江蘇省鹽城市東臺三倉中學2025-2026學年數學高三上期末考試試題_第1頁
江蘇省鹽城市東臺三倉中學2025-2026學年數學高三上期末考試試題_第2頁
江蘇省鹽城市東臺三倉中學2025-2026學年數學高三上期末考試試題_第3頁
江蘇省鹽城市東臺三倉中學2025-2026學年數學高三上期末考試試題_第4頁
江蘇省鹽城市東臺三倉中學2025-2026學年數學高三上期末考試試題_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

江蘇省鹽城市東臺三倉中學2025-2026學年數學高三上期末考試試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知,則,不可能滿足的關系是()A. B. C. D.2.下列命題中,真命題的個數為()①命題“若,則”的否命題;②命題“若,則或”;③命題“若,則直線與直線平行”的逆命題.A.0 B.1 C.2 D.33.如圖1,《九章算術》中記載了一個“折竹抵地”問題:今有竹高一丈,末折抵地,去本三尺,問折者高幾何?意思是:有一根竹子,原高一丈(1丈=10尺),現被風折斷,尖端落在地上,竹尖與竹根的距離三尺,問折斷處離地面的高為()尺.A. B. C. D.4.函數f(x)=的圖象大致為()A. B.C. D.5.我國古代有著輝煌的數學研究成果,其中的《周髀算經》、《九章算術》、《海島算經》、《孫子算經》、《緝古算經》,有豐富多彩的內容,是了解我國古代數學的重要文獻.這5部專著中有3部產生于漢、魏、晉、南北朝時期.某中學擬從這5部專著中選擇2部作為“數學文化”校本課程學習內容,則所選2部專著中至少有一部是漢、魏、晉、南北朝時期專著的概率為()A. B. C. D.6.如圖,在正四棱柱中,,分別為的中點,異面直線與所成角的余弦值為,則()A.直線與直線異面,且 B.直線與直線共面,且C.直線與直線異面,且 D.直線與直線共面,且7.若直線與曲線相切,則()A.3 B. C.2 D.8.已知直線過圓的圓心,則的最小值為()A.1 B.2 C.3 D.49.若x,y滿足約束條件的取值范圍是A.[0,6] B.[0,4] C.[6, D.[4,10.已知函數的圖像的一條對稱軸為直線,且,則的最小值為()A. B.0 C. D.11.一個超級斐波那契數列是一列具有以下性質的正整數:從第三項起,每一項都等于前面所有項之和(例如:1,3,4,8,16…).則首項為2,某一項為2020的超級斐波那契數列的個數為()A.3 B.4 C.5 D.612.已知等比數列的前項和為,若,且公比為2,則與的關系正確的是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖,在體積為V的圓柱中,以線段上的點O為項點,上下底面為底面的兩個圓錐的體積分別為,,則的值是______.14.已知x,y滿足約束條件x-y-1≥0x+y-3≤02y+1≥0,則15.已知為矩形的對角線的交點,現從這5個點中任選3個點,則這3個點不共線的概率為________.16.設直線過雙曲線的一個焦點,且與的一條對稱軸垂直,與交于兩點,為的實軸長的2倍,則雙曲線的離心率為.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知各項均為正數的數列的前項和為,且是與的等差中項.(1)證明:為等差數列,并求;(2)設,數列的前項和為,求滿足的最小正整數的值.18.(12分)某動漫影視制作公司長期堅持文化自信,不斷挖掘中華優(yōu)秀傳統(tǒng)文化中的動漫題材,創(chuàng)作出一批又一批的優(yōu)秀動漫影視作品,獲得市場和廣大觀眾的一致好評,同時也為公司贏得豐厚的利潤.該公司年至年的年利潤關于年份代號的統(tǒng)計數據如下表(已知該公司的年利潤與年份代號線性相關).年份年份代號年利潤(單位:億元)(Ⅰ)求關于的線性回歸方程,并預測該公司年(年份代號記為)的年利潤;(Ⅱ)當統(tǒng)計表中某年年利潤的實際值大于由(Ⅰ)中線性回歸方程計算出該年利潤的估計值時,稱該年為級利潤年,否則稱為級利潤年.將(Ⅰ)中預測的該公司年的年利潤視作該年利潤的實際值,現從年至年這年中隨機抽取年,求恰有年為級利潤年的概率.參考公式:,.19.(12分)選修4-5:不等式選講已知函數(Ⅰ)解不等式;(Ⅱ)對及,不等式恒成立,求實數的取值范圍.20.(12分)已知數列的前n項和為,且n、、成等差數列,.(1)證明數列是等比數列,并求數列的通項公式;(2)若數列中去掉數列的項后余下的項按原順序組成數列,求的值.21.(12分)圖1是由矩形ADEB,Rt△ABC和菱形BFGC組成的一個平面圖形,其中AB=1,BE=BF=2,∠FBC=60°,將其沿AB,BC折起使得BE與BF重合,連結DG,如圖2.(1)證明:圖2中的A,C,G,D四點共面,且平面ABC⊥平面BCGE;(2)求圖2中的二面角B?CG?A的大小.22.(10分)某校為了解校園安全教育系列活動的成效,對全校學生進行了一次安全意識測試,根據測試成績評定“合格”“不合格”兩個等級,同時對相應等級進行量化:“合格”記5分,“不合格”記0分.現隨機抽取部分學生的答卷,統(tǒng)計結果及對應的頻率分布直方圖如下:等級不合格合格得分頻數624(1)由該題中頻率分布直方圖求測試成績的平均數和中位數;(2)其他條件不變,在評定等級為“合格”的學生中依次抽取2人進行座談,每次抽取1人,求在第1次抽取的測試得分低于80分的前提下,第2次抽取的測試得分仍低于80分的概率;(3)用分層抽樣的方法,從評定等級為“合格”和“不合格”的學生中抽取10人進行座談.現再從這10人中任選4人,記所選4人的量化總分為,求的數學期望.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】

根據即可得出,,根據,,即可判斷出結果.【詳解】∵;∴,;∴,,故正確;,故C錯誤;∵,故D正確故C.本題主要考查指數式和對數式的互化,對數的運算,以及基本不等式:和不等式的應用,屬于中檔題2.C【解析】

否命題與逆命題是等價命題,寫出①的逆命題,舉反例排除;原命題與逆否命題是等價命題,寫出②的逆否命題后,利用指數函數單調性驗證正確;寫出③的逆命題判,利用兩直線平行的條件容易判斷③正確.【詳解】①的逆命題為“若,則”,令,可知該命題為假命題,故否命題也為假命題;②的逆否命題為“若且,則”,該命題為真命題,故②為真命題;③的逆命題為“若直線與直線平行,則”,該命題為真命題.故選:C.本題考查判斷命題真假.判斷命題真假的思路:(1)判斷一個命題的真假時,首先要弄清命題的結構,即它的條件和結論分別是什么,然后聯系其他相關的知識進行判斷.(2)當一個命題改寫成“若,則”的形式之后,判斷這個命題真假的方法:①若由“”經過邏輯推理,得出“”,則可判定“若,則”是真命題;②判定“若,則”是假命題,只需舉一反例即可.3.B【解析】如圖,已知,,

∴,解得

,∴,解得

.∴折斷后的竹干高為4.55尺故選B.4.D【解析】

根據函數為非偶函數可排除兩個選項,再根據特殊值可區(qū)分剩余兩個選項.【詳解】因為f(-x)=≠f(x)知f(x)的圖象不關于y軸對稱,排除選項B,C.又f(2)==-<0.排除A,故選D.本題主要考查了函數圖象的對稱性及特值法區(qū)分函數圖象,屬于中檔題.5.D【解析】

利用列舉法,從這5部專著中選擇2部作為“數學文化”校本課程學習內容,基本事件有10種情況,所選2部專著中至少有一部是漢、魏、晉、南北朝時期專著的基本事件有9種情況,由古典概型概率公式可得結果.【詳解】《周髀算經》、《九章算術》、《海島算經》、《孫子算經》、《緝古算經》,這5部專著中有3部產生于漢、魏、晉、南北朝時期.記這5部專著分別為,其中產生于漢、魏、晉、南北朝時期.從這5部專著中選擇2部作為“數學文化”校本課程學習內容,基本事件有共10種情況,所選2部專著中至少有一部是漢、魏、晉、南北朝時期專著的基本事件有,共9種情況,所以所選2部專著中至少有一部是漢、魏、晉、南北朝時期專著的概率為.故選D.本題主要考查古典概型概率公式的應用,屬于基礎題,利用古典概型概率公式求概率時,找準基本事件個數是解題的關鍵,基本亊件的探求方法有(1)枚舉法:適合給定的基本事件個數較少且易一一列舉出的;(2)樹狀圖法:適合于較為復雜的問題中的基本亊件的探求.在找基本事件個數時,一定要按順序逐個寫出:先,….,再,…..依次….…這樣才能避免多寫、漏寫現象的發(fā)生.6.B【解析】

連接,,,,由正四棱柱的特征可知,再由平面的基本性質可知,直線與直線共面.,同理易得,由異面直線所成的角的定義可知,異面直線與所成角為,然后再利用余弦定理求解.【詳解】如圖所示:連接,,,,由正方體的特征得,所以直線與直線共面.由正四棱柱的特征得,所以異面直線與所成角為.設,則,則,,,由余弦定理,得.故選:B本題主要考查異面直線的定義及所成的角和平面的基本性質,還考查了推理論證和運算求解的能力,屬于中檔題.7.A【解析】

設切點為,對求導,得到,從而得到切線的斜率,結合直線方程的點斜式化簡得切線方程,聯立方程組,求得結果.【詳解】設切點為,∵,∴由①得,代入②得,則,,故選A.該題考查的是有關直線與曲線相切求參數的問題,涉及到的知識點有導數的幾何意義,直線方程的點斜式,屬于簡單題目.8.D【解析】

圓心坐標為,代入直線方程,再由乘1法和基本不等式,展開計算即可得到所求最小值.【詳解】圓的圓心為,由題意可得,即,,,則,當且僅當且即時取等號,故選:.本題考查最值的求法,注意運用乘1法和基本不等式,注意滿足的條件:一正二定三等,同時考查直線與圓的關系,考查運算能力,屬于基礎題.9.D【解析】解:x、y滿足約束條件,表示的可行域如圖:目標函數z=x+2y經過C點時,函數取得最小值,由解得C(2,1),目標函數的最小值為:4目標函數的范圍是[4,+∞).故選D.10.D【解析】

運用輔助角公式,化簡函數的解析式,由對稱軸的方程,求得的值,得出函數的解析式,集合正弦函數的最值,即可求解,得到答案.【詳解】由題意,函數為輔助角,由于函數的對稱軸的方程為,且,即,解得,所以,又由,所以函數必須取得最大值和最小值,所以可設,,所以,當時,的最小值,故選D.本題主要考查了正弦函數的圖象與性質,其中解答中利用三角恒等變換的公式,化簡函數的解析式,合理利用正弦函數的對稱性與最值是解答的關鍵,著重考查了分析問題和解答問題的能力,屬于中檔試題.11.A【解析】

根據定義,表示出數列的通項并等于2020.結合的正整數性質即可確定解的個數.【詳解】由題意可知首項為2,設第二項為,則第三項為,第四項為,第五項為第n項為且,則,因為,當的值可以為;即有3個這種超級斐波那契數列,故選:A.本題考查了數列新定義的應用,注意自變量的取值范圍,對題意理解要準確,屬于中檔題.12.C【解析】

在等比數列中,由即可表示之間的關系.【詳解】由題可知,等比數列中,且公比為2,故故選:C本題考查等比數列求和公式的應用,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

根據圓柱的體積為,以及圓錐的體積公式,計算即得.【詳解】由題得,,得.故答案為:本題主要考查圓錐體的體積,是基礎題.14.3【解析】

先根據約束條件畫出可行域,再由y=2x-z表示直線在y軸上的截距最大即可得解.【詳解】x,y滿足約束條件x-y-1≥0x+y-3≤02y+1≥0,畫出可行域如圖所示.目標函數z=2x-y,即平移直線y=2x-z,截距最大時即為所求.2y+1=0x-y-1=0點A(12,z在點A處有最小值:z=2×1故答案為:32本題主要考查線性規(guī)劃的基本應用,利用數形結合,結合目標函數的幾何意義是解決此類問題的基本方法.15.【解析】

基本事件總數,這3個點共線的情況有兩種和,由此能求出這3個點不共線的概率.【詳解】解:為矩形的對角線的交點,現從,,,,這5個點中任選3個點,基本事件總數,這3個點共線的情況有兩種和,這3個點不共線的概率為.故答案為:.本題考查概率的求法,考查對立事件概率計算公式等基礎知識,考查運算求解能力,屬于基礎題.16.【解析】

不妨設雙曲線,焦點,令,由的長為實軸的二倍能夠推導出的離心率.【詳解】不妨設雙曲線,焦點,對稱軸,由題設知,因為的長為實軸的二倍,,,,故答案為.本題主要考查利用雙曲線的簡單性質求雙曲線的離心率,屬于中檔題.求解與雙曲線性質有關的問題時要結合圖形進行分析,既使不畫出圖形,思考時也要聯想到圖形,當涉及頂點、焦點、實軸、虛軸、漸近線等雙曲線的基本量時,要理清它們之間的關系,挖掘出它們之間的內在聯系.求離心率問題應先將用有關的一些量表示出來,再利用其中的一些關系構造出關于的等式,從而求出的值.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)見解析,(2)最小正整數的值為35.【解析】

(1)由等差中項可知,當時,得,整理后可得,從而證明為等差數列,繼而可求.(2),則可求出,令,即可求出的取值范圍,進而求出最小值.【詳解】解析:(1)由題意可得,當時,,∴,,當時,,整理可得,∴是首項為1,公差為1的等差數列,∴,.(2)由(1)可得,∴,解得,∴最小正整數的值為35.本題考查了等差中項,考查了等差數列的定義,考查了與的關系,考查了裂項相消求和.當已知有與的遞推關系時,常代入進行整理.證明數列是等差數列時,一般借助數列,即后一項與前一項的差為常數.18.(Ⅰ),該公司年年利潤的預測值為億元;(Ⅱ).【解析】

(Ⅰ)求出和的值,將表格中的數據代入最小二乘法公式,求得和的值,進而可求得關于的線性回歸方程,然后將代入回歸直線方程,可得出該公司年年利潤的估計值;(Ⅱ)利用(Ⅰ)中的回歸直線方程計算出從年至年這年被評為級利潤年的年數,然后利用組合計數原理結合古典概型的概率可得出所求事件的概率.【詳解】(Ⅰ)根據表中數據,計算可得,,,又,,,關于的線性回歸方程為.將代入回歸方程得(億元),該公司年的年利潤的預測值為億元.(Ⅱ)由(Ⅰ)可知年至年的年利潤的估計值分別為、、、、、、、(單位:億元),其中實際利潤大于相應估計值的有年.故這年中被評為級利潤年的有年,評為級利潤年的有年.記“從年至年這年的年利潤中隨機抽取年,恰有年為級利潤年”的概率為,.本題考查利用最小二乘法求回歸直線方程,同時也考查了古典概型概率的計算,涉及組合計數原理的應用,考查計算能力,屬于中等題.19.(Ⅰ).(Ⅱ).【解析】

詳解:(Ⅰ)當時,由,解得;當時,不成立;當時,由,解得.所以不等式的解集為.(Ⅱ)因為,所以.由題意知對,,即,因為,所以,解得.⑴絕對值不等式解法的基本思路是:去掉絕對值號,把它轉化為一般的不等式求解,轉化的方法一般有:①絕對值定義法;②平方法;③零點區(qū)域法.⑵不等式的恒成立可用分離變量法.若所給的不等式能通過恒等變形使參數與主元分離于不等式兩端,從而問題轉化為求主元函數的最值,進而求出參數范圍.這種方法本質也是求最值.一般有:①為參數)恒成立②為參數)恒成立.20.(1)證明見解析,;(2)11202.【解析】

(1)由n,,成等差數列,可得,,兩式相減,由等比數列的定義可得是等比數列,可求數列的通項公式;(2)由(1)中的可求出,根據和求出數列,中的公共項,分組求和,結合等比數列和等差數列的求和公式,可得答案.【詳解】(1)證明:因為n,,成等差數列,所以,①所以.②①-②,得,所以.又當時,,所以,所以,故數列是首項為2,公比為2的等比數列,所以,即.(2)根據(1)求解知,,,所以,所以數列是以1為首項,2為公差的等差數列.又因為,,,,,,,,,,,所以.本題考查等比數列的定義,考查分組求和,屬于中檔題.21.(1)見詳解;(2).【解析】

(1)因為折紙和粘合不改變矩形,和菱形內部的夾角,所以,依然成立,又因和粘在一起,所以得證.因為是平面垂線,所以易證.(2)在圖中找到對應的平面角,再求此平面角即可.于是考慮關于的垂線,發(fā)現此垂足與的連線也垂直于.按照此思路即證.【詳解】

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論