解析卷滬科版9年級下冊期末試卷及答案詳解(網(wǎng)校專用)_第1頁
解析卷滬科版9年級下冊期末試卷及答案詳解(網(wǎng)校專用)_第2頁
解析卷滬科版9年級下冊期末試卷及答案詳解(網(wǎng)校專用)_第3頁
解析卷滬科版9年級下冊期末試卷及答案詳解(網(wǎng)校專用)_第4頁
解析卷滬科版9年級下冊期末試卷及答案詳解(網(wǎng)校專用)_第5頁
已閱讀5頁,還剩36頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

滬科版9年級下冊期末試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計16分)1、如圖,與相切于點(diǎn),連接交于點(diǎn),點(diǎn)為優(yōu)弧上一點(diǎn),連接,,若,的半徑,則的長為()A.4 B. C. D.12、如圖,A,B,C是正方形網(wǎng)格中的三個格點(diǎn),則是()A.優(yōu)弧 B.劣弧 C.半圓 D.無法判斷3、如圖是由5個相同的小正方體搭成的幾何體,它的左視圖是().A. B. C. D.4、如圖,是△ABC的外接圓,已知,則的大小為()A.55° B.60° C.65° D.75°5、如圖,是的直徑,弦,垂足為,若,則()A.5 B.8 C.9 D.106、如圖,AB是的直徑,弦CD交AB于點(diǎn)P,,,,則CD的長為()A. B. C. D.87、下列判斷正確的個數(shù)有()①直徑是圓中最大的弦;②長度相等的兩條弧一定是等??;③半徑相等的兩個圓是等圓;④弧分優(yōu)弧和劣??;⑤同一條弦所對的兩條弧一定是等?。瓵.1個 B.2個 C.3個 D.4個8、如圖,在矩形ABCD中,點(diǎn)E在CD邊上,連接AE,將沿AE翻折,使點(diǎn)D落在BC邊的點(diǎn)F處,連接AF,在AF上取點(diǎn)O,以O(shè)為圓心,線段OF的長為半徑作⊙O,⊙O與AB,AE分別相切于點(diǎn)G,H,連接FG,GH.則下列結(jié)論錯誤的是()A. B.四邊形EFGH是菱形C. D.第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計14分)1、如圖,PA,PB是的切線,切點(diǎn)分別為A,B.若,,則AB的長為______.2、在Rt△ABC中,∠ACB=90°,AC=AB,點(diǎn)E、F分別是邊CA、CB的中點(diǎn),已知點(diǎn)P在線段EF上,聯(lián)結(jié)AP,將線段AP繞點(diǎn)P逆時針旋轉(zhuǎn)90°得到線段DP,如果點(diǎn)P、D、C在同一直線上,那么tan∠CAP=_______.3、斛是中國古代的一種量器.據(jù)《漢書.律歷志》記載:“斛底,方而圜(huán)其外,旁有庣(tiāo)焉”.意思是說:“斛的底面為:正方形外接一個圓,此圓外是一個同心圓”.如圖所示,問題:現(xiàn)有一斛,其底面的外圓直徑為兩尺五寸(即2.5尺),“庣旁”為兩寸五分(即兩同心圓的外圓與內(nèi)圓的半徑之差為0.25尺),則此斛底面的正方形的邊長為________尺.4、如圖,一次函數(shù)的圖象與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,作的外接圓,則圖中陰影部分的面積為______.(結(jié)果保留π)5、如圖,中,,,,將繞原點(diǎn)O順時針旋轉(zhuǎn)90°,則旋轉(zhuǎn)后點(diǎn)A的對應(yīng)點(diǎn)的坐標(biāo)是____________.6、小明和小強(qiáng)玩“石頭、剪刀、布”游戲,按照“石頭勝剪刀,剪刀勝布,布勝石頭,相同算平局”的規(guī)則,兩人隨機(jī)出手一次,平局的概率為______.7、如圖,⊙O的半徑為2,△ABC是⊙O的內(nèi)接三角形,連接OB、OC,若弦BC的長度為,則∠BAC=________度.三、解答題(7小題,每小題0分,共計0分)1、如圖,在中,,,將繞著點(diǎn)A順時針旋轉(zhuǎn)得到,連接BD,連接CE并延長交BD于點(diǎn)F.(1)求的度數(shù);(2)若,且,求DF的長.2、如圖1,圖2,圖3的網(wǎng)格均由邊長為1的小正方形組成,圖1是三國時期吳國的數(shù)學(xué)家趙爽所繪制的“弦圖”,它由四個形狀、大小完全相同的直角三角形組成,趙爽利用這個“弦圖”對勾股定理作出了證明,是中國古代數(shù)學(xué)的一項重要成就,請根據(jù)下列要求解答問題.(1)圖1中的“弦圖”的四個直角三角形組成的圖形是對稱圖形(填“軸”或“中心”).(2)請將“弦圖”中的四個直角三角形通過你所學(xué)過的圖形變換,在圖2,3的方格紙中設(shè)計另外兩個不同的圖案,畫圖要求:①每個直角三角形的頂點(diǎn)均在方格紙的格點(diǎn)上,且四個三角形互不重疊,不必涂陰影;②圖2中所設(shè)計的圖案(不含方格紙)必須是軸對稱圖形而不是中心對稱圖形;圖3中所設(shè)計的圖案(不含方格紙)必須既是軸對稱圖形,又是中心對稱圖形.3、如圖,是⊙的直徑,弦,垂足為E,弦與弦相交于點(diǎn)G,且,過點(diǎn)C作的垂線交的延長線于點(diǎn)H.(1)判斷與⊙的位置關(guān)系并說明理由;(2)若,求弧的長.4、如圖,是的弦,是上的一點(diǎn),且,于點(diǎn),交于點(diǎn).若的半徑為6,求弦的長.5、如圖,拋物線y=-+x+2與x軸負(fù)半軸交于點(diǎn)A,與y軸交于點(diǎn)B.(1)求A,B兩點(diǎn)的坐標(biāo);(2)如圖1,點(diǎn)C在y軸右側(cè)的拋物線上,且AC=BC,求點(diǎn)C的坐標(biāo);(3)如圖2,將△ABO繞平面內(nèi)點(diǎn)P順時針旋轉(zhuǎn)90°后,得到△DEF(點(diǎn)A,B,O的對應(yīng)點(diǎn)分別是點(diǎn)D,E,F(xiàn)),D,E兩點(diǎn)剛好在拋物線上.①求點(diǎn)F的坐標(biāo);②直接寫出點(diǎn)P的坐標(biāo).6、在平面直角坐標(biāo)系xOy中,的半徑為2.點(diǎn)P,Q為外兩點(diǎn),給出如下定義:若上存在點(diǎn)M,N,使得P,Q,M,N為頂點(diǎn)的四邊形為矩形,則稱點(diǎn)P,Q是的“成對關(guān)聯(lián)點(diǎn)”.(1)如圖,點(diǎn)A,B,C,D橫、縱坐標(biāo)都是整數(shù).在點(diǎn)B,C,D中,與點(diǎn)A組成的“成對關(guān)聯(lián)點(diǎn)”的點(diǎn)是______;(2)點(diǎn)在第一象限,點(diǎn)F與點(diǎn)E關(guān)于x軸對稱.若點(diǎn)E,F(xiàn)是的“成對關(guān)聯(lián)點(diǎn)”,直接寫出t的取值范圍;(3)點(diǎn)G在y軸上.若直線上存在點(diǎn)H,使得點(diǎn)G,H是的“成對關(guān)聯(lián)點(diǎn)”,直接寫出點(diǎn)G的縱坐標(biāo)的取值范圍.7、如圖1,在中,,,點(diǎn)D為AB邊上一點(diǎn).(1)若,則______;(2)如圖2,將線段CD繞著點(diǎn)C逆時針旋轉(zhuǎn)90°得到線段CE,連接AE,求證:;(3)如圖3,過點(diǎn)A作直線CD的垂線AF,垂足為F,連接BF.直接寫出BF的最小值.-參考答案-一、單選題1、B【分析】連接OB,根據(jù)切線性質(zhì)得∠ABO=90°,再根據(jù)圓周角定理求得∠AOB=60°,進(jìn)而求得∠A=30°,然后根據(jù)含30°角的直角三角形的性質(zhì)解答即可.【詳解】解:連接OB,∵AB與相切于點(diǎn)B,∴∠ABO=90°,∵∠BDC=30°,∴∠AOB=2∠BDC=60°,在Rt△ABO中,∠A=90°-60°=30°,OB=OC=2,∴OA=2OB=4,∴,故選:B.【點(diǎn)睛】本題考查切線的性質(zhì)、圓周角定理、直角三角形的銳角互余、含30°角的直角三角形性質(zhì)、勾股定理,熟練掌握相關(guān)知識的聯(lián)系與運(yùn)用是解答的關(guān)鍵.2、B【分析】根據(jù)三點(diǎn)確定一個圓,圓心的確定方法:任意兩點(diǎn)中垂線的交點(diǎn)為圓心即可判斷.【詳解】解;如圖,分別連接AB、AC、BC,取任意兩條線段的中垂線相交,交點(diǎn)就是圓心.故選:B.【點(diǎn)睛】本題考查已知圓上三點(diǎn)求圓心,取任意兩條線段中垂線交點(diǎn)確定圓心是解題關(guān)鍵.3、B【分析】找到從左面看所得到的圖形即可,注意所有的看到的棱都應(yīng)表現(xiàn)在左視圖中.【詳解】從左面看,第一層有2個正方形,第二層左側(cè)有1個正方形.故選:B.【點(diǎn)睛】本題考查了三視圖的知識,熟知左視圖是從物體的左面看得到的視圖是解答本題的關(guān)鍵.4、C【分析】由OA=OB,,求出∠AOB=130°,根據(jù)圓周角定理求出的度數(shù).【詳解】解:∵OA=OB,,∴∠BAO=.∴∠AOB=130°.∴=∠AOB=65°.故選:C.【點(diǎn)睛】此題考查了同圓中半徑相等的性質(zhì),圓周角定理:同弧所對的圓周角等于圓心角的一半.5、C【分析】連接,根據(jù)垂徑定理可得,設(shè)的半徑為,則,進(jìn)而勾股定理列出方程求得半徑,進(jìn)而求得【詳解】解:如圖,連接,∵是的直徑,弦,∴設(shè)的半徑為,則在中,,即解得即故選C【點(diǎn)睛】本題考查的是垂徑定理,根據(jù)題意作出輔助線,構(gòu)造出直角三角形是解答此題的關(guān)鍵.6、A【分析】過點(diǎn)作于點(diǎn),連接,根據(jù)已知條件即可求得,根據(jù)含30度角的直角三角形的性質(zhì)即可求得,根據(jù)勾股定理即可求得,根據(jù)垂徑定理即可求得的長.【詳解】解:如圖,過點(diǎn)作于點(diǎn),連接,AB是的直徑,,,,在中,故選A【點(diǎn)睛】本題考查了勾股定理,含30度角的直角三角形的性質(zhì),垂徑定理,掌握以上定理是解題的關(guān)鍵.7、B【詳解】①直徑是圓中最大的弦;故①正確,②同圓或等圓中長度相等的兩條弧一定是等??;故②不正確③半徑相等的兩個圓是等圓;故③正確④弧分優(yōu)弧、劣弧和半圓,故④不正確⑤同一條弦所對的兩條弧可位于弦的兩側(cè),故不一定相等,則⑤不正確.綜上所述,正確的有①③故選B【點(diǎn)睛】本題考查了圓相關(guān)概念,掌握弦與弧的關(guān)系以及相關(guān)概念是解題的關(guān)鍵.8、C【分析】由折疊可得∠DAE=∠FAE,∠D=∠AFE=90°,EF=ED,再根據(jù)切線長定理得到AG=AH,∠GAF=∠HAF,進(jìn)而求出∠GAF=∠HAF=∠DAE=30°,據(jù)此對A作出判斷;接下來延長EF與AB交于點(diǎn)N,得到EF是⊙O的切線,ANE是等邊三角形,證明四邊形EFGH是平行四邊形,再結(jié)合HE=EF可對B作出判斷;在RtEFC中,∠C=90°,∠FEC=60°,則EF=2CE,再結(jié)合AD=DE對C作出判斷;由AG=AH,∠GAF=∠HAF,得出GH⊥AO,不難判斷D.【詳解】解:由折疊可得∠DAE=∠FAE,∠D=∠AFE=90°,EF=ED.∵AB和AE都是⊙O的切線,點(diǎn)G、H分別是切點(diǎn),∴AG=AH,∠GAF=∠HAF,∴∠GAF=∠HAF=∠DAE=30°,∴∠BAE=2∠DAE,故A正確,不符合題意;延長EF與AB交于點(diǎn)N,如圖:∵OF⊥EF,OF是⊙O的半徑,∴EF是⊙O的切線,∴HE=EF,NF=NG,∴△ANE是等邊三角形,∴FG//HE,F(xiàn)G=HE,∠AEF=60°,∴四邊形EFGH是平行四邊形,∠FEC=60°,又∵HE=EF,∴四邊形EFGH是菱形,故B正確,不符合題意;∵AG=AH,∠GAF=∠HAF,∴GH⊥AO,故D正確,不符合題意;在Rt△EFC中,∠C=90°,∠FEC=60°,∴∠EFC=30°,∴EF=2CE,∴DE=2CE.∵在Rt△ADE中,∠AED=60°,∴AD=DE,∴AD=2CE,故C錯誤,符合題意.故選C.【點(diǎn)睛】本題是一道幾何綜合題,考查了切線長定理及推論,切線的判定,菱形的定義,含30的直角三角形的性質(zhì),等邊三角形的判定和性質(zhì),翻折變換等,正確理解翻折變換及添加輔助線是解決本題的關(guān)鍵.二、填空題1、3【分析】由切線長定理和,可得為等邊三角形,則.【詳解】解:連接,如下圖:,分別為的切線,,為等腰三角形,,,為等邊三角形,,,.故答案為:3.【點(diǎn)睛】本題考查了等邊三角形的判定和切線長定理,解題的關(guān)鍵是作出相應(yīng)輔助線.2、【分析】①如圖1所示,由題意知,EF為△ABC的中位線,∠EFC=∠ABC=45°,∠PAO=45°,∠PAO=∠OFH,∠POA=∠FOH,∠H=∠APO,在Rt△APC中,EA=EC,有PE=EA=EC,∠EPA=∠EAP=∠BAH,∠H=∠BAH,BH=BA,∠ADP=∠BDC=45°,∠ADB=90°,知BD⊥AH,∠DBA=∠DBC=22.5°,∠ADB=∠ACB=90°,有A,D,C,B四點(diǎn)共圓,∠DAC=∠DBC=22.5°,∠DCA=∠ABD=22.5°,∠DAC=∠DCA=22.5°,知DA=DC,設(shè)AD=a,則DC=AD=a,PD=a=AP,tan∠CAP==計算求解即可;②如圖2所示,當(dāng)點(diǎn)P在線段CD上時,同理可證:DA=DC,設(shè)AD=a,則CD=AD=a,PD=,PC=a﹣a,tan∠CAP=,計算求解即可,而情形2滿足要求.【詳解】解:①如圖1,當(dāng)點(diǎn)D在線段PC上時,延長AD交BC的延長線于H.∵CE=EA,CF=FB,∴EF∥AB,∴∠EFC=∠ABC=45°,∵∠PAO=45°,∴∠PAO=∠OFH,∵∠POA=∠FOH,∴∠H=∠APO,∵∠APC=90°,EA=EC,∴PE=EA=EC,∴∠EPA=∠EAP=∠BAH,∴∠H=∠BAH,∴BH=BA,∵∠ADP=∠BDC=45°,∴∠ADB=90°,∴BD⊥AH,∴∠DBA=∠DBC=22.5°,∵∠ADB=∠ACB=90°,∴A,D,C,B四點(diǎn)共圓,∠DAC=∠DBC=22.5°,∠DCA=∠ABD=22.5°,∴∠DAC=∠DCA=22.5°,∴DA=DC,設(shè)AD=a,則DC=AD=a,PD=a=AP,∴tan∠CAP===+1;②如圖2中,當(dāng)點(diǎn)P在線段CD上時,同理可證:DA=DC,設(shè)AD=a,則CD=AD=a,PD=∴PC=a﹣a,∴tan∠CAP===,∵點(diǎn)P在線段EF上,∴情形1不滿足條件,情形2滿足條件;故答案為:﹣1.【點(diǎn)睛】本題考查了中位線,等腰三角形的判定與性質(zhì),旋轉(zhuǎn),直角三角形斜邊上中線的性質(zhì),正切函數(shù)等知識點(diǎn).解題的關(guān)鍵在于表示出正切中線段的長度.3、【分析】如圖,根據(jù)四邊形CDEF為正方形,可得∠D=90°,CD=DE,從而得到CE是直徑,∠ECD=45°,然后利用勾股定理,即可求解.【詳解】解:如圖,∵四邊形CDEF為正方形,∴∠D=90°,CD=DE,∴CE是直徑,∠ECD=45°,根據(jù)題意得:AB=2.5,,∴,∴,即此斛底面的正方形的邊長為尺.故答案為:【點(diǎn)睛】本題主要考查了圓內(nèi)接四邊形,勾股定理,熟練掌握圓內(nèi)接四邊形的性質(zhì),勾股定理是解題的關(guān)鍵.4、【分析】先求出A、B、C坐標(biāo),再證明三角形BOC是等邊三角形,最后根據(jù)扇形面積公式計算即可.【詳解】過C作CD⊥OA于D∵一次函數(shù)的圖象與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,∴當(dāng)時,,B點(diǎn)坐標(biāo)為(0,1)當(dāng)時,,A點(diǎn)坐標(biāo)為∴∵作的外接圓,∴線段AB中點(diǎn)C的坐標(biāo)為,∴三角形BOC是等邊三角形∴∵C的坐標(biāo)為∴∴故答案為:【點(diǎn)睛】本題主要考查了一次函數(shù)的綜合運(yùn)用,求扇形面積.用已知點(diǎn)的坐標(biāo)表示相應(yīng)的線段是解題的關(guān)鍵.5、【分析】如圖(見解析),過點(diǎn)作軸于點(diǎn),點(diǎn)作軸于點(diǎn),設(shè),從而可得,先利用勾股定理可得,從而可得,再根據(jù)旋轉(zhuǎn)的性質(zhì)可得,然后根據(jù)三角形全等的判定定理證出,最后根據(jù)全等三角形的性質(zhì)可得,由此即可得出答案.【詳解】解:如圖,過點(diǎn)作軸于點(diǎn),點(diǎn)作軸于點(diǎn),設(shè),則,在中,,在中,,,解得,,由旋轉(zhuǎn)的性質(zhì)得:,,,,在和中,,,,,故答案為:.【點(diǎn)睛】本題考查了勾股定理、旋轉(zhuǎn)、點(diǎn)坐標(biāo)等知識點(diǎn),畫出圖形,通過作輔助線,正確找出兩個全等三角形是解題關(guān)鍵.6、【分析】首先根據(jù)題意列出表格,然后由表格即可求得所有等可能的結(jié)果與兩人平局的情況,再利用概率公式即可求得答案.【詳解】解:小明和小強(qiáng)玩“石頭、剪刀、布”游戲,所有可能出現(xiàn)的結(jié)果列表如下:∵由表格可知,共有9種等可能情況.其中平局的有3種:(石頭,石頭)、(剪刀,剪刀)、(布,布).∴小明和小強(qiáng)平局的概率為:,故答案為:.【點(diǎn)睛】此題考查了列表法或樹狀圖法求概率.用到的知識點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之比.7、60【分析】在Rt△BOE中,利用勾股定理求得OE=1,知OB=2OE,得到∠BOE=60°,∠BOC=120°,再利用圓周角定理即可解決問題.【詳解】解:如圖作OE⊥BC于E.∵OE⊥BC,∴BE=EC=,∠BOE=∠COE,∴OE=1,∴OB=2OE,∴∠OBE=30°,∴∠BOE=∠COE=60°,∴∠BOC=120°,∴∠BAC=60°,故答案為:60.【點(diǎn)睛】本題考查三角形的外心與外接圓、圓周角定理.垂徑定理、勾股定理、直角三角形30度角性質(zhì)、等腰三角形的性質(zhì)等知識,解題的關(guān)鍵是學(xué)會添加常用輔助線,靈活運(yùn)用所學(xué)知識解決問題.三、解答題1、(1)45°;(2)【分析】(1)根據(jù)旋轉(zhuǎn)的性質(zhì)得,,,,通過等量代換及三角形內(nèi)角和得,根據(jù)四點(diǎn)共圓即可求得;(2)連接EB,先證明出,根據(jù)全等三角形的性質(zhì)得,在中利用勾股定理,即可求得.【詳解】解:(1)由旋轉(zhuǎn)可知:,,,,∴,,.由三角形內(nèi)角和定理得,∴點(diǎn)A,D,F(xiàn),E共圓.∴.(2)連接EB,∵,∴.∵,∴.又∵,,∴.∴,.∴.在中,,,,∵,∴.【點(diǎn)睛】本題考查了旋轉(zhuǎn)的性質(zhì)、三角形全等判定及性質(zhì)、勾股定理、三角形內(nèi)角和等,解題的關(guān)鍵是掌握旋轉(zhuǎn)的性質(zhì).2、(1)中心(2)見解析【分析】(1)利用中心對稱圖形的意義得到答案即可;(2)①每個直角三角形的頂點(diǎn)均在方格紙的格點(diǎn)上,且四個三角形不重疊,是軸對稱圖形;②所設(shè)計的圖案(不含方格紙)必須是中心對稱圖形或軸對稱圖形.(1)圖1中的“弦圖”的四個直角三角形組成的圖形是中心對稱圖形,故答案為:中心;(2)如圖2是軸對稱圖形而不是中心對稱圖形;圖3既是軸對稱圖形,又是中心對稱圖形.【點(diǎn)睛】本題考查利用旋轉(zhuǎn)或軸對稱設(shè)計方案,關(guān)鍵是理解旋轉(zhuǎn)和軸對稱的概念,按要求作圖即可.3、(1)相切,見解析(2)【分析】(1)連接OC、OD、AC,OC交AF于點(diǎn)M,根據(jù)AG=CG,CD⊥AB,可得,從而OC⊥AF,再由∠AFB=90°,可得CH∥AF,即可求證;(2)先證明四邊形CMFH為矩形,可得OC⊥AF,CM=HF=2,從而得到AM=FM,進(jìn)而得到OM=BF=2,可得到CM=OM,進(jìn)而得到OC=4,AM垂直平分OC,可證得△AOC為等邊三角形,即可求解.(1)解:CH與⊙O相切.理由如下:如圖,連接OC、OD、AC,OC交AF于點(diǎn)M,∵AG=CG,∴∠ACG=∠CAG,∴,∵CD⊥AB,∴,∴,∴OC⊥AF,∵AB為直徑,∴∠AFB=90°,∵BH⊥CH,∴CH∥AF,∴OC⊥CH,∵OC為半徑,∴CH為⊙O的切線;(2)解:由(1)得:BH⊥CH,OC⊥CH,∴OC∥BH,∵CH∥AF,∴四邊形CMFH為平行四邊形,∵OC⊥CH,∴∠OCH=90°,∴四邊形CMFH為矩形,∴OC⊥AF,CM=HF=2,∴AM=FM,∵點(diǎn)O為AB的中點(diǎn),∴OM=BF=2,∴CM=OM,∴OC=4,AM垂直平分OC,∴AC=AO,而AO=OC,∴AC=OC=OA,,∴△AOC為等邊三角形,∴∠AOC=60°,∵,∴∠AOD=∠AOC=60°,∴∠COD=120°,∴弧CD的長度為.【點(diǎn)睛】本題主要考查了圓的基本性質(zhì),垂徑定理,切線的判定,等邊三角形的判定和性質(zhì),熟練掌握相關(guān)知識點(diǎn)是解題的關(guān)鍵.4、【分析】連接OB,由圓周角定理得出∠AOB=2∠ACB=120°,再由垂徑定理得出∠AOE=∠AOB=60°、AB=2AE,在Rt△AOE中,由OA=2OE求解可得答案.【詳解】如圖,連接OB,則∠AOB=2∠ACB=120°,∵OD⊥AB,∴∠AOE=∠AOB=60°,∵AO=6,∴在Rt△AOE中,,∴AB=2AE,故答案為:.【點(diǎn)睛】本題主要考查圓周角定理,解題的關(guān)鍵是掌握圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.垂直于弦的直徑平分這條弦,并且平分弦所對的兩條?。?、(1)A(-1,0),B(0,2);(2)點(diǎn)C的坐標(biāo)(,);(3)①求點(diǎn)F的坐標(biāo)(1,2);②點(diǎn)P的坐標(biāo)(,)【分析】(1)令x=0,求得y值,得點(diǎn)B的坐標(biāo);令y=0,求得x的值,取較小的一個即求A點(diǎn)的坐標(biāo);(2)設(shè)C的坐標(biāo)為(x,-+x+2),根據(jù)AC=BC,得到,令t=-+x,解方程即可;(3)①根據(jù)題意,得∠BPE=90°,PB=PE即點(diǎn)P在線段BE的垂直平分線上,根據(jù)B,E都在拋物線上,則B,E是對稱點(diǎn),從而確定點(diǎn)P在拋物線的對稱軸上,點(diǎn)F在BE上,且BE∥x軸,點(diǎn)E(3,2),確定BE=3,根據(jù)旋轉(zhuǎn)性質(zhì),得EF=BO=2,從而確定點(diǎn)F的坐標(biāo);②根據(jù)BE=3,∠BPE=90°,PB=PE,確定P到BE的距離,即可寫出點(diǎn)P的坐標(biāo).【詳解】(1)令x=0,得y=2,∴點(diǎn)B的坐標(biāo)為B(0,2);令y=0,得-+x+2=0,解得∵點(diǎn)A在x軸的負(fù)半軸;∴A點(diǎn)的坐標(biāo)(-1,0);(2)設(shè)C的坐標(biāo)為(x,-+x+2),∵AC=BC,A(-1,0),B(0,2),∴,∵A(-1,0),B(0,2),∴,即,設(shè)t=-+x,∴,∴,∴,∴,整理,得,解得∵點(diǎn)C在y軸右側(cè)的拋物線上,∴,此時y=,∴點(diǎn)C的坐標(biāo)(,);(3)①如圖,根據(jù)題意,得∠BPE=90°,PB=PE即點(diǎn)P在線段BE的垂直平分線上,∵B,E都在拋物線上,∴B,E是對稱點(diǎn),∴點(diǎn)P在拋物線的對稱軸上,點(diǎn)F在BE上,且BE∥x軸,∵拋物線的對稱軸為直線x=,B(0,2),∴點(diǎn)E(3,2),BE=3,∵EF=BO=2,∴BF=1,∴點(diǎn)F的坐標(biāo)為(1,2);②如圖,設(shè)拋物線的對稱軸與BE交于點(diǎn)M,交x軸與點(diǎn)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論