版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
江蘇省蘇州外國語學校2025年數(shù)學高三上期末教學質(zhì)量檢測試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若復(fù)數(shù)為虛數(shù)單位在復(fù)平面內(nèi)所對應(yīng)的點在虛軸上,則實數(shù)a為()A. B.2 C. D.2.已知集合A={y|y=|x|﹣1,x∈R},B={x|x≥2},則下列結(jié)論正確的是()A.﹣3∈AB.3BC.A∩B=BD.A∪B=B3.已知函數(shù),則()A. B.1 C.-1 D.04.若向量,,則與共線的向量可以是()A. B. C. D.5.已知函數(shù)()的部分圖象如圖所示,且,則的最小值為()A. B.C. D.6.“是函數(shù)在區(qū)間內(nèi)單調(diào)遞增”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件7.棱長為2的正方體內(nèi)有一個內(nèi)切球,過正方體中兩條異面直線,的中點作直線,則該直線被球面截在球內(nèi)的線段的長為()A. B. C. D.18.若的展開式中二項式系數(shù)和為256,則二項式展開式中有理項系數(shù)之和為()A.85 B.84 C.57 D.569.一個由兩個圓柱組合而成的密閉容器內(nèi)裝有部分液體,小圓柱底面半徑為,大圓柱底面半徑為,如圖1放置容器時,液面以上空余部分的高為,如圖2放置容器時,液面以上空余部分的高為,則()A. B. C. D.10.已知集合,,則()A. B.C. D.11.已知復(fù)數(shù),,則()A. B. C. D.12.在三棱錐中,,,,,點到底面的距離為2,則三棱錐外接球的表面積為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知命題:,,那么是__________.14.記為數(shù)列的前項和.若,則______.15.如圖,在三棱錐中,平面,,已知,,則當最大時,三棱錐的體積為__________.16.由于受到網(wǎng)絡(luò)電商的沖擊,某品牌的洗衣機在線下的銷售受到影響,承受了一定的經(jīng)濟損失,現(xiàn)將地區(qū)200家實體店該品牌洗衣機的月經(jīng)濟損失統(tǒng)計如圖所示,估算月經(jīng)濟損失的平均數(shù)為,中位數(shù)為n,則_________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖1,在等腰梯形中,兩腰,底邊,,,是的三等分點,是的中點.分別沿,將四邊形和折起,使,重合于點,得到如圖2所示的幾何體.在圖2中,,分別為,的中點.(1)證明:平面.(2)求直線與平面所成角的正弦值.18.(12分)已知矩形中,,E,F(xiàn)分別為,的中點.沿將矩形折起,使,如圖所示.設(shè)P、Q分別為線段,的中點,連接.(1)求證:平面;(2)求二面角的余弦值.19.(12分)已知函數(shù)(mR)的導函數(shù)為.(1)若函數(shù)存在極值,求m的取值范圍;(2)設(shè)函數(shù)(其中e為自然對數(shù)的底數(shù)),對任意mR,若關(guān)于x的不等式在(0,)上恒成立,求正整數(shù)k的取值集合.20.(12分)在四棱錐中,是等邊三角形,點在棱上,平面平面.(1)求證:平面平面;(2)若,求直線與平面所成角的正弦值的最大值;(3)設(shè)直線與平面相交于點,若,求的值.21.(12分)已知集合,集合.(1)求集合;(2)若,求實數(shù)的取值范圍.22.(10分)已知在中,角、、的對邊分別為,,,,.(1)若,求的值;(2)若,求的面積.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】
利用復(fù)數(shù)代數(shù)形式的乘除運算化簡,再由實部為求得值.【詳解】解:在復(fù)平面內(nèi)所對應(yīng)的點在虛軸上,,即.故選D.本題考查復(fù)數(shù)代數(shù)形式的乘除運算,考查復(fù)數(shù)的代數(shù)表示法及其幾何意義,是基礎(chǔ)題.2.C【解析】試題分析:集合考點:集合間的關(guān)系3.A【解析】
由函數(shù),求得,進而求得的值,得到答案.【詳解】由題意函數(shù),則,所以,故選A.本題主要考查了分段函數(shù)的求值問題,其中解答中根據(jù)分段函數(shù)的解析式,代入求解是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.4.B【解析】
先利用向量坐標運算求出向量,然后利用向量平行的條件判斷即可.【詳解】故選B本題考查向量的坐標運算和向量平行的判定,屬于基礎(chǔ)題,在解題中要注意橫坐標與橫坐標對應(yīng),縱坐標與縱坐標對應(yīng),切不可錯位.5.A【解析】
是函數(shù)的零點,根據(jù)五點法求出圖中零點及軸左邊第一個零點可得.【詳解】由題意,,∴函數(shù)在軸右邊的第一個零點為,在軸左邊第一個零點是,∴的最小值是.故選:A.本題考查三角函數(shù)的周期性,考查函數(shù)的對稱性.函數(shù)的零點就是其圖象對稱中心的橫坐標.6.C【解析】,令解得當,的圖像如下圖當,的圖像如下圖由上兩圖可知,是充要條件【考點定位】考查充分條件和必要條件的概念,以及函數(shù)圖像的畫法.7.C【解析】
連結(jié)并延長PO,交對棱C1D1于R,則R為對棱的中點,取MN的中點H,則OH⊥MN,推導出OH∥RQ,且OH=RQ=,由此能求出該直線被球面截在球內(nèi)的線段的長.【詳解】如圖,MN為該直線被球面截在球內(nèi)的線段連結(jié)并延長PO,交對棱C1D1于R,則R為對棱的中點,取MN的中點H,則OH⊥MN,∴OH∥RQ,且OH=RQ=,∴MH===,∴MN=.故選:C.本題主要考查該直線被球面截在球內(nèi)的線段的長的求法,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識,考查運算求解能力,是中檔題.8.A【解析】
先求,再確定展開式中的有理項,最后求系數(shù)之和.【詳解】解:的展開式中二項式系數(shù)和為256故,要求展開式中的有理項,則則二項式展開式中有理項系數(shù)之和為:故選:A考查二項式的二項式系數(shù)及展開式中有理項系數(shù)的確定,基礎(chǔ)題.9.B【解析】
根據(jù)空余部分體積相等列出等式即可求解.【詳解】在圖1中,液面以上空余部分的體積為;在圖2中,液面以上空余部分的體積為.因為,所以.故選:B本題考查圓柱的體積,屬于基礎(chǔ)題.10.C【解析】
求出集合,計算出和,即可得出結(jié)論.【詳解】,,,.故選:C.本題考查交集和并集的計算,考查計算能力,屬于基礎(chǔ)題.11.B【解析】分析:利用的恒等式,將分子、分母同時乘以,化簡整理得詳解:,故選B點睛:復(fù)數(shù)問題是高考數(shù)學中的常考問題,屬于得分題,主要考查的方面有:復(fù)數(shù)的分類、復(fù)數(shù)的幾何意義、復(fù)數(shù)的模、共軛復(fù)數(shù)以及復(fù)數(shù)的乘除運算,在運算時注意符號的正、負問題.12.C【解析】
首先根據(jù)垂直關(guān)系可確定,由此可知為三棱錐外接球的球心,在中,可以算出的一個表達式,在中,可以計算出的一個表達式,根據(jù)長度關(guān)系可構(gòu)造等式求得半徑,進而求出球的表面積.【詳解】取中點,由,可知:,為三棱錐外接球球心,過作平面,交平面于,連接交于,連接,,,,,,為的中點由球的性質(zhì)可知:平面,,且.設(shè),,,,在中,,即,解得:,三棱錐的外接球的半徑為:,三棱錐外接球的表面積為.故選:.本題考查三棱錐外接球的表面積的求解問題,求解幾何體外接球相關(guān)問題的關(guān)鍵是能夠利用球的性質(zhì)確定外接球球心的位置.二、填空題:本題共4小題,每小題5分,共20分。13.真命題【解析】
由冪函數(shù)的單調(diào)性進行判斷即可.【詳解】已知命題:,,因為在上單調(diào)遞增,則,所以是真命題,故答案為:真命題本題主要考查了判斷全稱命題的真假,屬于基礎(chǔ)題.14.1【解析】
由已知數(shù)列遞推式可得數(shù)列是以16為首項,以為公比的等比數(shù)列,再由等比數(shù)列的前項和公式求解.【詳解】由,得,.且,則,即.數(shù)列是以16為首項,以為公比的等比數(shù)列,則.故答案為:1.本題主要考查數(shù)列遞推式,考查等比數(shù)列的前項和,意在考查學生對這些知識的理解掌握水平.15.4【解析】設(shè),則,,,,當且僅當,即時,等號成立.,故答案為416.360【解析】
先計算第一塊小矩形的面積,第二塊小矩形的面積,,面積和超過0.5,所以中位數(shù)在第二塊求解,然后再求得平均數(shù)作差即可.【詳解】第一塊小矩形的面積,第二塊小矩形的面積,故;而,故.故答案為:360.本題考查頻率分布直方圖、樣本的數(shù)字特征,考查運算求解能力以及數(shù)形結(jié)合思想,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)證明見解析(2)【解析】
(1)先證,再證,由可得平面,從而推出平面;(2)建立空間直角坐標系,求出平面的法向量與,坐標代入線面角的正弦值公式即可得解.【詳解】(1)證明:連接,,由圖1知,四邊形為菱形,且,所以是正三角形,從而.同理可證,,所以平面.又,所以平面,因為平面,所以平面平面.易知,且為的中點,所以,所以平面.(2)解:由(1)可知,,且四邊形為正方形.設(shè)的中點為,以為原點,以,,所在直線分別為,,軸,建立空間直角坐標系,則,,,,,所以,,.設(shè)平面的法向量為,由得取.設(shè)直線與平面所成的角為,所以,所以直線與平面所成角的正弦值為.本題考查線面垂直的證明,直線與平面所成的角,要求一定的空間想象能力、運算求解能力和推理論證能力,屬于基礎(chǔ)題.18.(1)證明見解析(2)【解析】
(1)取中點R,連接,,可知中,且,由Q是中點,可得則有且,即四邊形是平行四邊形,則有,即證得平面.(2)建立空間直角坐標系,求得半平面的法向量:,然后利用空間向量的相關(guān)結(jié)論可求得二面角的余弦值.【詳解】(1)取中點R,連接,,則在中,,且,又Q是中點,所以,而且,所以,所以四邊形是平行四邊形,所以,又平面,平面,所以平面.(2)在平面內(nèi)作交于點G,以E為原點,,,分別為x,y,x軸,建立如圖所示的空間直角坐標系,則各點坐標為,,,所以,,設(shè)平面的一個法向量為,則即,取,得,又平面的一個法向量為,所以.因此,二面角的余弦值為本題考查線面平行的判定,考查利用空間向量求解二面角,考查邏輯推理能力及運算求解能力,難度一般.19.(1)(2){1,2}.【解析】
(1)求解導數(shù),表示出,再利用的導數(shù)可求m的取值范圍;(2)表示出,結(jié)合二次函數(shù)知識求出的最小值,再結(jié)合導數(shù)及基本不等式求出的最值,從而可求正整數(shù)k的取值集合.【詳解】(1)因為,所以,所以,則,由題意可知,解得;(2)由(1)可知,,所以因為整理得,設(shè),則,所以單調(diào)遞增,又因為,所以存在,使得,設(shè),是關(guān)于開口向上的二次函數(shù),則,設(shè),則,令,則,所以單調(diào)遞增,因為,所以存在,使得,即,當時,,當時,,所以在上單調(diào)遞減,在上單調(diào)遞增,所以,因為,所以,又由題意可知,所以,解得,所以正整數(shù)k的取值集合為{1,2}.本題主要考查導數(shù)的應(yīng)用,利用導數(shù)研究極值問題一般轉(zhuǎn)化為導數(shù)的零點問題,恒成立問題要逐步消去參數(shù),轉(zhuǎn)化為最值問題求解,適當構(gòu)造函數(shù)是轉(zhuǎn)化的關(guān)鍵,本題綜合性較強,難度較大,側(cè)重考查數(shù)學抽象和邏輯推理的核心素養(yǎng).20.(1)證明見解析(2)(3)【解析】
(1)取中點為,連接,由等邊三角形性質(zhì)可得,再由面面垂直的性質(zhì)可得,根據(jù)平行直線的性質(zhì)可得,進而求證;(2)以為原點,過作的平行線,分別以,,分別為軸,軸,軸建立空間直角坐標系,設(shè),由點在棱上,可設(shè),即可得到,再求得平面的法向量,進而利用數(shù)量積求解;(3)設(shè),,則,求得,,即可求得點的坐標,再由與平面的法向量垂直,進而求解.【詳解】(1)證明:取中點為,連接,因為是等邊三角形,所以,因為且相交于,所以平面,所以,因為,所以,因為,在平面內(nèi),所以,所以.(2)以為原點,過作的平行線,分別以,,分別為軸,軸,軸建立空間直角坐標系,設(shè),則,,,,因為在棱上,可設(shè),所以,設(shè)平面的法向量為,因為,所以,即,令,可得,即,設(shè)直線與平面所成角為,所以,可知當時,取最大值.(3)設(shè),則有,得,設(shè),那么,所以,所以.因為,,所以.又因為,所以,,設(shè)平面的法向量為,則,即,,可得,即因為在平面內(nèi),所以,所以,所以,即,所以或者(舍),即.本題考查面面垂直的證明,考查空間向量法求線面成角,考查運算能力與空間想象能力.21.(1);(2).【解析】
(1)求出函數(shù)的定義域
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 實驗班考試題型及答案
- 商務(wù)談判自考試題及答案
- 2025 小學三年級科學下冊保護磁鐵的正確方法課件
- 《GAT 1294-2016公安應(yīng)急物資儲備管理信息系統(tǒng)接口參數(shù)》專題研究報告
- 《GAT 1054.8-2018公安數(shù)據(jù)元限定詞(8)》專題研究報告
- 2026年深圳中考物理電學高分突破試卷(附答案可下載)
- 2025 小學二年級科學下冊觀察蝴蝶的產(chǎn)卵行為記錄報告總結(jié)課件
- 職高建筑類題庫及答案
- 胚胎孵化技術(shù)介紹
- 2026年人教版道德與法治八年級上冊期末質(zhì)量檢測卷(附答案解析)
- 2025年大學新能源材料與器件(新能源材料研發(fā))試題及答案
- 深度解析(2026)《HGT 5145-2017甲醇制混合芳烴》
- 道路交通反違章培訓課件
- 2025年度麻醉科主任述職報告
- 2025年度安全生產(chǎn)工作述職報告
- 2025年全國碩士研究生考試《管理類聯(lián)考綜合能力》試題及答案
- 護理質(zhì)量管理質(zhì)控方案2026
- 馬的文化介紹
- AI技術(shù)在人力資源管理中的實際應(yīng)用案例分享
- 急診預(yù)檢分診課件教學
- 2026屆浙江省杭州城區(qū)6學校數(shù)學七年級第一學期期末教學質(zhì)量檢測試題含解析
評論
0/150
提交評論