版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
人教版8年級數(shù)學(xué)下冊《平行四邊形》專題測試考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、已知三角形三邊長分別為7cm,8cm,9cm,作三條中位線組成一個新的三角形,同樣方法作下去,一共做了五個新的三角形,則這五個新三角形的周長之和為()A.46.5cm B.22.5cm C.23.25cm D.以上都不對2、如圖,在四邊形中,AB∥CD,添加下列一個條件后,一定能判定四邊形是平行四邊形的是()A. B. C. D.3、如圖,的對角線交于點O,E是CD的中點,若,則的值為()A.2 B.4 C.8 D.164、如圖,在長方形ABCD中,AB=6,BC=8,點E是BC邊上一點,將△ABE沿AE折疊,使點B落在點F處,連接CF,當(dāng)△CEF為直角三角形時,則BE的長是()A.4 B.3 C.4或8 D.3或65、如圖,已知正方形ABCD的邊長為6,點E,F(xiàn)分別在邊AB,BC上,BE=CF=2,CE與DF交于點H,點G為DE的中點,連接GH,則GH的長為()A. B. C.4.5 D.4.3第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、菱形的對角線之比為3:4,且面積為24,則它的對角線分別為________.2、平面直角坐標(biāo)系中,四邊形ABCD的頂點坐標(biāo)分別是A(-3,0),B(0,2),C(3,0),D(0,-2),則四邊形ABCD是__________.3、如圖,在□中,⊥于點,⊥于點.若,,且的周長為40,則的面積為________.4、如圖,正方形ABCD中,BD為對角線,且BE為∠ABD的角平分線,并交CD延長線于點E,則∠E=______°.5、在直角墻角FOE中有張硬紙片正方形ABCD靠墻邊滑動,如圖所示,AD=2,A點沿墻往下滑動到O點的過程中,正方形的中心點M到O的最小值是______.三、解答題(5小題,每小題10分,共計50分)1、如圖,在中,過點作于點,點在邊上,,連接,.(1)求證:四邊形是矩形;(2)若,,,求證:平分.2、如圖:已知△BCD是等腰直角三角形,且∠DCB=90°,過點D作AD∥BC,使AD=BC,在AD上取一點E,連結(jié)CE,點B關(guān)于CE的對稱點為B1,連結(jié)B1D,并延長B1D交BA的延長線于點F,延長CE交B1F于點G,連結(jié)BG.(1)求證:∠CBG=∠CDB1;(2)若AE=DE,BC=10,求BG長;(3)在(2)的條件下,H為直線BG上一點,使△HCG為等腰三角形,則所有滿足要求的BH的長是.(直接寫出答案)3、如圖1,在平面直角坐標(biāo)系中,且;(1)試說明是等腰三角形;(2)已知.寫出各點的坐標(biāo):A(,),B(,),C(,).(3)在(2)的條件下,若一動點M從點B出發(fā)沿線段BA向點A運動,同時動點N從點A出發(fā)以相同速度沿線段AC向點C運動,當(dāng)其中一點到達(dá)終點時整個運動都停止.①若的一條邊與BC平行,求此時點M的坐標(biāo);②若點E是邊AC的中點,在點M運動的過程中,能否成為等腰三角形?若能,求出此時點M的坐標(biāo);若不能,請說明理由.4、如圖,在平行四邊形中,E是上一點.(1)用尺規(guī)完成以下基本操作:在下方作,使得,交于點F.(保留作圖痕跡,不寫作法)(2)在(1)所作的圖形中,已知,,求的度數(shù).5、如圖,四邊形ABCD是平行四邊形,∠BAC=90°.(1)尺規(guī)作圖:在BC上截取CE,使CE=CD,連接DE與AC交于點F,過點F作線段AD的垂線交AD于點M;(不寫作法,保留作圖痕跡)(2)在(1)的條件下,猜想線段FM和CF的數(shù)量關(guān)系,并證明你的結(jié)論.-參考答案-一、單選題1、C【解析】【分析】如圖所示,,,,DE,DF,EF分別是三角形ABC的中位線,GH,GI,HI分別是△DEF的中位線,則,,,即可得到△DEF的周長,由此即可求出其他四個新三角形的周長,最后求和即可.【詳解】解:如圖所示,,,,DE,DF,EF分別是三角形ABC的中位線,GH,GI,HI分別是△DEF的中位線,∴,,,∴△DEF的周長,同理可得:△GHI的周長,∴第三次作中位線得到的三角形周長為,∴第四次作中位線得到的三角形周長為∴第三次作中位線得到的三角形周長為∴這五個新三角形的周長之和為,故選C.【點睛】本題主要考查了三角形中位線定理,解題的關(guān)鍵在于能夠熟練掌握三角形中位線定理.2、C【解析】【分析】由平行線的性質(zhì)得,再由,得,證出,即可得出結(jié)論.【詳解】解:一定能判定四邊形是平行四邊形的是,理由如下:,,,,,又,四邊形是平行四邊形,故選:C.【點睛】本題考查了平行四邊形的判定,解題的關(guān)鍵是熟練掌握平行四邊形的判定,證明出.3、B【解析】【分析】根據(jù)平行四邊形的性質(zhì)可得,S△BOC=S△AOD=S△COD=S△AOB=8,再根據(jù)三角形的中線平分三角形的面積可得根據(jù)三角形的中線平分三角形的面積可得S△DOE=4,進(jìn)而可得答案.【詳解】解:∵四邊形ABCD是平行四邊形,,∴S△BOC=S△AOD=S△COD=S△AOB=8,∵點E是CD的中點,∴S△DOE=S△COD=4,故選:B.【點睛】此題主要考查了平行四邊形的性質(zhì),以及三角形中線的性質(zhì),掌握平行四邊形的性質(zhì),三角形的中線平分三角形的面積是解答本題的關(guān)鍵.4、D【解析】【分析】當(dāng)為直角三角形時,有兩種情況:①當(dāng)點F落在矩形內(nèi)部時連接,先利用勾股定理計算出,根據(jù)折疊的性質(zhì)得,而當(dāng)為直角三角形時,只能得到,所以點A、F、C共線,即沿折疊,使點B落在對角線上的點F處,則,,可計算出然后利用勾股定理求解即可;②當(dāng)點F落在邊上時.此時為正方形,由此即可得到答案.【詳解】解:當(dāng)為直角三角形時,有兩種情況:①當(dāng)點F落在矩形內(nèi)部時,如圖所示.連接,在中,,,∴,∵△ABE沿折疊,使點B落在點F處,∴,BE=EF,當(dāng)為直角三角形時,只能得到,∴∴點A、F、C共線,即△ABE沿折疊,使點B落在對角線上的點F處,∴,∴,設(shè)BE=EF=x,則EC=BC-BE=8-x,∵,∴,解得,∴BE=3;②當(dāng)點F落在邊上時,如圖所示,由折疊的性質(zhì)可知AB=AF,BE=EF,∠AEF=∠B=90°,∠FEC=90°,∴為正方形,∴,綜上所述,BE的長為3或6.故選D.【點睛】本題考查折疊問題:折疊前后兩圖形全等,即對應(yīng)線段相等;對應(yīng)角相等.也考查了矩形的性質(zhì),正方形的性質(zhì)與判定以及勾股定理.解題的關(guān)鍵是要注意本題有兩種情況,需要分類討論,避免漏解.5、A【解析】【分析】根據(jù)正方形的四條邊都相等可得BC=DC,每一個角都是直角可得∠B=∠DCF=90°,然后利用“邊角邊”證明△CBE≌△DCF,得∠BCE=∠CDF,進(jìn)一步得∠DHC=∠DHE=90°,從而知GH=DE,利用勾股定理求出DE的長即可得出答案.【詳解】解:∵四邊形ABCD為正方形,∴∠B=∠DCF=90°,BC=DC,在△CBE和△DCF中,,∴△CBE≌△DCF(SAS),∴∠BCE=∠CDF,∵∠BCE+∠DCH=90°,∴∠CDF+∠DCH=90°,∴∠DHC=∠DHE=90°,∵點G為DE的中點,∴GH=DE,∵AD=AB=6,AE=AB﹣BE=6﹣2=4,∴,∴GH=.故選A.【點睛】本題主要考查了正方形的性質(zhì),全等三角形的性質(zhì)與判定,勾股定理,直角三角形斜邊上的中線,解題的關(guān)鍵在于能夠熟練掌握相關(guān)知識進(jìn)行求解.二、填空題1、6和8##8和6【解析】【分析】根據(jù)比例設(shè)兩條對角線分別為3x、4x,再根據(jù)菱形的面積等于兩對角線乘積的一半列式求出x的值即可.【詳解】解:設(shè)兩條對角線分別為3x、4x,根據(jù)題意得,×3x?4x=24,解得x=2(負(fù)值舍去),∴菱形的兩對角線的長分別為,.故答案為:6和8.【點睛】本題考查了菱形的面積,主要利用了菱形的對角線互相垂直平分的性質(zhì),菱形的面積的求法,需熟記.2、菱形【解析】【分析】先在坐標(biāo)系中畫出四邊形ABCD,由A、B、C、D的坐標(biāo)即可得到OA=OC=3,OB=OD=2,再由AC⊥BD,即可得到答案.【詳解】解:圖象如圖所示:∵A(-3,0)、B(0,2)、C(3,0)、D(0,-2),∴OA=OC=3,OB=OD=2,∴四邊形ABCD為平行四邊形,∵AC⊥BD,∴四邊形ABCD為菱形,故答案為:菱形.【點睛】本題主要考查了菱形的判定,坐標(biāo)與圖形,解題的關(guān)鍵在于能夠熟練掌握菱形的判定條件.3、48【解析】【分析】根據(jù)題意可得:,再由平行四邊形的面積公式整理可得:,根據(jù)兩個等式可得:,代入平行四邊形面積公式即可得.【詳解】解:∵?ABCD的周長:,∴,∵于E,于F,,,∴,整理得:,∴,∴,∴?ABCD的面積:,故答案為:48.【點睛】題目主要考查平行四邊形的性質(zhì)及運用方程思想進(jìn)行求解線段長,理解題意,熟練運用平行四邊形的性質(zhì)及其面積公式是解題關(guān)鍵.4、22.5【解析】【分析】由平行線的性質(zhì)可知,由角平分線的定義得,進(jìn)而可求∠E的度數(shù).【詳解】解:為正方形,,,,平分,,又,,故答案為:22.5.【點睛】本題考查了正方形的性質(zhì),平行線的性質(zhì),角平分線的定義,熟練掌握正方形的性質(zhì)是解答本題的關(guān)鍵.5、2【解析】【分析】取的中點為,連接,根據(jù)直角三角形的性質(zhì)求出OG和MG的長,然后根據(jù)兩點之間線段最短即可求解.【詳解】解:取的中點為,連接,為正方形,,,為中點,,又為直角三角形,,的軌跡是以為圓心的圓弧,最小值為當(dāng)三點共線時,即,故答案為:2.【點睛】本題考查了正方形的性質(zhì),直角三角形斜邊的中線等于斜邊的一半,以及兩點之間線段最短等知識,正確作出輔助線是解答本題的關(guān)鍵.三、解答題1、(1)見解析;(2)見解析【分析】(1)先證明四邊形是平行四邊形,結(jié)合,從而可得結(jié)論;(2)先證明,再求解證明證明從而可得結(jié)論.【詳解】(1)證明:四邊形是平行四邊形,.即,,四邊形是平行四邊形.,,四邊形是矩形;(2)四邊形是平行四邊形,,.四邊形是矩形;在中,由勾股定理,得,,,,即平分.【點睛】本題考查的是勾股定理的應(yīng)用,角平分線的定義,平行四邊形的判定與性質(zhì),矩形的判定,證明四邊形是平行四邊形是解(1)的關(guān)鍵,證明是解(2)的關(guān)鍵.2、(1)證明過程見解析;(2)BG的長為4;(3)2或6﹣4或或6+4【分析】(1)連結(jié)BB1交CG于點M,交CD于點Q,證明四邊形ABCD是正方形,再根據(jù)對稱的性質(zhì)得到CE垂直平分BB1,得到△BCG≌△B1CG(SSS),即可得解;(2)設(shè)BG交AD于點N,得到△BCQ≌△CDE(ASA),得到CQ=DE=5,BQ=CE=5,再根據(jù)勾股定理得到BM,最后利用勾股定理計算即可;(3)根據(jù)點G的位置不同分4種情況進(jìn)行討論計算即可;【詳解】(1)證明:如圖1,連結(jié)BB1交CG于點M,交CD于點Q,∵AD∥BC,AD=BC,∴四邊形ABCD是平行四邊形,∵BC=DC,∠BCD=90°,∴四邊形ABCD是正方形,∵點B1與點B關(guān)于CE對稱,∴CE垂直平分BB1,∴BC=B1C,BG=B1G,∵CG=CG,∴△BCG≌△B1CG(SSS),∴∠CBG=∠CB1G,∵DC=B1C,∴∠CDB1=∠CB1G,∴∠CBG=∠CDB1.(2)解:如圖1,設(shè)BG交AD于點N,∵BC=CD=AD=10,∴DE=AD=5,∵∠CDE=90°,∴CE=,∵∠BCQ=∠CDE=∠BMC=90°,∴∠CBQ=90°﹣∠BCM=∠DCE,∴△BCQ≌△CDE(ASA),∴CQ=DE=5,BQ=CE=5,∵CM⊥BQ,∴S△BCQ=BQ?CM=BC?CQ,∴,∴CM=2,∴BM=,∵∠ABC=∠BAN=90°,∴∠GDN+∠CDB1=90°,∠ABN+∠CBG=90°,∴∠GDN=∠ABN,∵∠GND=∠ANB,∴∠GDN+∠GND=∠ABN+∠ANB=90°,∴∠BGB1=90°,∴∠BGM=∠B1GM=∠BGB1=45°,∵∠BMG=90°,∴∠BMG=∠BGM=45°,∴GM=BM=4,∴BG=,∴BG的長為4.(3)解:如圖1,由(2)得CM=2,GM=4,∴CG=2+4=6,如圖2,CH=CG=6,則∠CHG=∠CGH=45°,∴∠GCH=90°,∴GH=,∴BH=GH﹣BG=6﹣4=2;如圖3,HG=CG=6,且點H與點B在直線FB1的同側(cè),∴BH=HG﹣BG=6﹣4;如圖4,CH=GH,則∠HCG=∠HGC=45°,∴∠CHG=90°,∴CH2+GH2=CG2,∴2GH2=(6)2,∴GH=3,∴BH=BG﹣GH=4﹣3=;如圖5,HG=CG=6,且點H與點B在直線FB1的異側(cè),∴BH=HG+BG=6+4,綜上所述,BH的長為2或6﹣4或或6+4,故答案為:2或6﹣4或或6+4.【點睛】本題主要考查了全等三角形的綜合,勾股定理,垂直平分線的判定與性質(zhì),正方形的性質(zhì),準(zhǔn)確分析計算是解題的關(guān)鍵.3、(1)見解析;(2)12,0;-8,0;0,16;(3)①當(dāng)M的坐標(biāo)為(2,0)或(4,0)時,△OMN的一條邊與BC平行;②當(dāng)M的坐標(biāo)為(0,10)或(12,0)或(,0)時,,△MOE是等腰三角形.
【分析】(1)設(shè),,,則,由勾股定理求出,即可得出結(jié)論;(2)由的面積求出m的值,從而得到、、的長,即可得到A、B、C的坐標(biāo);(3)①分當(dāng)時,;當(dāng)時,;得出方程,解方程即可;②由直角三角形的性質(zhì)得出,根據(jù)題意得出為等腰三角形,有3種可能:如果;如果;如果;分別得出方程,解方程即可.【詳解】解:(1)證明:設(shè),,,則,在中,,,∴是等腰三角形;(2)∵,,∴,∴,,,.∴A點坐標(biāo)為(12,0),B點坐標(biāo)為(-8,0),C點坐標(biāo)為(0,16),故答案為:12,0;-8,0;0,16;(3)①如圖3-1所示,當(dāng)MN∥BC時,∵AB=AC,∴∠ABC=∠ACB,∵M(jìn)N∥BC,∴∠AMN=∠ABC,∠ANM=∠ACB,∴∠AMN=∠ANM,∴AM=AN,∴AM=BM,∴M為AB的中點,∵,∴,∴,∴點M的坐標(biāo)為(2,0);如圖3-2所示,當(dāng)ON∥BC時,同理可得,∴,∴M點的坐標(biāo)為(4,0);∴綜上所述,當(dāng)M的坐標(biāo)為(2,0)或(4,0)時,△OMN的一條邊與BC平行;
②如圖3-3所示,當(dāng)OM=OE時,∵E是AC的中點,∠AOC=90°,,∴,∴此時M的坐標(biāo)為(0,10);如圖3-4所示,當(dāng)時,∴此
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 克朗斯驗瓶機細(xì)脈沖調(diào)整
- 《GB-T 32377-2015纖維增強復(fù)合材料動態(tài)沖擊剪切性能試驗方法》專題研究報告
- 《GBT 34595-2017 汽車零部件再制造產(chǎn)品技術(shù)規(guī)范 水泵》專題研究報告
- 《AQ 7015-2018氨制冷企業(yè)安全規(guī)范》專題研究報告
- 2026年黑龍江旅游職業(yè)技術(shù)學(xué)院單招職業(yè)適應(yīng)性測試題庫附答案詳解
- 票據(jù)承兌連帶責(zé)任保證擔(dān)保協(xié)議
- 中式烹調(diào)師技師(初級)考試試卷及答案
- 住宅小區(qū)行業(yè)消防設(shè)施知識考試試卷及答案
- 單位2025年秋冬季園林綠化養(yǎng)護工作總結(jié)情況報告文稿
- 2025年氧化鋯纖維隔膜布項目建議書
- T-CNHC 4-2025 昌寧縣低質(zhì)低效茶園改造技術(shù)規(guī)程
- 雨課堂學(xué)堂在線學(xué)堂云《芊禮-謙循-送給十八歲女大學(xué)生的成人之禮(中華女子學(xué)院 )》單元測試考核答案
- 2025年手術(shù)室護理實踐指南試題(含答案)
- 智慧農(nóng)貿(mào)市場建設(shè)項目報告與背景分析
- 護理部競選副主任
- 【10篇】新版部編六年級上冊語文課內(nèi)外閱讀理解專項練習(xí)題及答案
- 2026年中國經(jīng)濟展望:風(fēng)鵬正舉
- 老年健康服務(wù)中的多學(xué)科團隊協(xié)作
- 上市公司部門組織架構(gòu)及崗位職責(zé)大全
- 公司紡粘針刺非織造布制作工合規(guī)化技術(shù)規(guī)程
- 雨課堂學(xué)堂云在線《人工智能原理》單元測試考核答案
評論
0/150
提交評論