解析卷-北師大版9年級數(shù)學(xué)上冊期末測試卷及參考答案詳解【培優(yōu)】_第1頁
解析卷-北師大版9年級數(shù)學(xué)上冊期末測試卷及參考答案詳解【培優(yōu)】_第2頁
解析卷-北師大版9年級數(shù)學(xué)上冊期末測試卷及參考答案詳解【培優(yōu)】_第3頁
解析卷-北師大版9年級數(shù)學(xué)上冊期末測試卷及參考答案詳解【培優(yōu)】_第4頁
解析卷-北師大版9年級數(shù)學(xué)上冊期末測試卷及參考答案詳解【培優(yōu)】_第5頁
已閱讀5頁,還剩32頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

北師大版9年級數(shù)學(xué)上冊期末測試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題24分)一、單選題(6小題,每小題2分,共計12分)1、如圖,把長40,寬30的矩形紙板剪掉2個小正方形和2個小矩形(陰影部分即剪掉部分),將剩余的部分折成一個有蓋的長方體盒子,設(shè)剪掉的小正方形邊長為(紙板的厚度忽略不計),若折成長方體盒子的表面積是950,則的值是(

)A.3 B.4 C.4.8 D.52、如圖,平行四邊形ABCD的對角線AC,BD相交于點O,添加下列條件仍不能判斷四邊形ABCD是矩形的是(

)A.AB+BC=AC B.AB=AD C.OA=OD D.∠ABC+∠ADC=180°3、已知x1,x2是一元二次方程2x2-3x=5的兩個實數(shù)根,下列結(jié)論錯誤的是()A.2-3x1=5 B.(x1-x2)(2x1+2x2-3)=0C.x1+x2= D.x1x2=4、如圖,菱形的頂點在直線上,若,,則的度數(shù)為(

)A. B. C. D.5、若實數(shù)滿足,則的值是()A.1 B.-3或1 C.-3 D.-1或36、如圖,在正方形ABCD中,點O是對角線AC的中點,點E是邊BC上的一個動點,OE⊥OF,交邊AB于點F,點G,H分別是點E,F(xiàn)關(guān)于直線AC的對稱點,點E從點C運動到點B時,圖中陰影部分面積的大小變化是()A.先增大后減小 B.先減小后增大C.一直不變 D.不確定二、多選題(6小題,每小題2分,共計12分)1、下列方程不適合用因式方程解法解的是(

)A.x2-3x+2=0 B.2x2=x+4C.(x-1)(x+2)=70 D.x2-11x-10=02、如圖,在矩形中,,,點P在線段上以的速度從點B向點C運動,同時,點Q在線段上從點C向D點運動.若某一時刻與全等,則點Q的運動速度為(

)A. B. C. D.3、已知四邊形是平行四邊形,再從①,②,③,④四個條件中選兩個作為補充條件后,使得四邊形是正方形,其中正確的是(

)A.①② B.②③ C.①③ D.②④4、用一個2倍的放大鏡照一個△ABC,下列命題中不正確的是(

)A.△ABC放大后角是原來的2倍 B.△ABC放大后周長是原來的2倍C.△ABC放大后面積是原來的2倍 D.以上的命題都不對5、如圖,在矩形、銳角三角形、正五邊形、直角三角形的外邊加一個寬度一樣的外框,保證外框的邊與原圖形的對應(yīng)邊平行,則外框與原圖一定相似的有()A. B.C. D.6、如圖,分別以點A、B為圓心,同樣長度為半徑作圓弧,兩弧相交于點C、D.連結(jié)AC、BC、AD、BD,則四邊形ADBC一定是(

)A.矩形 B.菱形 C.正方形 D.平行四邊形第Ⅱ卷(非選擇題76分)三、填空題(8小題,每小題2分,共計16分)1、如圖所示,在中,,,.(1)如圖1,四邊形為的內(nèi)接正方形,則正方形的邊長為_________;(2)如圖2,若內(nèi)有并排的n個全等的正方形,它們組成的矩形內(nèi)接于,則正方形的邊長為_________.2、若代數(shù)式有意義,則x的取值范圍是_____.3、袋中有五顆球,除顏色外全部相同,其中紅色球三顆,標號分別為1,2,3,綠色球兩顆,標號分別為1,2,若從五顆球中任取兩顆,則兩顆球的標號之和不小于4的概率為__.4、如圖,在Rt△ABC中,∠ACB=90°,,點D為AB的中點,點P在AC上,且CP=1,將CP繞點C在平面內(nèi)旋轉(zhuǎn),點P的對應(yīng)點為點Q,連接AQ,DQ.當(dāng)∠ADQ=90°時,AQ的長為______.5、你知道嗎,對于一元二次方程,我國古代數(shù)學(xué)家還研究過其幾何解法呢!以方程即為例加以說明.?dāng)?shù)學(xué)家趙爽(公元3~4世紀)在其所著的《勾股圓方圖注》中記載的方法是:構(gòu)造圖(如下面左圖)中大正方形的面積是,其中它又等于四個矩形的面積加上中間小正方形的面積,即,據(jù)此易得.那么在下面右邊三個構(gòu)圖(矩形的頂點均落在邊長為1的小正方形網(wǎng)格格點上)中,能夠說明方程的正確構(gòu)圖是_____.(只填序號)6、若函數(shù)是反比例函數(shù),那么k的值是_____.7、如圖,在矩形紙片ABCD中,AB=12,AD=5,P為DC邊上的動點(點P不與點D,C重合),將紙片沿AP折疊(1)當(dāng)四邊形ADPD′是正方形時,CD′的長為___.(2)當(dāng)CD′的長最小時,PC的長為___.8、如圖,點E為矩形ABCD的邊BC長上的一點,作DF⊥AE于點F,且滿足DF=AB.下面結(jié)論:①△DEF≌△DEC;②S△ABE=S△ADF;③AF=AB;④BE=AF.其中正確的結(jié)論是_____.四、解答題(6小題,每小題10分,共計60分)1、已知:如圖所示,在△ABC中,∠B=90°,AB=5cm,BC=7cm,點P從點A開始沿AB邊向點B以1cm/s的速度移動,點Q從點B開始沿BC邊向點C以2cm/s的速度移動,當(dāng)其中一點到達終點后,另外一點也隨之停止運動.(1)如果P、Q分別從A、B同時出發(fā),那么幾秒后,△PBQ的面積等于4cm2?(2)在(1)中,△PQB的面積能否等于7cm2?請說明理由.2、如圖,在正方形ABCD中,E是AB上一點,BE=2,AE=3BE,P是AC上一動點,連接PE,PB.(1)在AC上找一點P,使△BPE的周長最?。ㄗ鲌D說明);(2)求出△BPE周長的最小值.3、定義:有一組對邊相等且這一組對邊所在直線互相垂直的凸四邊形叫做“等垂四邊形”.(1)如圖①,四邊形ABCD與四邊形AEFG都是正方形,135°<∠AEB<180°,求證:四邊形BEGD是“等垂四邊形”;(2)如圖②,四邊形ABCD是“等垂四邊形”,AD≠BC,連接BD,點E,F(xiàn),G分別是AD,BD,BC的中點,連接EG,F(xiàn)G,EF.試判定△EFG的形狀,并證明你的結(jié)論;(3)如圖③,四邊形ABCD是“等垂四邊形”,AD=4,BC=8,請直接寫出邊AB長的最小值.

4、小軍和小剛兩位同學(xué)在學(xué)習(xí)”概率“時,做投擲骰子(質(zhì)地均勻的正方體)實驗,他們共做了60次試驗,實驗的結(jié)果如下:向上點數(shù)123456出現(xiàn)次數(shù)79682010(1)計算“2點朝上”的頻率和“5點朝上”的頻率.(2)小軍說:“根據(jù)實驗,一次實驗中出現(xiàn)3點朝上的概率是”;小軍的這一說法正確嗎?為什么?(3)小剛說:“如果擲600次,那么出現(xiàn)6點朝上的次數(shù)正好是100次.”小剛的這一說法正確嗎?為什么?5、如圖,∠1=∠2=∠3,試找出圖中兩對相似三角形,并說明為什么?6、如圖,在平面直角坐標系中,△ABC的BC邊與x軸重合,頂點A在y軸的正半軸上,線段OB,OC()的長是關(guān)于x的方程的兩個根,且滿足CO=2AO.(1)求直線AC的解析式;(2)若P為直線AC上一個動點,過點P作PD⊥x軸,垂足為D,PD與直線AB交于點Q,設(shè)△CPQ的面積為S(),點P的橫坐標為a,求S與a的函數(shù)關(guān)系式;(3)點M的坐標為,當(dāng)△MAB為直角三角形時,直接寫出m的值.-參考答案-一、單選題1、D【解析】【分析】觀察圖形可知陰影部分小長方形的長為,再根據(jù)去除陰影部分的面積為950,列一元二次方程求解即可.【詳解】解:由圖可得出,整理,得,解得,(不合題意,舍去).故選:D.【考點】本題考查的知識點是一元二次方程的應(yīng)用,根據(jù)圖形找出陰影部分小長方形的長是解此題的關(guān)鍵.2、B【解析】【分析】由勾股定理的逆定理證得∠ABC=90°,根據(jù)有一個角是直角的平行四邊形是矩形可判斷A;根據(jù)有一組鄰邊相等的平行四邊形是菱形可判斷B;根據(jù)對角線相等的平行四邊形是矩形可判斷C;根據(jù)有一個角是直角的平行四邊形是矩形可判斷D.【詳解】解:A.∵AB2+BC2=AC2,∴∠ABC=90°,∴?ABCD為矩形,故本選項不符合題意;B.∵AB=AD,∴?ABCD為菱形,故本選項符合題意;C.∵四邊形ABCD是平行四邊形,∴OA=OC,OB=OD,∵OA=OD,∴AC=BD,∴?ABCD是矩形,故本選項不符合題意;D.∵四邊形ABCD是平行四邊形,∴∠ABC=∠ADC,∵∠ABC+∠ADC=180°,∴∠ABC=∠ADC=90°,∴?ABCD為矩形,故本選項不符合題意;故選:B.【考點】本題考查了矩形的判定定理,勾股定理的逆定理,平行四邊形的性質(zhì),熟練掌握矩形的判定方法是解決問題的關(guān)鍵.3、D【解析】【分析】根據(jù)一元二次方程的根的判別式、一元二次方程根的定義、一元二次方程根與系數(shù)的關(guān)系逐一進行分析即可.【詳解】解:∵x1、x2是一元二次方程2x2-3x=5的兩個實數(shù)根,∴,故A正確,不符合題意;這里a=2,b=-3,c=-5,∴,,∵,∴,∴,故B、C正確,不符合題意,D錯誤,符合題意.故選:D.【考點】本題考查了一元二次方程根的意義,根與系數(shù)的關(guān)系等,熟練掌握根與系數(shù)的關(guān)系,,是解題的關(guān)鍵.4、B【解析】【分析】由∠MCN=180°,可求出∠BCD的度數(shù),根據(jù)菱形的性質(zhì)可得∠A的度數(shù),再由AB=AD,進而可求出∠ABD的度數(shù).【詳解】∵四邊形ABCD是菱形,∴∠A=∠BCD,AB=AD.∵∠1=50°,∠2=20°,∴∠BCD=180°-50°-20°=110°∴∠A=110°.∵AB=AD,∴∠ABD=∠ADB=(180°-110°)÷2=35°.故選B.【考點】本題考查了菱形的性質(zhì)、三角形內(nèi)角和定理的運用以及等腰三角形的判定和性質(zhì),熟記菱形的各種性質(zhì)是解題的關(guān)鍵.5、A【解析】【分析】設(shè)x2-3x=y.將y代入原方程得到關(guān)于y的一元二次方程y2+2y-3=0即可,解這個方程求出y的值,然后利用根的判別式檢驗即可.【詳解】設(shè)x2-3x=y.將y代入原方程,得y2+2y-3=0,解之得,y=1或y=-3.當(dāng)y=1時,x2-3x=1,△=b2-4ac=(-3)2-4×1×(-1)=9+4=13>0,有兩個不相等的實數(shù)根,當(dāng)y=-3時,x2-3x=-3,△=b2-4ac=(-3)2-4×1×3=9=12<0,無解.故y=1,即x2-3x=1.故選A.【考點】本題考查了換元法解一元二次方程及一元二次方程根的判別式,解數(shù)學(xué)題時,把某個式子看成一個整體,用一個變量去代替它,從而使問題得到簡化,這叫換元法.換元的實質(zhì)是轉(zhuǎn)化,關(guān)鍵是構(gòu)造元和設(shè)元,理論依據(jù)是等量代換,目的是變換研究對象,將問題移至新對象的知識背景中去研,從而使非標準型問題標準化、復(fù)雜問題簡單化,變得容易處理.6、C【解析】【分析】連接BD,證明△FOB≌△EOC,同理得到△HOD≌△GOC,即可得到答案.【詳解】解:連接BD,∵四邊形ABCD是正方形,∴∠BOC=90°,,∴∠BOЕ+∠EOC=90°,∵OE⊥OF,∴∠BOE+∠FOB=90°,∴∠FOB=∠EOC,在△FOB和△EOC,,∴△FOB≌△EOC,同理,△HOD≌△GOC,∴圖中陰影部分的面積=△ABD的面積=正方形ABCD的面積.∴陰影部分面積的大小一直不變.故選:C.【考點】本題考查的是正方形的性質(zhì)、全等三角形的判定和性質(zhì),掌握正方形的性質(zhì)、全等三角形的判定定理和性質(zhì)定理是解題的關(guān)鍵.二、多選題1、ABD【解析】【分析】根據(jù)因式分解法解一元二次方程的方法求解即可.【詳解】解:A、x2-3x+2=0,適用公式法,不適合用因式分解法來解題,符合題意;B、2x2=x+4,適用公式法,不適合用因式分解法來解題,符合題意;C、(x-1)(x+2)=70,即,可得,故適合用因式分解法來解題,不符合題意;D、x2-11x-10=0,適用公式法,不適合用因式分解法來解題,符合題意;故選:ABD.【考點】此題考查了解一元二次方程,解題的關(guān)鍵是熟練掌握解一元二次方程的方法.解一元二次方程常用的方法有直接開平方法,配方法,公式法,因式分解法,要根據(jù)方程的特點靈活選用合適的方法.2、AD【解析】【分析】設(shè)Q的速度為xcm/s,運動時間為ts時,△ABP與△PCQ全等,則,,,由矩形的性質(zhì)可知∠B=∠C=90°,則只有△ABP≌△PCQ和△ABP≌△QCP這兩種情況,然后利用全等三角形的性質(zhì)進行求解即可.【詳解】解:設(shè)Q的速度為xcm/s,運動時間為ts時,△ABP與△PCQ全等,∴,,,∵四邊形ABCD是矩形,∴∠B=∠C=90°,當(dāng)△ABP≌△PCQ時,AB=CP,BP=CQ,∴,解得;當(dāng)△ABP≌△QCP時,AB=QC,BP=CP,∴,解得∴Q的速度為4cm/或,故選AD..【考點】本題主要考查了矩形的性質(zhì),全等三角形的性質(zhì),解題的關(guān)鍵在于能夠熟練掌握相關(guān)知識進行求解.3、ACD【解析】【分析】要判定是正方形,則需能判定它既是菱形又是矩形.【詳解】解:A、①②:由①得有一組鄰邊相等的平行四邊形是菱形,由②得有一個角是直角的平行四邊形是矩形,所以平行四邊形ABCD是正方形,故A符合題意;B、②③:由②得有一個角是直角的平行四邊形是矩形,由③得對角線相等的平行四邊形是矩形,所以不能得出平行四邊形ABCD是正方形,故B不符合題意;C、①③:由①得有一組鄰邊相等的平行四邊形是菱形,由③得對角線相等的平行四邊形是矩形,所以平行四邊形ABCD是正方形,故C符合題意;D、②④:由②得有一個角是直角的平行四邊形是矩形,由④得對角線互相垂直的平行四邊形是菱形,所以平行四邊形ABCD是正方形,故D符合題意;故選ACD.【考點】本題考查了正方形的判定方法:先判定四邊形是菱形,再判定四邊形是矩形;或先判定四邊形是矩形,再判定四邊形是菱形;那么四邊形一定是正方形;熟練掌握正方形的判定方法是解題的關(guān)鍵.4、ACD【解析】【分析】用2倍的放大鏡放大一個△ABC,得到一個與原三角形相似的三角形;根據(jù)相似三角形的性質(zhì):相似三角形的面積比等于相似比的平方,周長比等于相似比.可知:放大后三角形的面積是原來的4倍,邊長和周長是原來的2倍,而內(nèi)角的度數(shù)不會改變.【詳解】解:A、錯誤,△ABC放大后角不變,故該選項符合題意;B、正確,△ABC放大后周長是原來的2倍,故該選項不符合題意;C、錯誤,△ABC放大后面積是相似比的平方,放大后面積是原來的4倍,故該選項符合題意;D、錯誤,故該選項符合題意.故選:ACD.【考點】本題考查對相似三角形性質(zhì)的理解.(1)相似三角形周長的比等于相似比;(2)相似三角形面積的比等于相似比的平方;(3)相似三角形對應(yīng)高的比、對應(yīng)中線的比、對應(yīng)角平分線的比都等于相似比.5、BCD【解析】【分析】根據(jù)相似多邊形的判定定理對各個選項進行分析,從而確定最后答案.【詳解】解:矩形不相似,因為其對應(yīng)角的度數(shù)一定相同,但對應(yīng)邊的比值不一定相等,不符合相似的條件,故A不符合題意;銳角三角形、正五邊形、直角三角形的原圖與外框相似,因為其對應(yīng)角均相等,對應(yīng)邊均對應(yīng)成比例,符合相似的條件,故B、C、D符合題意.故選BCD.【考點】此題主要考查了相似圖形判定,注意邊數(shù)相同、各角對應(yīng)相等、各邊對應(yīng)成比例的兩個多邊形是相似多邊形.6、BD【解析】【分析】根據(jù)四邊相等的四邊形是菱形即可判斷.【詳解】解:由作圖可知:AC=AD=BC=BD,∴四邊形ADBC是菱形且為平行四邊形,故選:BD.【考點】本題考查基本作圖,平行四邊形的判定,菱形的判定等知識,解題的關(guān)鍵是熟練掌握五種基本作圖,屬于中考??碱}型.三、填空題1、

【解析】【分析】(1)根據(jù)題意畫出圖形,作CN⊥AB,再根據(jù)GF∥AB,可知△CGF∽△CAB,由相似三角形的性質(zhì)即可求出正方形的邊長;(2)設(shè)正方形的邊長是x,則過點C作CN⊥AB,垂足為N,交GF于點M,易得△CGF∽△CAB,所以,求出x值即可.【詳解】解:(1)在圖1中,作CN⊥AB,交GF于點M,交AB于點N.在Rt△ABC中,∵AC=4,BC=3,∴AB=5,∴AB?CN=BC?AC,∴CN=,∵GF∥AB,∴△CGF∽△CAB,∴CM:CN=GF:AB,設(shè)正方形邊長為x,則,解得:,∴正方形DEFG的邊長為;(2)如圖,過點C作CN⊥AB,垂足為N,交GF于點M,設(shè)小正方形的邊長為x,∵四邊形GDEF為矩形,∴GF∥AB,CM⊥GF,同理算出CN=,∴,即,∴,即小正方形的邊長是.【考點】本題主要考查了正方形,矩形的性質(zhì)和相似三角形的性質(zhì).會利用三角形相似中的相似比來得到相關(guān)的線段之間的等量關(guān)系是解題的關(guān)鍵.2、﹣3≤x≤且x≠.【解析】【分析】根據(jù)二次根式的性質(zhì),被開方數(shù)大于等于0;分母中有字母,分母不為0.【詳解】解:若代數(shù)式有意義,必有,解①得解②移項得兩邊平方得整理得解得③∴解集為﹣3≤x≤且x≠.故答案為:﹣3≤x≤且x≠.【考點】本題考查了二次根式的概念:式子(a≥0)叫二次根式,(a≥0)是一個非負數(shù).注意:二次根式中的被開方數(shù)必須是非負數(shù),否則二次根式無意義;當(dāng)二次根式在分母上時還要考慮分母不等于零,此時被開方數(shù)大于0.3、##0.5【解析】【分析】畫樹狀圖,共有20個等可能的結(jié)果,兩顆球的標號之和不小于4的結(jié)果有10個,再由概率公式求解即可.【詳解】畫樹狀圖如圖:共有20個等可能的結(jié)果,兩顆球的標號之和不小于4的結(jié)果有10個,兩顆球的標號之和不小于4的概率為,故答案為:.【考點】本題考查了列表法與樹狀圖法以及概率公式,正確畫出樹狀圖是解題的關(guān)鍵.4、或##或【解析】【分析】連接,根據(jù)題意可得,當(dāng)∠ADQ=90°時,分點在線段上和的延長線上,且,勾股定理求得即可.【詳解】如圖,連接,在Rt△ABC中,∠ACB=90°,,,,,根據(jù)題意可得,當(dāng)∠ADQ=90°時,點在上,且,,如圖,在中,,在中,故答案為:或.【考點】本題考查了旋轉(zhuǎn)的性質(zhì),勾股定理,直角三角形斜邊上中線的性質(zhì),確定點的位置是解題的關(guān)鍵.5、②【解析】【分析】仿造案例,構(gòu)造面積是的大正方形,由它的面積為,可求出,此題得解.【詳解】解:即,構(gòu)造如圖②中大正方形的面積是,其中它又等于四個矩形的面積加上中間小正方形的面積,即,據(jù)此易得.故答案為②.【考點】本題考查了一元二次方程的應(yīng)用,仿造案例,構(gòu)造出合適的大正方形是解題的關(guān)鍵.6、0【解析】【分析】直接利用反比例函數(shù)的定義得出答案.【詳解】∵函數(shù)是反比例函數(shù),∴k2﹣3k﹣1=﹣1且3﹣k≠0,解得:k1=0,k2=3,(不合題意舍去)∴k=0.故答案為:0.【考點】本題主要考查反比例函數(shù)的定義,掌握反比例函數(shù)的定義,是解題的關(guān)鍵.7、

【解析】【分析】(1)根據(jù)四邊形是正方形,得到從而得到再利用勾股定理求解即可得到答案;(2)如圖:連接,運用矩形的性質(zhì)和折疊的性質(zhì)求出的最小值,再設(shè),則,最后在中運用勾股定理解答即可【詳解】解:(1)如圖所示,∵四邊形是正方形∴∵∴∵四邊形ABCD是矩形∴,∠B=90°∴(2)如圖:連接,當(dāng)點在上時,有最小值.∵四邊形是矩形,,,∴,,∴.由折疊性質(zhì),得,,∴的最小值.設(shè),則.在中,,即,解得,∴的長為.故答案為:.【考點】本題主要考查矩形的性質(zhì)和折疊的性質(zhì),正方形的性質(zhì),勾股定理,根據(jù)矩形的性質(zhì)和折疊的性質(zhì)確定的最小值成為解答本題的關(guān)鍵.8、①②④.【解析】【分析】證明Rt△DEF≌Rt△DEC得出①正確;在證明△ABE≌△DFA得出S△ABE=S△ADF;②正確;得出BE=AF,④正確,③不正確;即可得出結(jié)論.【詳解】解:四邊形是矩形,,在和中,,①正確在和中,;②正確,④正確,③不正確故答案為:①②④.【考點】本題考查了矩形的性質(zhì)、全等三角形的判定與性質(zhì)等知識,熟練掌握矩形的性質(zhì),證明三角形全等是解題的關(guān)鍵.四、解答題1、(1)1秒;(2)不可能,見解析【解析】【分析】(1)經(jīng)過x秒鐘,△PBQ的面積等于4cm2,根據(jù)點P從A點開始沿AB邊向點B以1cm/s的速度移動,點Q從B點開始沿BC邊向點C以2cm/s的速度移動,表示出BP和BQ的長可列方程求解;(2)看△PBQ的面積能否等于7cm2,只需令×2x(5﹣x)=7,化簡該方程后,判斷該方程的△與0的關(guān)系,大于或等于0則可以,否則不可以.【詳解】解:(1)設(shè)經(jīng)過x秒以后△PBQ面積為4cm2,根據(jù)題意得(5﹣x)×2x=4,整理得:x2﹣5x+4=0,解得:x=1或x=4(舍去).答:1秒后△PBQ的面積等于4cm2;2、(1)見解析(2)12【解析】【分析】(1)連接DE,交AC于點P′,連接BP′,當(dāng)點P在點P′處時,△BPE的周長最?。碛桑鹤C明△ABP′≌△ADP′,即可求解;(2)根據(jù)(1)可得P′B+P′E=DE.再由AE=3BE,可得AE=6.從而得到AD=AB=8.再由勾股定理,即可求解.(1)解:如圖,連接DE,交AC于點P′,連接BP′,當(dāng)點P在點P′處時,△BPE的周長最小.理由:在正方形ABCD中,AB=AD,∠BAC=∠DAC,∵AP′=AP′,∴△ABP′≌△ADP′,∴BP′=DP′,∴BP+PE=DP′+P′E≥DE,即當(dāng)點P位于PP′時,△BPE的周長PB+EP+BE最小;(2)解:由(1)得:BP′=DP′,∴P′B+P′E=DE.∵BE=2,AE=3BE,∴AE=6.∴AD=AB=8.∴DE==10.∴PB+PE的最小值是10.∴△BPE周長的最小值為10+BE=10+2=12.【考點】本題主要考查了正方形的性質(zhì),勾股定理,最短距離,全等三角形的判定和性質(zhì)等,熟練掌握相關(guān)知識點是解題的關(guān)鍵.3、∴拋物線的解析式為y=x(2)①∵A(1,2),B(7,2),當(dāng)拋物線經(jīng)過點A時,a=2,當(dāng)拋物線經(jīng)過點B時,2=49a,∴a=,∵若G與△ABC有交點,∴≤a≤2.②由題意當(dāng)a=時,y=x2,當(dāng)y=8時,8=x2,∴x>0,∴x=14,∴當(dāng)反比例函數(shù)y=經(jīng)過點(14,8)時k的值最大,此時k=112,∴k的最大值為112【考點】本題考查二次函數(shù)綜合題、待定系數(shù)法、勾股定理等知識,解題的關(guān)鍵是理解題意,學(xué)會利用特殊點解決問題,屬于中考壓軸題.2.(1)證明見解析;(2)△EFG是等腰直角三角形;證明見解析;(3)AB最小值為【解析】【分析】延長BE,DG交于點H,先證△ABE≌△ADG,得BE=DG,∠ABE=∠ADG.結(jié)合∠ABD+∠ADB=90°,知∠ABE+∠EBD+∠ADB=∠DBE+∠ADB+∠ADG=90°,即可得∠BHD=90°.從而得證;(2)延長BA,CD交于點H,由四邊形ABCD是“等垂四邊形”,AD≠BC知AB⊥CD,AB=CD,從而得∠HBC+∠HCB=90°,根據(jù)三個中點知EF=AB,GF=CD,EF∥AB,GF∥DC,據(jù)此得∠BGF=∠C,EFD=∠HBD,EF=GF.由∠EFG=∠EFD+∠DFG=∠ABD+∠DBC+∠FGB=∠ABD+∠DBC+∠C=∠HBC+∠HCB=90°可得答案;(3)延長BA,CD交于點H,分別取AD,BC的中點E,F(xiàn).連接HE,EF,HF,由EF≥HF?HE=BC?AD=4?2=2然后結(jié)合(2)可知AB=EF≥2可得答案.【詳解】解:(1)如圖①,延長BE,DG交于點H,∵四邊形ABCD與四邊形AEFG都為正方形,∴AB=AD,AE=AG,∠BAD=∠EAG=90°.∴∠BAE=∠DAG.∴△ABE≌△ADG(SAS).∴BE=DG,∠ABE=∠ADG.∵∠ABD+∠ADB=90°,∴∠ABE+∠EBD+∠ADB=∠DBE+∠ADB+∠ADG=90°,即∠EBD+∠BDG=90°,∴∠BHD=90°.∴BE⊥DG.又∵BE=DG,∴四邊形BEGD是“等垂四邊形”;(2)△EFG是等腰直角三角形.理由如下:如圖②,延長BA,CD交于點H,∵四邊形ABCD是“等垂四邊形”,AD≠BC,∴AB⊥CD,AB=CD,∴∠HBC+∠HCB=90°∵點E,F(xiàn),G分別是AD,BC,BD的中點,∴EF=AB,GF=CD,EF∥AB,GF∥DC,∴∠BGF=∠C,∠EFD=∠HBD,EF=GF,∴∠EFG=∠EFD+∠DFG=∠ABD+∠DBC+∠FGB=∠ABD+∠DBC+∠C=∠HBC+∠HCB=90°.∴△EFG是等腰直角三角形;(3)延長BA,CD交于點H,分別取AD,BC的中點E,F(xiàn).連接HE,EF,HF,則EF≥HF?HE=BC?AD=4?2=2,由(2)可知AB=EF≥2,∴AB最小值為【考點】本題是四邊形的綜合問題,解題的關(guān)鍵是掌握正方形的性質(zhì)、全等三角形的判定與性質(zhì)、三角形中位線定理及等腰直角三角形的性質(zhì)等知識點.4、解:(1)2點朝上出現(xiàn)的頻率為;5點朝上的概率為;(2)小軍的說法不正確,(3)小剛的說法是不正確的.

【解析】【分析】(1)直接利用概率公式計算即可;(2)利用大量重復(fù)試驗下事件發(fā)生的頻率可以估計該事件發(fā)生的概率直接回答即可;(3)利用隨機事件發(fā)生的概率的意義直接回答即可確定答案.【詳解】(1)2點朝上出現(xiàn)的頻率==;5點朝上的概率==;(2)小軍的說法不正確,因為3點朝上的概率為,不能說明3點朝上這一事件發(fā)生的概率就是?,只有當(dāng)實驗的次數(shù)足夠多時,該事件發(fā)生的頻率才穩(wěn)定

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論