版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
河北省黃驊市中考數(shù)學(xué)真題分類(平行線的證明)匯編專題測(cè)試考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來(lái)的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無(wú)效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計(jì)16分)1、如圖,和是分別沿著、邊翻折形成的,若,則的度數(shù)為(
)A.100° B.90° C.85° D.80°2、給出下列命題,正確的有(
)個(gè)①等腰三角形的角平分線、中線和高重合;②等腰三角形兩腰上的高相等;③等腰三角形最小邊是底邊;④等邊三角形的高、中線、角平分線都相等;⑤等腰三角形都是銳角三角形A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)3、如圖,在ABC中,∠ACB=90°,∠B-∠A=10°,D是AB上一點(diǎn),將ACD沿CD翻折后得到CED,邊CE交AB于點(diǎn)F.若DEF中有兩個(gè)角相等,則∠ACD的度數(shù)為(
)A.15°或20° B.20°或30° C.15°或30° D.15°或25°4、在四邊形ABCD中,如果∠B+∠C=180°,那么
()A.AB∥CD B.AD∥BC C.AB與CD相交 D.AB與DC垂直5、如圖,點(diǎn)E在的延長(zhǎng)線上,下列條件不能判斷的是(
)A. B. C. D.6、如圖,∠B+∠C+∠D+∠E―∠A等于()A.180° B.240° C.300° D.360°7、如圖,,若,則的度數(shù)是(
)A.80° B.70° C.65° D.60°8、在△ABC中,∠A-∠C=∠B,那么△ABC是()A.等邊三角形 B.銳角三角形 C.鈍角三角形 D.直角三角形第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計(jì)14分)1、已知△ABC,∠A=80°,BF平分外角∠CBD,CF平分外角∠BCE,BG平分∠CBF,CG平分外角∠BCF,則∠G=______°.2、兩條直線平行的條件(除平行線定義和平行公理推論外):兩條直線被第三條直線所截,如果___________,那么這兩條直線平行.這個(gè)判定方法可簡(jiǎn)述為:_________,兩直線平行.3、將兩張三角形紙片如圖擺放,量得∠1+∠2+∠3+∠4=220°,則∠5=__.4、如圖,在中,,,,則x=______.5、如圖,在四邊形中,,,,的延長(zhǎng)線與、相鄰的兩個(gè)角的平分線交于點(diǎn)E,若,則的度數(shù)為_(kāi)__________.6、如圖,下列條件:①∠1=∠3,②∠2+∠4=180°,③∠4=∠5,④∠2=∠3,⑤∠6=∠2+∠3中能判斷直線的有_________(只填序號(hào)).7、如圖,..∵,∴.∴.∴.三、解答題(7小題,每小題10分,共計(jì)70分)1、(1)在銳角中,邊上的高所在直線和邊上的高所在直線的交點(diǎn)為,,求的度數(shù).(2)如圖,和分別平分和,當(dāng)點(diǎn)在直線上時(shí),且B、P、D三點(diǎn)共線,,則_________.(3)在(2)的基礎(chǔ)上,當(dāng)點(diǎn)在直線外時(shí),如下圖:,,求的度數(shù).2、已知:如圖,在△AOB和△COD中,OA=OB,OC=OD,∠AOB=∠COD=50°.(1)求證:AC=BD;(2)求∠APB的度數(shù).3、已知:直線EF分別與直線AB,CD相交于點(diǎn)G,H,并且∠AGE+∠DHE=180°.(1)如圖1,求證:AB∥CD;(2)如圖2,點(diǎn)M在直線AB,CD之間,連接GM,HM,求證:∠M=∠AGM+∠CHM;(3)如圖3,在(2)的條件下,射線GH是∠BGM的平分線,在MH的延長(zhǎng)線上取點(diǎn)N,連接GN,若∠N=∠AGM,∠M=∠N+∠FGN,求∠MHG的度數(shù).4、如圖,在Rt△ABC中,∠ACB=90°,∠A=40°,△ABC的外角∠CBD的平分線BE交AC的延長(zhǎng)線于點(diǎn)E.(1)求∠CBE的度數(shù);(2)過(guò)點(diǎn)D作DF∥BE,交AC的延長(zhǎng)線于點(diǎn)F,求∠F的度數(shù).5、如圖,在四邊形中,,,平分交于點(diǎn),交的延長(zhǎng)線于點(diǎn).(1)求的大?。?2)若,求的大小.6、如圖,已知∠1+∠2=180°,∠DEF=∠A,求證:∠ACB=∠DEB.7、如圖,AB⊥BC于點(diǎn)B,DC⊥BC于點(diǎn)C,DE平分∠ADC交BC于點(diǎn)E,點(diǎn)F為線段CD延長(zhǎng)線上一點(diǎn),∠BAF=∠EDF(1)求證:∠DAF=∠F;(2)在不添加任何輔助線的情況下,請(qǐng)直接寫出所有與∠CED互余的角.-參考答案-一、單選題1、A【解析】【分析】先根據(jù)三角形的內(nèi)角和定理易計(jì)算出∠1=130°,∠2=35°,∠3=15°,根據(jù)折疊的性質(zhì)得到∠1=∠BAE=130°,∠E=∠3=15°,∠ACD=∠E=15°,可計(jì)算出∠EAC,然后根據(jù)∠α+∠E=∠EAC+∠ACD,即可得到∠α=∠EAC.【詳解】解:設(shè)∠3=3x,則∠1=26x,∠2=7x,∵∠1+∠2+∠3=180°,∴26x+7x+3x=180°,解得x=5°.∴∠1=130°,∠2=35°,∠3=15°.∵△ABE是△ABC沿著AB邊翻折180°形成的,∴∠1=∠BAE=130°,∠E=∠3=15°.∴∠EAC=360°-∠BAE-∠BAC=360°-130°-130°=100°.又∵△ADC是△ABC沿著AC邊翻折180°形成的,∴∠ACD=∠E=15°.∵∠α+∠E=∠EAC+∠ACD,∴∠α=∠EAC=100°.故選:A.【考點(diǎn)】本題考查了折疊的性質(zhì):折疊前后兩圖形全等,即對(duì)應(yīng)角相等,對(duì)應(yīng)線段相等.也考查了三角形的內(nèi)角和定理以及周角的定義.2、B【解析】【詳解】解:①等腰三角形的頂角角平分線、底邊上的中線和底邊上的高重合,故本選項(xiàng)錯(cuò)誤;②等腰三角形兩腰上的高相等,本選項(xiàng)正確;③等腰三角形最小邊不一定底邊,故本選項(xiàng)錯(cuò)誤;④等邊三角形的高、中線、角平分線都相等,本選項(xiàng)正確;⑤等腰三角形可以是鈍角三角形,故本選項(xiàng)錯(cuò)誤,故選B3、C【解析】【分析】由三角形的內(nèi)角和定理可求解∠A=40°,設(shè)∠ACD=x°,則∠CDF=40°+x,∠ADC=180°-40°-x=140°-x,由折疊可知:∠ADC=∠CDE,∠E=∠A=40°,可分三種情況:當(dāng)∠DFE=∠E=40°時(shí);當(dāng)∠FDE=∠E=40°時(shí);當(dāng)∠DFE=∠FDE時(shí),根據(jù)∠ADC=∠CDE列方程,解方程可求解x值,即可求解.【詳解】解:在△ABC中,∠ACB=90°,∴∠B+∠A=90°,∵∠B-∠A=10°,∴∠A=40°,∠B=50°,設(shè)∠ACD=x°,則∠CDF=40°+x,∠ADC=180°-40°-x=140°-x,由折疊可知:∠ADC=∠CDE,∠E=∠A=40°,當(dāng)∠DFE=∠E=40°時(shí),∵∠FDE+∠DFE+∠E=180°,∴∠FDE=180°-40°-40°=100°,∴140°-x=100°+40°+x,解得x=0(不存在);當(dāng)∠FDE=∠E=40°時(shí),∴140°-x=40°+40°+x,解得x=30°,即∠ACD=30°;當(dāng)∠DFE=∠FDE時(shí),∵∠FDE+∠DFE+∠E=180°,∴∠FDE==70°,∴140°-x=70°+40°+x,解得x=15,即∠ACD=15°,綜上,∠ACD=15°或30°,故選:C.【考點(diǎn)】本題主要考查直角三角形的性質(zhì),等腰三角形的性質(zhì),三角形的內(nèi)角和定理,根據(jù)∠ADC=∠CDE分三種情況列方程是解題的關(guān)鍵.4、A【解析】【分析】∠B與∠C是直線AB,CD被直線BC所截構(gòu)成的同旁內(nèi)角,根據(jù)∠B+∠C=180°,得到AB∥CD.【詳解】∵∠B+∠C=180°,∴AB∥CD(同旁內(nèi)角互補(bǔ),兩直線平行).故選A.【考點(diǎn)】正解找出“三線八角”中的同位角、內(nèi)錯(cuò)角、同旁內(nèi)角是正確答題的關(guān)鍵,不能遇到相等或互補(bǔ)關(guān)系的角就誤認(rèn)為具有平行關(guān)系,只有同位角相等、內(nèi)錯(cuò)角相等、同旁內(nèi)角互補(bǔ),才能推出兩被截直線平行.5、D【解析】【分析】直接利用平行線的判定方法分別判斷得出答案.【詳解】解:A、當(dāng)∠5=∠B時(shí),AB∥CD,不合題意;B、當(dāng)∠1=∠2時(shí),AB∥CD,不合題意;C、當(dāng)∠B+∠BCD=180°時(shí),AB∥CD,不合題意;D、當(dāng)∠3=∠4時(shí),AD∥CB,符合題意;故選:D.【考點(diǎn)】此題主要考查了平行線的判定,正確掌握平行線的判定方法是解題關(guān)鍵.6、A【解析】【分析】根據(jù)三角形的外角的性質(zhì),得∠B+∠C=∠CGE=180°-∠AGF,∠D+∠E=∠DFG=180°-∠AFG,兩式相加再減去∠A,根據(jù)三角形的內(nèi)角和是180°可求解.【詳解】∵∠B+∠C=∠CGE=180°-∠AGF,∠D+∠E=∠DFG=180°-∠AFG,∴∠B+∠C+∠D+∠E-∠A=360°-(∠AGF+∠AFG+∠A),又∵∠AGF+∠AFG+∠A=180°,∴∠B+∠C+∠D+∠E-∠A=180°,故選A.【考點(diǎn)】本題考查了三角形外角的性質(zhì)、三角形內(nèi)角和定理,熟練掌握三角形外角的性質(zhì)以及三角形內(nèi)角和等于180度是解題的關(guān)鍵.7、B【解析】【分析】由根據(jù)全等三角形的性質(zhì)可得,再利用三角形內(nèi)角和進(jìn)行求解即可.【詳解】,,,,,,故選:B.【考點(diǎn)】本題考查了全等三角形的性質(zhì)及三角形的內(nèi)角和定理,熟練掌握知識(shí)點(diǎn)是解題的關(guān)鍵.8、D【解析】【分析】由于∠A-∠C=∠B,再結(jié)合∠A+∠B+∠C=180°,易求∠A,進(jìn)而可判斷三角形的形狀.【詳解】∵∠A-∠C=∠B,∠A+∠B+∠C=180°,∴2∠A=180°,∴∠A=90°,∴△ABC是直角三角形,故選D.【考點(diǎn)】本題考查了三角形內(nèi)角和定理,求出∠A的度數(shù)是解題的關(guān)鍵.二、填空題1、115【解析】【分析】由三角形外角的性質(zhì)即三角形的內(nèi)角和定理可求解∠DBC+∠ECB=260°,再利用角平分線的定義可求解∠FBC+∠FCB=130°,即可得∠GBC+∠GCB=65°,再利用三角形內(nèi)角和定理可求解.【詳解】解:∵∠DBC=∠A+∠ACB,∠ECB=∠A+∠ABC,∴∠DBC+∠ECB=∠A+∠ACB+∠A+∠ABC,∵∠ACB+∠A+∠ABC=180°,∴∠DBC+∠ECB=∠A+180°=80°+180°=260°,∵BF平分外角∠DBC,CF平分外角∠ECB,∴∠FBC=∠DBC,∠FCB=∠ECB,∴∠FBC+∠FCB=(∠DBC+∠ECB)=130°,∵BG平分∠CBF,CG平分∠BCF,∴∠GBC=∠FBC,∠GCB=∠FCB,∴∠GBC+∠GCB=(∠FBC+∠FCB)=65°,∴∠G=180°-(∠GBC-∠GCB)=180°-65°=115°.故答案為:115.【考點(diǎn)】本題主要考查三角形的內(nèi)角和定理,三角形外角的性質(zhì),角平分線的定義,求解∠FBC+∠FCB=130°是解題的關(guān)鍵.2、
同位角相等(答案不唯一)
同位角相等(答案不唯一)【解析】【分析】根據(jù)平行線的判定定理解答即可.【詳解】?jī)蓷l直線平行的條件(除平行線定義和平行公理推論外):兩條直線被第三條直線所截,如果同位角相等,那么這兩條直線平行.這個(gè)判定方法可簡(jiǎn)述為:同位角相等,兩直線平行.故答案為:同位角相等,同位角相等.【考點(diǎn)】本題主要考查平行線的判定定理,屬于基礎(chǔ)題,熟練掌握平行線的判定定理是解題關(guān)鍵.3、40°【解析】【分析】直接利用三角形內(nèi)角和定理得出∠6+∠7的度數(shù),進(jìn)而得出答案.【詳解】如圖所示:∠1+∠2+∠6=180°,∠3+∠4+∠7=180°,∵∠1+∠2+∠3+∠4=220°,∴∠1+∠2+∠6+∠3+∠4+∠7=360°,∴∠6+∠7=140°,∴∠5=180°-(∠6+∠7)=40°.故答案為40°.【考點(diǎn)】主要考查了三角形內(nèi)角和定理,正確應(yīng)用三角形內(nèi)角和定理是解題關(guān)鍵.4、130【解析】【分析】由可得,再由,即可求解;【詳解】解:∵,,∴∵,∴,∴∴故答案為:130.【考點(diǎn)】本題主要考查三角形的內(nèi)角和定理,掌握三角形的內(nèi)角和定理并靈活應(yīng)用是解本題的關(guān)鍵.5、【解析】【分析】先證明Rt△CDA≌Rt△CBA得到,再由角平分線的定義求出∠EDC=45°,最后根據(jù)三角形內(nèi)角和定理求解即可.【詳解】解:∵,,∴∠CDA=∠CBA=90°,在Rt△CDA和Rt△CBA中,,∴Rt△CDA≌Rt△CBA(HL),∴,∵DE平分與∠ADC相鄰的角,∠ADC=90°,∴∠EDC=45°,∴∠CED=180°-∠DAE-∠ADC-∠EDC=15°,故答案為:15°.【考點(diǎn)】本題主要考查了全等三角形的性質(zhì)與判定,三角形內(nèi)角和定理,角平分線的定義,熟知全等三角形的性質(zhì)與判定條件是解題的關(guān)鍵.6、①②③⑤【解析】【詳解】分析:根據(jù)平行線的判定定理對(duì)各小題進(jìn)行逐一判斷即可.詳解:①∵∠1=∠3,∴l(xiāng)1∥l2,故本小題正確;②∵,∴l(xiāng)1∥l2,故本小題正確;③∵∠4=∠5,∴l(xiāng)1∥l2,故本小題正確;④∠2=∠3不能判定l1∥l2,故本小題錯(cuò)誤;⑤∵∠6=∠2+∠3,∴l(xiāng)1∥l2,故本小題正確.故答案為①②③⑤點(diǎn)睛:考查平行線的判定,掌握判定方法是解題的關(guān)鍵.7、、、【解析】【分析】根據(jù)兩直線平行的性質(zhì)定理,結(jié)合三角形內(nèi)角和定理推理即可得到正確結(jié)果.【詳解】解:∵,∴∴∴∴故答案為:、、【考點(diǎn)】本題考查平行線性質(zhì)定理以及三角形內(nèi)角和定理,牢記相關(guān)定理內(nèi)容并能靈活應(yīng)用是解題的重點(diǎn).三、解答題1、(1);(2);(3).【解析】【分析】(1)根據(jù)對(duì)頂角相等以及四邊形的內(nèi)角和進(jìn)行判斷即可;(2)法一:根據(jù)以及和分別平分和,算出和,從而算出;法二:根據(jù)三角形的外角定理得到∠APC=∠B+∠PAB+∠PCB,再求出∠PAB+∠PCB,故可求解;(3)法一:連接AC,根據(jù)三角形的內(nèi)角和與角平分線的性質(zhì)分別求出,,故可求解;法二:連接BD并延長(zhǎng)到G根據(jù)三角形的外角定理得到∠ADC=∠2+∠4+∠APC,再求出∠2+∠4,故可求解.【詳解】(1)如圖邊上的高所在直線和邊上的高所在直線的交點(diǎn)為∴又∵∴∵在四邊形中,內(nèi)角和為∴.(2)法一:∵和分別平分和∴又∵∴∴∴.法二:連接BD,∵B、P、D三點(diǎn)共線∴BD、AF、CE交于P點(diǎn)∵∠APD=∠BAP+∠ABP,∠CPD=∠BCP+∠CBP,∴∠APC=∠B+∠PAB+∠PCB∵和分別平分和,∴∠PAC=∠PAB,∠PCA=∠PCB,∵∠APC=100°,∴∠PAC+∠PCA=180°?100°=80°,∴∠PAB+∠PCB=80°,∴∠B=∠APC?(∠PAB+∠PCB)=100°?80°=20°.(3)法一:如圖:連接AC∵,∴∴又∵和分別平分和∴∴∴.法二:如圖,連接BD并延長(zhǎng)到G,∵∠ADG=∠2+∠APD,∠CDG=∠4+∠CPD,∴∠ADC=∠2+∠4+∠APC,∴∠2+∠4=30°同理可得∠APC=∠1+∠3+∠B,∠1=∠2,∠3=∠4,∴∠B=∠APC-∠2-∠4=100°-30°=70°∴∠B=70°.【考點(diǎn)】本題考查三角形的外角,角平分線的定義,三角形內(nèi)角和定理等知識(shí),解題的關(guān)鍵是熟練掌握基本知識(shí),屬于中考??碱}型.2、(1)見(jiàn)解析;(2)【解析】【分析】(1)通過(guò)證明,即可求證;(2)利用三角形外角的性質(zhì)可得,由(1)可得,從而得到,利用三角形內(nèi)角和的性質(zhì)即可求解.(1)證明:∵,∴,又∵OA=OB,OC=OD,∴,∴;(2)解:由(1)可得,由三角形外角的性質(zhì)可得∴,∴,【考點(diǎn)】此題考查了全等三角形的判定與性質(zhì),三角形內(nèi)角的性質(zhì)以及三角形外角的性質(zhì),解題的關(guān)鍵是熟練掌握相關(guān)基本性質(zhì).3、(1)見(jiàn)解析;(2)見(jiàn)解析;(3)60°【解析】【分析】(1)根據(jù)已知條件和對(duì)頂角相等即可證明;(2)如圖2,過(guò)點(diǎn)M作MR∥AB,可得AB∥CD∥MR.進(jìn)而可以證明;(3)如圖3,令∠AGM=2α,∠CHM=β,則∠N=2α,∠M=2α+β,過(guò)點(diǎn)H作HT∥GN,可得∠MHT=∠N=2α,∠GHT=∠FGN=2β,進(jìn)而可得結(jié)論.【詳解】(1)證明:如圖1,∵∠AGE+∠DHE=180°,∠AGE=∠BGF.∴∠BGF+∠DHE=180°,∴AB∥CD;(2)證明:如圖2,過(guò)點(diǎn)M作MR∥AB,又∵AB∥CD,∴AB∥CD∥MR.∴∠GMR=∠AGM,∠HMR=∠CHM.∴∠GMH=∠GMR+∠RMH=∠AGM+∠CHM.(3)解:如圖3,令∠AGM=2α,∠CHM=β,則∠N=2α,∠M=2α+β,∵射線GH是∠BGM的平分線,∴,∴∠AGH=∠AGM+∠FGM=2α+90°﹣α=90°+α,∵,∴,∴∠FGN=2β,過(guò)點(diǎn)H作HT∥GN,則∠MHT=∠N=2α,∠GHT=∠FGN=2β,∴∠GHM=∠MHT+∠GHT=2α+2β,∠CHG=∠CHM+∠MHT+∠GHT=β+2α+2β=2α+3β,∵AB∥CD,∴∠AGH+∠CHG=180°,∴90°+α+2α+3β=180°,∴α+β=30°,∴∠GHM=2(α+β)=60°.【考點(diǎn)】本題考查了平行線的判定與性質(zhì),對(duì)頂角的性質(zhì),角平分線的性質(zhì),解決本題的關(guān)鍵是掌握平行線的判定與性質(zhì).4、(1)65°;(2)25°.【解析】【分析】(1)先根據(jù)直角三角形兩銳角互余求出∠ABC=90°﹣∠A=50°,由鄰補(bǔ)角定義得出∠CBD=130°.再根據(jù)角平分線定義即可求出∠CBE=∠CBD=65°;(2)先根據(jù)直角三角形兩銳角互余的性質(zhì)得出∠CEB=90°﹣65°=25°,再根據(jù)平行線的性質(zhì)即可求出∠F=∠CEB=25°.【詳解】(1)∵在Rt△ABC中,∠ACB=90°,∠A=40°,∴∠ABC=90°﹣∠A=50°,∴∠CBD=130°.∵BE是∠CBD的平分線,∴∠CBE=∠CBD=65°;(2)∵∠ACB=90°,∠CBE=65°,∴∠CEB=90°﹣65°=25°.∵DF∥BE,∴∠F=∠CEB=25°.【考點(diǎn)】本題考查了三角形內(nèi)角和定理,直角三角形兩銳角互余的性質(zhì),平行線的性質(zhì),鄰補(bǔ)角定義,角平分線定義.掌握各定義與性質(zhì)是解題的關(guān)鍵.5、(1)25°(2)23°【解析】【分析】(1)先由平行線的性質(zhì)求出∠ABC=180°-∠BCD=180°-130°=50°,再根據(jù)解平分線的定義求解即可;∠BAD=180°-∠ADC=180°-48°=132°,再根據(jù)三角形內(nèi)角和定理求出(2)先由平行線的性質(zhì)求出∠AEB=180°-∠BAD-∠ABE=23°,最后由對(duì)頂角性質(zhì)得解.(1)解:∵,∴∠ABC+∠BCD=180°,∴∠ABC=180°-∠BCD=180°-130°=50°,∵平分∴∠ABE=∠ABC==25°;(2)解:∵,∴∠BAD+∠ADC=180°,∴∠BAD=180°-∠ADC=180°-48°=132°,∵∠BAD+∠ABE+∠AEB=180°,又由(1)知:∠ABE=25°,∴∠AEB=180°-∠BAD-∠ABE=1
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 犬傷培訓(xùn)教學(xué)課件
- 2025年國(guó)家基本公共衛(wèi)生服務(wù)項(xiàng)目培訓(xùn)考試試題(附答案)
- 爬蟲(chóng)培訓(xùn)教學(xué)課件
- 2026 年無(wú)財(cái)產(chǎn)離婚協(xié)議書(shū)合規(guī)版
- 2026 年有子女離婚協(xié)議書(shū)制式模板
- 《紅樓夢(mèng)》讀書(shū)筆記
- 抗菌藥物合理使用培訓(xùn)測(cè)試題及答案
- 環(huán)衛(wèi)工安全培訓(xùn)課件
- 統(tǒng)編版九年級(jí)上學(xué)期歷史期末質(zhì)量監(jiān)測(cè)試卷(含答案解析)
- 《GAT 1356-2018國(guó)家標(biāo)準(zhǔn)GBT 25724-2017 符合性測(cè)試規(guī)范》專題研究報(bào)告
- (2025年)鐵路行車組織培訓(xùn)考試題附答案
- 血液儲(chǔ)存和出入庫(kù)管理制度
- 邀約來(lái)訪活動(dòng)策劃方案(3篇)
- 2025年煙臺(tái)理工學(xué)院馬克思主義基本原理概論期末考試筆試真題匯編
- 2025年保險(xiǎn)理賠流程操作規(guī)范手冊(cè)
- 貴州省貴陽(yáng)市2024-2025學(xué)年高一上學(xué)期期末監(jiān)測(cè)物理試卷(含解析)
- 稅收說(shuō)理式執(zhí)法課件
- 彩鋼瓦屋面施工組織方案
- 路燈勞務(wù)施工方案(3篇)
- 2026屆高考復(fù)習(xí)之鑒賞詩(shī)歌的語(yǔ)言 教學(xué)課件
- 七年級(jí)上冊(cè)文言文虛詞詳解匯編
評(píng)論
0/150
提交評(píng)論