版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
高二數(shù)學(xué)試題
本試卷共4頁(yè),19小題,滿(mǎn)分150分.考試用時(shí)120分鐘.
注意事項(xiàng):
1.答題前,先將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)、座位號(hào)填寫(xiě)在試卷和答題卡上,并將準(zhǔn)考
證號(hào)條形碼粘貼在答題卡上的指定位置.
2.選擇題的作答:每小題選出答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑.寫(xiě)
在試卷、草稿紙和答題卡上的非答題區(qū)域均無(wú)效.
3.填空題和解答題的作答:用黑色簽字筆直接答在答題卡上對(duì)應(yīng)的答題區(qū)域內(nèi).寫(xiě)在試卷、
草稿紙和答題卡上的非答題區(qū)域均無(wú)效.
4.考試結(jié)束后,請(qǐng)將答題卡上交.
一、單項(xiàng)選擇題:本題共8小題,每小題5分,共40分.在每小題給出的四個(gè)選項(xiàng)中,只有
一項(xiàng)是符合題目要求的.
1.已知集合”二如>吟八若則實(shí)數(shù)”的取值范圍為()
A.(一8,0]B.(-oo,0)C.[1,+co)D.(L+8)
【答案】A
【詳解】力=力,所以加工0,
故選:A
2.已知。力都是實(shí)數(shù),那么是“右>6”的()
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件
【答案】B
【詳解】當(dāng)時(shí),歷無(wú)意義,
當(dāng)〃時(shí),由不等式性質(zhì)可得
所以“a>b”是“的必要不充分條件.
故選:B.
3.對(duì)某地區(qū)高二學(xué)生數(shù)學(xué)考試成績(jī)進(jìn)行數(shù)據(jù)分析,成績(jī)X服從正態(tài)分布N(81,9),則從該地區(qū)隨機(jī)選擇
一名高二考生,其成績(jī)不低于90分的概率為()
參考數(shù)據(jù):若隨機(jī)變量€服從正態(tài)分布N(〃,b),則P(〃—b<4<〃+b)=0.6827,
一2cr<J<〃+2a)0.9545/(〃-3cr<J<〃+3cr)0.9973.
A.0.15865B.0.0027C.0.02275D.0.00135
【答案】D
【詳解】由已知P(X290)=P(y>//+3o-)=-(l-0.9973)=0.00135,
2
故選:D.
4.若“玉£1<4=2'-1"為真命題,則實(shí)數(shù)。的取值范圍為()
A.B.(-<?,-1]C.(-1,-KO)D.[-1,+00)
【答案】C
【詳解】xwR時(shí),2x-le(-l,+oo),
所以?!?一1,+8),
故選:C.
z-\1000
5.已知lg2ao.301,lg5=0.699,則的估算值為()
A.IO210B.1()232C.1()250D.1()398
【答案】1)
【詳解】設(shè)a=(1?y(K>°,則1ga=1000lg|=lOOO(lg5-lg2)=1000x(0.699-0.301)=398,
所以0=1()398,
故選:D
6.15匕+15被8除的余數(shù)為()
A.2B.4C.6D.7
【答案】C
【詳解】15"+15=(16—l)”+15=16i'—C;516i4+C;516”一???+C;;16—C;;+15,
顯然16~-(::51614+€:;516“-一+06中每一項(xiàng)都是8的倍數(shù),因此代數(shù)和能被8整除,而—(:;;+15=14
除以8后余數(shù)為6,
所以15”+15被8除的余數(shù)為6,
故選:C.
7.已知函數(shù)/(x)=ln(忖+1),若對(duì)任意的X”/ER,滿(mǎn)足/(王)</(工2)</($+/),則下列結(jié)論
恒成立的為()
A.X)?x2>0B.X]+x2<0C.x1-x2>0D.xl-x2<0
【答案】A
【詳解】因?yàn)?(x)=ln(W+l)定義域?yàn)镽,且/(一工)=1。(口|+1)=m3+1)=/(工),
所以/(x)=ln(|x|+l)是偶函數(shù),
因?yàn)?(xJ</(/)v/(須+Z),
所以/(|項(xiàng)|)</(|巧|)</(|須?勺|),且"?0,十r)J(x)=ln(%+l)單調(diào)遞增,
所以㈤<卜|<卜+司,所以為?%>0,A選項(xiàng)正確;
當(dāng)另=1,勺=2,玉+/=3時(shí),1n2<1n3<1n4滿(mǎn)足題意,+x2>0,x]-x2<0,B選項(xiàng)錯(cuò)誤;C選項(xiàng)
錯(cuò)誤;
當(dāng)X=-1,々=-2,玉+%=-3時(shí),ln2<1n3<1n4滿(mǎn)足題意,王一七,。,D選項(xiàng)錯(cuò)誤;
故選:A.
8.由數(shù)字0,1,2組成的五位數(shù)中,滿(mǎn)足“0恰好出現(xiàn)兩次”或“1恰好出現(xiàn)兩次”的所有五位數(shù)的個(gè)數(shù)
為()
A.86B.104C.128D.130
【答案】A
【詳解】(1)“0恰好出現(xiàn)兩次”:
萬(wàn)位不能為0,因此兩個(gè)0的位置只能從剩下的4個(gè)位置中選擇,有Cj=6種方法,
剩下的3個(gè)位置由1或2填充,每個(gè)位置有2種選擇,共r=8種方法,
則”0恰好出現(xiàn)兩次”的種數(shù)有6x8=48種;
(2)“1恰好出現(xiàn)兩次”:
“萬(wàn)位為1”時(shí):從剩下的4個(gè)位置中選擇1個(gè)位置放1,有C:=4種,
—15—
【詳解】對(duì)A,x=—=3,因此y=3x3-2=7,A正確;
6
對(duì)B,由回歸直線(xiàn)方程知x=l時(shí),^=3-2=1,因此殘差為0.9-1=-0.1,B錯(cuò);
對(duì)C,將樣本數(shù)據(jù)(不必),(x2,y;),L,(//J調(diào)整為(再7+3),小必+3),L,(乙/6+3),根
AZU-可5-刃
據(jù)計(jì)算公式,回歸直線(xiàn)方程中系數(shù)右二上一------------不改變,但了增加了3,原來(lái)是工-31-2,
-可2
/=1
所以新的系數(shù)為展=亍+3—3x1=1,回歸方程為j=3x+l,C正確;
對(duì)D,原回歸直線(xiàn)中樣本點(diǎn)(1,0.9)的預(yù)估點(diǎn)是(1,1),現(xiàn)變?yōu)椋?,-4),遠(yuǎn)離了回歸直線(xiàn),因此線(xiàn)性相關(guān)性減
弱,相關(guān)系數(shù)的絕對(duì)值變小,原來(lái)是3,因此相關(guān)系數(shù)變小,D正確。
故選:ACD.
、ax+h
10.已知函數(shù)/(叼=7--衣的部分圖象如圖所示,則下列結(jié)論正確的為()
(x+c)
11。+c
C.—>—caD.—>----
ahbb+c
【答案】BC
ax+h
【詳解】由圖象反映的函數(shù)定義域得c=l,/(x)=
(x+l)2
/(0)=/)>0,B正確:
f(x)=0=>x=,所以—<—1,所以b>a>0,A錯(cuò),從而一,C正確,
aaba
aa+c_aQ+1a-b,八aa+c'
又6b+cbZ?+l<0,因此:<----->D錯(cuò),
b(b+l)bb+c
故選:BC.
11.德國(guó)著名數(shù)學(xué)家狄利克雷在數(shù)學(xué)領(lǐng)域成就顯著,狄利克雷函數(shù)就以其名字命名,該函數(shù)解析式為
,、1,XGQ
。3=<八其中Q為有理數(shù)集,則下列結(jié)論正確的為()
O,xeQ
A.狄利克雷函數(shù)是偶函數(shù)
B.狄利克雷函數(shù)是周期函數(shù),無(wú)最小正周期
C.不等式。(x)2f的解集為{一11}
D.函數(shù)/(叼=/-2。(工)--3有四個(gè)不同的零點(diǎn)
【答案】ABD
【詳解】對(duì)A,x是有理數(shù)時(shí),一工是有理數(shù),x是無(wú)理數(shù)時(shí),-X也是無(wú)理數(shù),因此總有。(-工)=。(幻,
A正確;
對(duì)B,對(duì)任意的有理數(shù)7,x是有理數(shù)時(shí),x+T是有理數(shù),x是無(wú)理數(shù)時(shí),x+7也是無(wú)理數(shù),因此
D(xIT)=D(x),所以非零有理數(shù)都足其周期,但沒(méi)有最小正周期,B正確;
對(duì)C,當(dāng)xwQ時(shí),不等式。(x)"d為IN/,此時(shí)因此[T1]上的所有有理數(shù)都是不等式
的解,同樣當(dāng)入飛。時(shí),不等式。(工)2/為02/,無(wú)實(shí)解,c錯(cuò);
對(duì)D,當(dāng)x$Q時(shí),/(x)=x2-2Z)(x)-x-3=x2-2x-3=0,%=3或x=-l,
當(dāng)工足Q時(shí),/(x)=x2-2Z)(x|x-3=x2-3=0,%=±百,
所以/*)有4個(gè)零點(diǎn),D正確。
故選:ABD.
三、填空題:本題共3小題,每小題5分,滿(mǎn)分15分.
12.若正數(shù)出人滿(mǎn)足'+!=2,則4。+〃的最小值為_(kāi)______.
ab2
【答案】18
22
【詳解】因?yàn)椤#?)>0,-+-=1,
ab
所以4〃+6=(4〃+〃)(2+2]=10+絲+姆之1()+2^^=18,
\ab)ab\ab
當(dāng)2=犯,且2+2=晨得。=3,6=6時(shí)等號(hào)成立,
abab
所以4a+b的最小值為18.
故答案為:18.
13.隨機(jī)變量1的分布列如下,則。(3X+2)=
X012
P0.3a0.3
【答案】5.4
【詳解】依題意:0.3+。+0.3=1=>々=0.4.
所以E(X)=0x0.3+1x0.4+2x0.3=l,
所以O(shè)(X)=(0-x0.3+(1-1)2x04+(2-1)2x03=0.6.
所以£>(3X+2)=9Q(X)=9xO6=5.4
故答案為:5.4
14.如圖,一個(gè)質(zhì)點(diǎn)在隨機(jī)外力的作用下,從原點(diǎn)。出發(fā),每次等可能地向左或向右移動(dòng)一個(gè)單位,共移
動(dòng)6次,最終質(zhì)點(diǎn)位置與原點(diǎn)的距離不大于2的概率為.
-6-5-4-3-2-16i23456x
25
【答案】—
32
【詳解】設(shè)X表示向右移動(dòng)的次數(shù),設(shè)事件V表示質(zhì)點(diǎn)位置與原點(diǎn)的距離,則Y=|6-X-X|=|6-2X|
(6-¥表示向左移動(dòng)的次數(shù)),
若y=|6-2X|W2,則X=2,3,4,
所以P(Y2)=P(X=2)+尸(入=3)+?('=4)=口出2出+C:(J?+C:(凱丁!-
25
故答案為:—.
32
四、解答題:本題共5小題,共計(jì)77分.解答時(shí)應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.
15.為了研究高中生每天整理數(shù)學(xué)錯(cuò)題與數(shù)學(xué)成績(jī)的關(guān)系,我T7某校數(shù)學(xué)建模興趣小組的同學(xué)在本校高二
年級(jí)學(xué)生中采用隨機(jī)抽樣的方法抽取了300名學(xué)生,調(diào)杳他們平時(shí)的數(shù)學(xué)成績(jī)和整理數(shù)學(xué)錯(cuò)題的情況,統(tǒng)
計(jì)得到部分?jǐn)?shù)據(jù)如下:
整理數(shù)學(xué)錯(cuò)題情況數(shù)學(xué)成績(jī)總評(píng)優(yōu)秀情況合計(jì)
數(shù)學(xué)成績(jī)總評(píng)優(yōu)秀人數(shù)數(shù)學(xué)成績(jī)總評(píng)非優(yōu)秀人數(shù)
每天都整理數(shù)學(xué)錯(cuò)題人數(shù)120
不是每天都整理數(shù)學(xué)錯(cuò)題人數(shù)90150
合計(jì)300
(1)完善上面的2x2列聯(lián)表,依據(jù)a=0.01的獨(dú)立性檢驗(yàn),能否認(rèn)為“數(shù)學(xué)成績(jī)總評(píng)優(yōu)秀與每天都整理
數(shù)學(xué)錯(cuò)題有關(guān)”;
(2)采用分層隨機(jī)抽樣的方法從數(shù)學(xué)成績(jī)總評(píng)優(yōu)秀的學(xué)生中隨機(jī)抽取6名學(xué)生,再?gòu)倪@6名學(xué)生中選3名
做進(jìn)一步訪(fǎng)談,設(shè)這3人中不是每天都整理數(shù)學(xué)錯(cuò)題的人數(shù)為X求I的分布列及數(shù)學(xué)期望.
n^ad-bc^
附;Z2
a0.100010.001
P[x2Na)2.7066.63510.828
【答案】(1)列聯(lián)表見(jiàn)解析,有99$的把握認(rèn)為“數(shù)學(xué)成績(jī)總評(píng)優(yōu)秀與每天都整理數(shù)學(xué)錯(cuò)題有關(guān)”;
(2)分布列見(jiàn)解析,期望為1.
【小問(wèn)1詳解】
由已知列聯(lián)表如下:
數(shù)學(xué)成績(jī)總評(píng)優(yōu)秀情況
整理數(shù)學(xué)錯(cuò)題情況合計(jì)
數(shù)學(xué)成績(jī)總評(píng)優(yōu)秀人數(shù)數(shù)學(xué)成績(jī)總評(píng)非優(yōu)秀人數(shù)
每天都整理數(shù)學(xué)錯(cuò)題人數(shù)12030150
不是每天都整理數(shù)學(xué)錯(cuò)題人數(shù)6090150
合計(jì)180120300
9300x(120x90-60x30『
/■==50>6.635,
150x150x180x120
依據(jù)a=0.01的獨(dú)立性檢驗(yàn),有99%的把握認(rèn)為“數(shù)學(xué)成績(jī)總評(píng)優(yōu)秀與每天都整理數(shù)學(xué)錯(cuò)題有關(guān)”
【小問(wèn)2詳解】
隨機(jī)抽取的6名學(xué)生中,每天都整理數(shù)學(xué)錯(cuò)題的有4人,不是每天都整理數(shù)學(xué)錯(cuò)題的有2人,
所以X的可能值依次為0,1,2,
c31C2C'3cc21
P(X=0)=^=丁尸(X=l)=-Jf=W,P(X=2)=~cf=5,
X的分布列為:
X012
131
P
555
EX=\x-+2x-=\.
55
16.已知函數(shù)/(工)=瓜1-〃工2.
(1)當(dāng)4=1時(shí),求/(》)的最大值;
(2)若Vx?0,+co),/(x)<0,求實(shí)數(shù)a的取值范圍.
【答案】(1)此正―工
22
⑵("
【小問(wèn)1詳解】
/(X)=Inx-x2,定義域是(0,+8),
1|-2v
"x)=
XX
當(dāng)0Vx<也時(shí),.(工)>0,“X)遞增,x>正時(shí),r(x)<0,/(x)遞減,
22
所以x=#時(shí),/(x)取得極大值也是最大值/(2^)=ln^-l;
【小問(wèn)2詳解】
Vx€(0,+oo),/(x)=lnx-?A2<0,則
AT
InY
設(shè)g(x)=-F(X>O),
X
,/、1-21nx
則g(x)=---q-,
x
0cxec時(shí),g'(x)>。,g(x)遞增,x>八時(shí),g'(x)<。,g(x)遞減,
所以g(X)max=gg=^^二;,
(Ve)-2e
所以心上,即。的取值范圍是(上,+8).
2e2e
17.已知某產(chǎn)品的一個(gè)零件在甲工廠(chǎng)生產(chǎn),由于設(shè)備老化,甲工廠(chǎng)生產(chǎn)的零件次品率為0.1.
(1)為了解甲工廠(chǎng)生產(chǎn)情況,從生產(chǎn)的所有零件中隨機(jī)抽取3件,記這3件產(chǎn)品中正品與次品的個(gè)數(shù)分別
為工匕記隨機(jī)變量q=x-y,求J的分布列及£偌);
(2)為降低產(chǎn)品次品率.,甲工廠(chǎng)進(jìn)行了技術(shù)改進(jìn),從改進(jìn)后第1個(gè)月開(kāi)始連續(xù)收集5個(gè)月的觀測(cè)數(shù)據(jù),用
士表示改進(jìn)后的第/個(gè)月,用乂(單位:%)表示改進(jìn)后第了個(gè)月的次品率,其中歹『。1.3,利
用最小一乘法得到經(jīng)驗(yàn)回歸直線(xiàn)方程為,=-0.4工十6.3,求相關(guān)系數(shù)「(精確到0.01),并判斷該經(jīng)驗(yàn)回歸
直線(xiàn)方程是否有價(jià)值.
附:①而h3.2.
②r=------千----------?,若IH20.75,則認(rèn)為該經(jīng)驗(yàn)回歸宜線(xiàn)方程有價(jià)值.
JZU-7)2JEU-XI2
V/=1V/=1
汽(七-?。?-歹)
③------------.
£(為-亍)2
J=1
【答案】(1)分布列見(jiàn)解析,期望為2.4;
⑵,?=-0.962,該經(jīng)驗(yàn)回歸直線(xiàn)方程有價(jià)值.
【小問(wèn)1詳解】
由已知x+y=3,所以g=x-y=3-2y,y?8(3,o.i),
彳的取值分別為3,1,-1,一3,
P(§=3)=P(Y=0)=0.93=0.729
P(J=l)=P(y=1)=C;x01x092=0243
P(^=-l)=P(y=2)=C;X0.12X0.9=0.027
尸(J=-3)=P(y=3)=C^x0.13=0.001,
所以〈的分布列為
431-1-3
P0.7290.2430.0270.001
優(yōu)=3x0.729+1x0.243+(-1)x0.027+(-3)x0.001=2.4
【小問(wèn)2詳解】
……-1+2+3+4+5、
由己知x=------------------=3,
5
6(再一可2=(1—3)2+(2—3)2—(3—3)2+(4-3)2+(5-3)2=10
J=1
A-可(必一刃之(芍-?。?-歹)
8=J-------------------一0.4,則£(七一可(匕一9)=-4,
£(巧-才101=1
J-I
2(毛-三)(必-P)
所以-===
\£(x「x)Jt(y.-y)
”>0.75,則認(rèn)為該經(jīng)驗(yàn)回歸直線(xiàn)方程有價(jià)值.
18.已知函數(shù)/'(x)=--2x+Hnx.
(1)當(dāng)4=1時(shí),求函數(shù)/(x)在點(diǎn)(1,/。))處的切線(xiàn)方程;
(2)若函數(shù)/(x)在區(qū)間(0』)上單調(diào)遞增,求。的取值范圍;
(3)若函數(shù)/(X)存在兩個(gè)不同的極值點(diǎn)七/2,且玉<%2,若/(項(xiàng))<必/2,求實(shí)數(shù)〃,取值范圍.
【答案】(1)x-y—2=0;
(2)—,+℃J;
(3)[-3-21n2,+x).
【小問(wèn)1詳解】
函數(shù)/3)的定義域?yàn)椋?,48),
〃,,、0_a2x2-2x+a
/U)=2x-2+-=-----------,
xx
當(dāng)。=i時(shí),/(i)=-i,ni)=i.
所以,函數(shù)/(X)在點(diǎn)(1,/(1))處的切線(xiàn)方程為y+l=x-l,即x—y—2=0.
【小問(wèn)2詳解】
因?yàn)楹瘮?shù)/*)在區(qū)間(0,1)上單調(diào)遞增,
所以/=2T一2'+"20在區(qū)間(0,D恒成立,
x
所以aN-2x2+2x在區(qū)間(0,1)恒成立.令g(x)=-2x2+2x,xe(0,l),
g(x)=-2x2+2x=—+g,x£(0,1).
所以g(x)的最大值為g(g)=g,
-1、
所以。的取值范圍為77,+8.
12]
【小問(wèn)3詳解】
因?yàn)?'a)存在兩個(gè)不同的極值點(diǎn),
所以r(x)=2信-2"+"=0有兩個(gè)不相等的正根須,且X<吃,
x
所以,4-8。>0,玉+%2=I,%,9=1>。?
因?yàn)?<王<42,所以當(dāng)函數(shù)/(上)在(0,芭),(工2,+8)上單調(diào)遞增,在(工|,工2)上單調(diào)遞減;
所以當(dāng)工二芭時(shí),函數(shù)/(X)取極大值,
當(dāng)」=當(dāng)時(shí),函數(shù)/(%)取極小值,
因?yàn)?<玉<七,七十工2=1,所以由對(duì)稱(chēng)性可得0<X]<;.
.\f(X\)
因?yàn)?'(再)<〃7內(nèi)不,,所以團(tuán)>.
國(guó)工2
又=+alnx=^^+£^=^^+2北百=_]+—!—+21nx-
X]》2X\X2X2X\X21一王司一1
1(1
令或x)=-l+----n21nx,x€(),—,
1\2)
,/、I22x2-5x+2(2x-l)(x-2)
則rII(pI\x)=------7+-=--------r—=-----,,
(x-l)~xx(x-l)"x(x-l)2
(1、
因?yàn)閤w0,-.
I2j
所以2x—lv0,x—2<0,
所以(p(x)>0在[oij上垣成立,函數(shù)o(x)在(0,;)上單調(diào)遞機(jī)
(1、
所以例文)<。-=-3-21n2,
I
所以〃z2-3-21n2.
所以實(shí)數(shù)〃?取值范圍為[一3-2In2,+8).
19.某公司要招聘一名秘書(shū),共有〃(〃22)名候選人,他們的能力大小各不相同.面試過(guò)程中,〃名候選
人依次前來(lái)面試,面試它只能根據(jù)當(dāng)前和之前的候選人的能力排名做出決策,并且必須在面試完當(dāng)前候選
人后立即決定是否錄用.一旦拒絕,該候選人將無(wú)法再被錄用.為了最大概率選中最優(yōu)秀的候選人,面試
官實(shí)行了以下策略:
①拒絕前攵(0<%<〃)個(gè)候選人,將其作為參考樣本.
②從第女+1個(gè)候選人開(kāi)始,如果某個(gè)候選人的能力超過(guò)了之前所有人,就立即選中他.如果后面沒(méi)有比前
面更優(yōu)秀的候選人,則錄用最后一個(gè)候選人.
設(shè)面試官選中最優(yōu)秀的候選人的概率為P.
(1)若〃=4,k=2,求產(chǎn);
(2)?X-=ln7-
j=kJk
(i)若〃=100,求當(dāng)夕取得最大值時(shí),女的取值;(八2.718)
2k
(ii)證明;P<ck---1.
n
【答案】(1)—;
12
(2)(i)37;(ii)證明見(jiàn)解析.
【小問(wèn)1詳解】
4名候選人的面試順序從第1個(gè)到第4個(gè)排序,有A:=24種情況,
要選中最優(yōu)秀的侯選人,有以下兩類(lèi)情形:
①最優(yōu)秀的候選人是第3個(gè),其他使選人位置隨意,有A:=6種情況;
②最優(yōu)秀的候選人是最后1個(gè),第二優(yōu)秀的候選人是第1個(gè)或第2個(gè),其他候選人位置隨意,有C;A;=4
種情況.
故所求概率。=3=上.
2412
【小問(wèn)2詳解】
(i)記事件A表示選中最優(yōu)秀的候選人,事
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- GB/T 46871-2025二氧化碳捕集、運(yùn)輸和地質(zhì)封存提高原油采收率的二氧化碳封存
- 2025年中職(紡織技術(shù)基礎(chǔ))紡織工藝階段測(cè)試試題及答案
- 2025年高職烹調(diào)工藝與營(yíng)養(yǎng)(菜品研發(fā))試題及答案
- 2025年中職第一學(xué)年(會(huì)展禮儀)VIP客戶(hù)接待禮儀階段測(cè)試試題及答案
- 2025年高職衛(wèi)生檢驗(yàn)技術(shù)(衛(wèi)生檢驗(yàn)應(yīng)用)試題及答案
- 2025年中職中國(guó)影視作品鑒賞(國(guó)產(chǎn)劇賞析)試題及答案
- 2025年高職第二學(xué)年(會(huì)展策劃)活動(dòng)策劃專(zhuān)項(xiàng)測(cè)試試題及答案
- 2025年中職建設(shè)工程管理(工程安全管理)試題及答案
- 2025年大學(xué)生物(細(xì)胞結(jié)構(gòu)與功能)試題及答案
- 2025年高職編導(dǎo)(編導(dǎo)基礎(chǔ))試題及答案
- 車(chē)間管理人員績(jī)效考核方案
- 浙江省杭州市北斗聯(lián)盟2024-2025學(xué)年高二上學(xué)期期中聯(lián)考地理試題 含解析
- 醫(yī)用化學(xué)知到智慧樹(shù)章節(jié)測(cè)試課后答案2024年秋山東第一醫(yī)科大學(xué)
- 更換法人三方免責(zé)協(xié)議書(shū)范文
- 民用無(wú)人機(jī)操控員執(zhí)照(CAAC)考試復(fù)習(xí)重點(diǎn)題庫(kù)500題(含答案)
- 《動(dòng)畫(huà)分鏡設(shè)計(jì)》課件-第二章:鏡頭基本知識(shí)
- GB/T 14048.11-2024低壓開(kāi)關(guān)設(shè)備和控制設(shè)備第6-1部分:多功能電器轉(zhuǎn)換開(kāi)關(guān)電器
- (完整文本版)新概念英語(yǔ)第一冊(cè)單詞表默寫(xiě)版1-144
- 教育技術(shù)學(xué)課件
- 前列腺癌診治教學(xué)查房課件
- 《公路橋涵養(yǎng)護(hù)規(guī)范》(5120-2021)【可編輯】
評(píng)論
0/150
提交評(píng)論