連接EC',此時BD+AC'有最小值即為AF,此時△ABD周長=AF+AB最小,求出AF即可.(1)解:∵△ACD和△ABE是等邊三角形,∴∠EAB=∠DAC=60°,AD=AC,∴∠EAB+∠BAC=∠DAC+∠BAC,即∠EAC=∠BAD,在△ABD和△AEC中,,∴△ABD≌△ACE(SAS),∴BD=CE,∵AB=4,∠MBN=30°,∴AC=2,∴BC=,∴BD=CE=,故答案為:ABD,ACE,;(2)解:如下圖,作AH⊥BC于點H,以AB為邊在左側(cè)作等邊△ABE,連接CE,∵AB=4,∠MAN=30°,∴AH=2,BH=,∵AC=,∴HC=,∴BC=BH+HC=+=,∴CE=,由(1)可知BD=CE,∴此時BD的長為;(3)解:如圖,以AB為邊在左側(cè)作等邊△ABE,延長EB至F,使BF=EB,連接AF交BN于C',連接EC',∵EC'=FC'=BD,∴此時BD+AC'有最小值即為AF,∴此時△ABD周長=AD+BD+AB=AF+AB最小,作AG⊥BE于G,∴AG∥BN,∴∠BAG=30°,∴BG=AB=2,AG=,∴GF=BG+BF=2+4=6,由勾股定理得AF=,∴此時△ABD周長為:+4
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 學校每周衛(wèi)生制度
- 衛(wèi)生關政府規(guī)章制度
- 藝術培訓班衛(wèi)生管理制度
- 凈水器生產(chǎn)衛(wèi)生管理制度
- 每年四月愛國衛(wèi)生月制度
- 四川省衛(wèi)生耗材管理制度
- 候診室公共衛(wèi)生管理制度
- 衛(wèi)生院臺賬管理制度
- 衛(wèi)生局紅十字會規(guī)章制度
- 生活區(qū)文明衛(wèi)生管理制度
- 特教數(shù)學教學課件
- 2025年云南省中考化學試卷真題(含標準答案及解析)
- 華為干部培訓管理制度
- 職業(yè)技術學院2024級智能網(wǎng)聯(lián)汽車工程技術專業(yè)人才培養(yǎng)方案
- 父母贈與協(xié)議書
- 供應鏈危機應對預案
- 3萬噸特高壓及以下鋼芯鋁絞線鋁包鋼芯絞線項目可行性研究報告寫作模板-拿地備案
- 砌筑工技能競賽理論考試題庫(含答案)
- 法學概論(第七版) 課件全套 谷春德 第1-7章 我國社會主義法的基本理論 - 國際法
- 音響質(zhì)量保證措施
- 工裝夾具驗收單
評論
0/150
提交評論