解析卷-人教版8年級數(shù)學(xué)上冊《全等三角形》專題攻克練習(xí)題(含答案解析)_第1頁
解析卷-人教版8年級數(shù)學(xué)上冊《全等三角形》專題攻克練習(xí)題(含答案解析)_第2頁
解析卷-人教版8年級數(shù)學(xué)上冊《全等三角形》專題攻克練習(xí)題(含答案解析)_第3頁
解析卷-人教版8年級數(shù)學(xué)上冊《全等三角形》專題攻克練習(xí)題(含答案解析)_第4頁
解析卷-人教版8年級數(shù)學(xué)上冊《全等三角形》專題攻克練習(xí)題(含答案解析)_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費(fèi)閱讀

付費(fèi)下載

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

人教版8年級數(shù)學(xué)上冊《全等三角形》專題攻克考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計(jì)20分)1、如圖,在△ABC中,∠C=90°,O為△ABC的三條角平分線的交點(diǎn),OD⊥BC,OE⊥AC,OF⊥AB,點(diǎn)D、E、F分別是垂足,且AB=10cm,BC=8cm,CA=6cm,則點(diǎn)O到邊AB的距離為(

)A.2cm B.3cm C.4cm D.5cm2、如圖,在ABC和BDE中,點(diǎn)C在邊BD上,邊AC交邊BE于點(diǎn)F.若AC=BD,AB=ED,BC=BE,則∠ACB等于(

)A.∠EDB B.∠BED C.∠AFB D.2∠ABF3、下列各組的兩個(gè)圖形屬于全等圖形的是(

)A. B. C. D.4、如圖,點(diǎn)O是△ABC中∠BCA,∠ABC的平分線的交點(diǎn),已知△ABC的面積是12,周長是8,則點(diǎn)O到邊BC的距離是(

)A.1 B.2C.3 D.45、下列命題的逆命題一定成立的是(

)①對頂角相等;②同位角相等,兩直線平行;③全等三角形的周長相等;④能夠完全重合的兩個(gè)三角形全等.A.①②③ B.①④ C.②④ D.②第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計(jì)30分)1、如圖所示,在中,∠B=90°,AD平分∠BAC,交BC于點(diǎn)D,DE⊥AC,垂足為點(diǎn)E,若BD=3,則DE的長為________.2、已知∠AOB=60°,以O(shè)為圓心,以任意長為半徑作弧,交OA,OB于點(diǎn)M,N,分別以點(diǎn)M,N為圓心,以大于MN的長度為半徑作弧,兩弧在∠AOB內(nèi)交于點(diǎn)P,以O(shè)P為邊作∠POC=15°,則∠BOC的度數(shù)為__________.3、如圖,圖中由實(shí)線圍成的圖形與①是全等形的有______.(填番號)4、如圖,點(diǎn)B、C、E三點(diǎn)在同一直線上,且AB=AD,AC=AE,BC=DE,若,則∠3=______°.5、如圖,與的頂點(diǎn)A、B、D在同一直線上,,,,延長分別交、于點(diǎn)F、G.若,,則______.三、解答題(5小題,每小題10分,共計(jì)50分)1、△ABC、△DPC都是等邊三角形.(1)如圖1,求證:AP=BD;(2)如圖2,點(diǎn)P在△ABC內(nèi),M為AC的中點(diǎn),連PM、PA、PB,若PA⊥PM,且PB=2PM.①求證:BP⊥BD;②判斷PC與PA的數(shù)量關(guān)系并證明.2、如圖,在四邊形ABCD中,BC>BA,AD=CD,BD平分∠ABC,求證:∠A+∠C=180°.3、如圖,已知,,,求證:.4、如圖,在中,且,點(diǎn)是斜邊的中點(diǎn),E、F分別是AB、AC邊上的點(diǎn),且.連接.(1)求證:;(2)如圖,若,,則的面積為________.5、小明的學(xué)習(xí)過程中,對教材中的一個(gè)有趣問題做如下探究:(1)【習(xí)題回顧】已知:如圖1,在中,,是角平分線,是高,相交于點(diǎn).求證:;(2)【變式思考】如圖2,在中,,是邊上的高,若的外角的平分線交的延長線于點(diǎn),其反向延長線與邊的延長線交于點(diǎn),若,求和的度數(shù);(3)【探究延伸】如圖3,在中,在上存在一點(diǎn),使得,角平分線交于點(diǎn).的外角的平分線所在直線與的延長線交于點(diǎn).若,求的度數(shù).-參考答案-一、單選題1、A【解析】【分析】根據(jù)角平分線的性質(zhì)得到OE=OF=OD,設(shè)OE=x,然后利用三角形面積公式得到S△ABC=S△OAB+S△OAC+S△OCB,于是可得到關(guān)于x的方程,從而可得到OF的長度.【詳解】解:∵點(diǎn)O為△ABC的三條角平分線的交點(diǎn),∴OE=OF=OD,設(shè)OE=x,∵S△ABC=S△OAB+S△OAC+S△OCB,∴∴5x+3x+4x=24,∴x=2,∴點(diǎn)O到AB的距離等于2.故選:A.【考點(diǎn)】本題考查了角平分線的性質(zhì):角平分線上的點(diǎn)到這個(gè)角兩邊的距離相等,面積法的應(yīng)用是解題的關(guān)鍵.2、C【解析】【分析】根據(jù)全等三角形的判定與性質(zhì)可得=,再根據(jù)三角形外角的性質(zhì)即可求得答案.【詳解】解:在和中,,,,是的外角,,∴,故選:C.【考點(diǎn)】本題考查了全等三角形的判定與性質(zhì)以及三角形的外角性質(zhì),熟練掌握全等三角形的判定與性質(zhì)是解決本題的關(guān)鍵.3、D【解析】【分析】根據(jù)全等圖形的定義,逐一判斷選項(xiàng),即可.【詳解】解:A、兩個(gè)圖形不能完全重合,不是全等圖形,不符合題意,B.兩個(gè)圖形不能完全重合,不是全等圖形,符合題意,C.兩個(gè)圖形不能完全重合,不是全等圖形,不符合題意,D.兩個(gè)圖形能完全重合,是全等圖形,不符合題意,故選D.【考點(diǎn)】本題主要考查全等圖形的定義,熟練掌握“能完全重合的兩個(gè)圖形,是全等圖形”是解題的關(guān)鍵.4、C【解析】【分析】過點(diǎn)O作OE⊥AB于E,OF⊥AC于F,連接OA,根據(jù)角平分線的性質(zhì)得:OE=OF=OD然后根據(jù)△ABC的面積是12,周長是8,即可得出點(diǎn)O到邊BC的距離.【詳解】如圖,過點(diǎn)O作OE⊥AB于E,OF⊥AC于F,連接OA.∵點(diǎn)O是∠ABC,∠ACB平分線的交點(diǎn),∴OE=OD,OF=OD,即OE=OF=OD∴S△ABC=S△ABO+S△BCO+S△ACO=AB·OE+BC·OD+AC·OF=×OD×(AB+BC+AC)=×OD×8=12OD=3故選:C【考點(diǎn)】此題主要考查了角平分線的性質(zhì)以及三角形面積求法,角的平分線上的點(diǎn)到角的兩邊的距離相等,正確表示出三角形面積是解題關(guān)鍵.5、C【解析】【分析】求出各命題的逆命題,然后判斷真假即可.【詳解】解:①對頂角相等,逆命題為:相等的角為對頂角,是假命題不符合題意;②同位角相等,兩直線平行,逆命題為:兩直線平行,同位角相等,是真命題,符合題意;③全等三角形的周長相等.逆命題為:周長相等的兩個(gè)三角形全等,是假命題,不符合題意;④能夠完全重合的兩個(gè)三角形全等.逆命題為:兩個(gè)全等三角形能夠完全重合,是真命題,符合題意;故逆命題成立的是②④,故選C.【考點(diǎn)】本題主要考查命題與定理,熟悉掌握逆命題的求法是解本題的關(guān)鍵.二、填空題1、3【解析】【分析】根據(jù)角平分線的性質(zhì),即角平分線上任意一點(diǎn)到角兩邊的距離相等計(jì)算即可;【詳解】∵在中,∠B=90°,AD平分∠BAC,DE⊥AC,∴,∵,∴;故答案是3.【考點(diǎn)】本題主要考查了角平分線的性質(zhì)應(yīng)用,準(zhǔn)確計(jì)算是解題的關(guān)鍵.2、或【解析】【分析】以O(shè)為圓心,以任意長為半徑作弧,交OA,OB于點(diǎn)M,N,分別以點(diǎn)M,N為圓心,以大于MN的長度為半徑作弧,兩弧在內(nèi)交于點(diǎn)P,則OP為的平分線,以O(shè)P為邊作,則為作或的角平分線,即可求解.【詳解】解:以O(shè)為圓心,以任意長為半徑作弧,交OA,OB于點(diǎn)M,N,分別以點(diǎn)M,N為圓心,以大于MN的長度為半徑作弧,兩弧在內(nèi)交于點(diǎn)P,得到OP為的平分線,再以O(shè)P為邊作,則為作或的角平分線,所以或.故答案為:或.【考點(diǎn)】本題考查的是復(fù)雜作圖,主要要理解作圖是在作角的平分線,同時(shí)要考慮以O(shè)P為邊作的兩種情況,避免遺漏.3、②③【解析】【分析】根據(jù)全等圖形的定義,兩個(gè)圖形必須能夠完全重合才行.【詳解】觀察圖形,發(fā)現(xiàn)②③圖形可以和①圖形完全重合故答案為:②③.【考點(diǎn)】本題考查全等的概念,任何一組圖形,要想全等,則這組圖形必須能夠完全重合.4、47【解析】【分析】根據(jù)“邊邊邊”證明,再根據(jù)全等三角形的性質(zhì)可得∠ABC=∠1,∠BAC=∠2,然后利用三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角和求出∠3=∠1+∠2,然后求解即可.【詳解】解:在△ABC和△ADE中,,∴(SSS),∴∠ABC=∠1,∠BAC=∠2,∴∠3=∠ABC+∠BAC=∠1+∠2,∵,∴,∴.故答案為:47.【考點(diǎn)】本題主要考查了全等三角形的判定與性質(zhì)以及三角形的外角等于與它不相鄰的兩個(gè)內(nèi)角和的性質(zhì),熟練掌握三角形全等的判定方法是解題關(guān)鍵.5、或110度【解析】【分析】先證明△ABC≌△EDB,可得∠E=,然后利用三角形外角的性質(zhì)求解.【詳解】解:∵,∴∠ABC=∠D,在△ABC和△EDB中,∴△ABC≌△EDB,∴∠E=,∴,,∴∠EGF=30°+50°=80°,∴80°+30°=110°,故答案為:110°.【考點(diǎn)】本題考查了平行線的性質(zhì),全等三角形的判定與性質(zhì),以及三角形外角的性質(zhì),熟練掌握三角形的外角等于不相鄰的兩個(gè)內(nèi)角和是解答本題的關(guān)鍵.三、解答題1、(1)證明過程見解析;(2)①證明過程見解析;②PC=2PA,理由見解析.【解析】【分析】(1)證明△BCD≌△ACP(SAS),可得結(jié)論;(2)①如圖2中,延長PM到K,使得MK=PM,連接CK.證明△AMP≌△CMK(SAS),推出MP=MK,AP=CK,∠APM=∠K=90°,再證明△PDB≌△PCK(SSS),可得結(jié)論;②結(jié)論:PC=2PA.想辦法證明∠DPB=30°,可得結(jié)論.(1)證明:如圖1中,∵△ABC,△CDP都是等邊三角形,∴CB=CA,CD=CP,∠ACB=∠DCP=60°,∴∠BCD=∠ACP,在△BCD和△ACP中,,∴△BCD≌△ACP(SAS),∴BD=AP;(2)證明:如圖2中,延長PM到K,使得MK=PM,連接CK.∵AP⊥PM,∴∠APM=90°,在△AMP和△CMK中,,∴△AMP≌△CMK(SAS),∴MP=MK,AP=CK,∠APM=∠K=90°,同法可證△BCD≌△ACP,∴BD=PA=CK,∵PB=2PM,∴PB=PK,∵PD=PC,∴△PDB≌△PCK(SSS),∴∠PBD=∠K=90°,∴PB⊥BD.②解:結(jié)論:PC=2PA.∵△PDB≌△PCK,∴∠DPB=∠CPK,設(shè)∠DPB=∠CPK=x,則∠BDP=90°-x,∵∠APC=∠CDB,∴90°+x=60°+90°-x,∴x=30°,∴∠DPB=30°,∵∠PBD=90°,∴PD=2BD,∵PC=PD,BD=PA,∴PC=2PA.【考點(diǎn)】本題屬于三角形綜合題,考查了全等三角形的判定和性質(zhì),等邊三角形的性質(zhì),直角三角形30°角的性質(zhì)等知識,解題的關(guān)鍵是學(xué)會添加常用輔助線,關(guān)注全等三角形解決問題.2、見解析【解析】【分析】先在線段BC上截取BE=BA,連接DE,根據(jù)BD平分∠ABC,可得∠ABD=∠EBD,根據(jù),可判定△ABD≌△EBD,根據(jù)全等三角形的性質(zhì)可得:AD=ED,∠A=∠BED.再根據(jù)AD=CD,等量代換可得ED=CD,根據(jù)等邊對等角可得:∠DEC=∠C.由∠BED+∠DEC=180°,可得∠A+∠C=180°.【詳解】證明:在線段BC上截取BE=BA,連接DE,如圖所示,∵BD平分∠ABC,∴∠ABD=∠EBD,在△ABD和△EBD中,,∴△ABD≌△EBD(SAS),∴AD=ED,∠A=∠BED.∵AD=CD,∴ED=CD,∴∠DEC=∠C.∵∠BED+∠DEC=180°,∴∠A+∠C=180°.【考點(diǎn)】本題主要考查全等三角形的判定和性質(zhì),解決本題的關(guān)鍵是要熟練掌握全等三角形的判定和性質(zhì).3、證明見解析.【解析】【分析】利用SSS可證明△ABD≌△ACE,可得∠BAD=∠1,∠ABD=∠2,根據(jù)三角形外角的性質(zhì)即可得∠3=∠BAD+∠ABD,即可得結(jié)論.【詳解】在△ABD和△ACE中,,∴△ABD≌△ACE,∴∠BAD=∠1,∠ABD=∠2,∵∠3=∠BAD+∠ABD,∴∠3=∠1+∠2.【考點(diǎn)】本題考查全等三角形的判定與性質(zhì)及三角形外角性質(zhì),熟練掌握判定定理及外角性質(zhì)是解題關(guān)鍵.4、(1)見解析;(2).【解析】【分析】(1)易證∠ADE=∠CDF,即可證明△ADE≌△CDF;(2)由(1)可得AE=CF,BE=AF,,再根據(jù)△DEF的面積=,即可解題.【詳解】(1)證明:∵AB=AC,D是BC中點(diǎn),∴∠BAD=∠C=45°,AD=BD=CD,∵∠ADE+∠ADF=90°,∠ADF+∠CDF=90°,∴∠ADE=∠CDF,在△ADE和△CDF中,∴△ADE≌△CDF(ASA).(2)解:∵△ADE≌△CDF∴AE=CF=5,BE=AF=12,AB=AC=17,∴∴∴△DEF的面積=.【考點(diǎn)】本題考查了全等三角形的判定,考查了全等三角形對應(yīng)邊相等的性質(zhì),本題中求證△ADE≌△CDF是解題的關(guān)鍵.5、(1)見解析;(2)25°,25°;(3)55°【解析】【分析】(1)由余角的性質(zhì)可得∠B=∠ACD,由角平分線的性質(zhì)和外角的性質(zhì)可得結(jié)論;(2)由三角形內(nèi)角和定理可求∠GAF=130°,由角平分線的性質(zhì)可求∠GAF=65°,由余角的性質(zhì)可求解;(3)由平角的性質(zhì)和角平分線的性質(zhì)可求∠EAN=90°,由外角的性質(zhì)可求解.(1)證明:∵∠ACB=90°,CD是高,∴∠B+∠CAB=90°,∠ACD+∠CAB=90°,∴∠B=∠ACD,∵AE是角平分線,∴∠CAF=∠DAF,∵∠CFE=∠CAF+∠ACD∠CEF=∠DAF+∠B,∴∠CEF=∠CFE;(2)解:∵∠B=40°,∠ACB=90°,∴∠GAB=∠B+∠ACB=40°+90°=130°,∵AF為∠BAG的角平分線,∴∠GAF=∠DAF130°=65°,∵CD為AB邊上的高,∴∠ADF=∠AC

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論