解析卷人教版8年級(jí)數(shù)學(xué)上冊(cè)《全等三角形》定向攻克試卷(解析版)_第1頁(yè)
解析卷人教版8年級(jí)數(shù)學(xué)上冊(cè)《全等三角形》定向攻克試卷(解析版)_第2頁(yè)
解析卷人教版8年級(jí)數(shù)學(xué)上冊(cè)《全等三角形》定向攻克試卷(解析版)_第3頁(yè)
解析卷人教版8年級(jí)數(shù)學(xué)上冊(cè)《全等三角形》定向攻克試卷(解析版)_第4頁(yè)
解析卷人教版8年級(jí)數(shù)學(xué)上冊(cè)《全等三角形》定向攻克試卷(解析版)_第5頁(yè)
已閱讀5頁(yè),還剩17頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

人教版8年級(jí)數(shù)學(xué)上冊(cè)《全等三角形》定向攻克考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來(lái)的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無(wú)效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計(jì)20分)1、如圖,已知,,,則的長(zhǎng)為(

)A.7 B.3.5 C.3 D.22、如圖,在△ABC和△DEF中,AB=DE,ABDE,運(yùn)用“SAS”判定△ABC≌△DEF,需補(bǔ)充的條件是()A.AC=DF B.∠A=∠D C.BE=CF D.∠ACB=∠DFE3、如圖,在Rt△ABC中,∠ABC=90°,AB=6,BC=8,點(diǎn)E是△ABC的內(nèi)心,過(guò)點(diǎn)E作EF∥AB交AC于點(diǎn)F,則EF的長(zhǎng)為()A. B. C. D.4、如圖,在和中,點(diǎn),,,在同一直線上,,,只添加一個(gè)條件,能判定的是(

)A. B. C. D.5、如圖,在和中,,,,線段BC的延長(zhǎng)線交DE于點(diǎn)F,連接AF.若,,,則線段EF的長(zhǎng)度為(

)A.4 B. C.5 D.第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計(jì)30分)1、如圖,MN∥PQ,AB⊥PQ,點(diǎn)A,D,B,C分別在直線MN和PQ上,點(diǎn)E在AB上,AD+BC=7,AD=EB,DE=EC,則AB=_____.2、如圖,平分,.填空:因?yàn)槠椒郑訽_______.從而________.因此________.3、如圖,是的角平分線,于,的面積是,則__________.4、如圖,AB=DC,BF=CE,需要補(bǔ)充一個(gè)條件,就能使△ABE≌△DCF,下面幾個(gè)答案:①AE=DF,②AE∥DF;③AB∥DC,④∠A=∠D.其中正確的是_____.5、已知∠AOB=60°,OC是∠AOB的平分線,點(diǎn)D為OC上一點(diǎn),過(guò)D作直線DE⊥OA,垂足為點(diǎn)E,且直線DE交OB于點(diǎn)F,如圖所示.若DE=2,則DF=_____.三、解答題(5小題,每小題10分,共計(jì)50分)1、如圖,點(diǎn)E在CD上,BC與AE交于點(diǎn)F,AB=CB,BE=BD,∠1=∠2.(1)求證:;(2)證明:∠1=∠3.2、小明的學(xué)習(xí)過(guò)程中,對(duì)教材中的一個(gè)有趣問(wèn)題做如下探究:(1)【習(xí)題回顧】已知:如圖1,在中,,是角平分線,是高,相交于點(diǎn).求證:;(2)【變式思考】如圖2,在中,,是邊上的高,若的外角的平分線交的延長(zhǎng)線于點(diǎn),其反向延長(zhǎng)線與邊的延長(zhǎng)線交于點(diǎn),若,求和的度數(shù);(3)【探究延伸】如圖3,在中,在上存在一點(diǎn),使得,角平分線交于點(diǎn).的外角的平分線所在直線與的延長(zhǎng)線交于點(diǎn).若,求的度數(shù).3、如圖,已知:AO=BO,OC=OD.求證:∠ADC=∠BCD.4、中,,,過(guò)點(diǎn)作,連接,,為平面內(nèi)一動(dòng)點(diǎn).(1)如圖1,點(diǎn)在上,連接,,過(guò)點(diǎn)作于點(diǎn),為中點(diǎn),連接并延長(zhǎng),交于點(diǎn).①若,,則;②求證:.(2)如圖2,連接,,過(guò)點(diǎn)作于點(diǎn),且滿足,連接,,過(guò)點(diǎn)作于點(diǎn),若,,,請(qǐng)求出線段的取值范圍.5、如圖,若△OAD≌△OBC,且∠O=65°,∠BEA=135°,求∠C的度數(shù).-參考答案-一、單選題1、C【解析】【分析】利用全等三角形的性質(zhì)求解即可.【詳解】解:∵△ABC≌△DAE,∴AC=DE=5,AE=BC=2,∴CE=AC-AE=3,故選C.【考點(diǎn)】本題主要考查了全等三角形的性質(zhì),熟知全等三角形對(duì)應(yīng)邊相等是解題的關(guān)鍵.2、C【解析】【分析】證出∠ABC=∠DEF,由SAS即可得出結(jié)論.【詳解】解:補(bǔ)充BE=CF,理由如下:∵AB∥DE,∴∠ABC=∠DEF,若要利用SAS判定,B、D選項(xiàng)不符合要求,若A:AC=DF,構(gòu)成的是SSA,不能證明三角形全等,A選項(xiàng)不符合要求,C選項(xiàng):BE=CF,∵BE=CF,∴BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS),故選:C.【考點(diǎn)】此題主要考查全等三角形的判定,解題的關(guān)鍵是熟知“SAS”的判定的特點(diǎn).3、A【解析】【分析】延長(zhǎng)FE交BC于點(diǎn)D,作EG⊥AB、作EH⊥AC,由EF∥AC可證四邊形BDEG是矩形,由角平分線可得ED=EH=EG、∠GAE=∠HAE,從而知四邊形BDEG是正方形,再證△GAE≌△HAE、△DCE≌△HCE得AG=AH、CD=CH,設(shè)BD=BG=x,則AG=AH=6-x、CD=CH=8-x,由AC=10可得x=2,即BD=DE=2、AG=4,再證△CDF∽△CBA,可得,據(jù)此得出EF=DF-DE=.【詳解】解:如圖,延長(zhǎng)FE交BC于點(diǎn)D,作EG⊥AB于點(diǎn)G,作EH⊥AC于點(diǎn)H,∵EF∥AB、∠ABC=90°,∴FD⊥AB,∵EG⊥BC,∴四邊形BDEG是矩形,∵AE平分∠BAC、CE平分∠ACB,∴ED=EH=EG,∠GAE=∠HAE,∴四邊形BDEG是正方形,在△GAE和△HAE中,∵,∴△GAE≌△HAE(AAS),∴AG=AH,同理△DCE≌△HCE,∴CD=CH,設(shè)BD=BG=x,則AG=AH=6﹣x、CD=CH=8﹣x,∵AC===10,∴6﹣x+8﹣x=10,解得:x=2,∴BD=DE=BG=2,AG=4,∵DF∥AB,∴△DCF∽△BCA,∴,即,解得:,則EF=DF﹣DE=,故選A【考點(diǎn)】本題主要考查相似三角形的判定與性質(zhì)、全等三角形的判定與性質(zhì)及正方形的判定與性質(zhì),熟練掌握角平分線的性質(zhì)和正方形的判定與性質(zhì)、相似三角形的判定與性質(zhì)是解題的關(guān)鍵.4、B【解析】【分析】根據(jù)三角形全等的判定做出選擇即可.【詳解】A、,不能判斷,選項(xiàng)不符合題意;B、,利用SAS定理可以判斷,選項(xiàng)符合題意;C、,不能判斷,選項(xiàng)不符合題意;D、,不能判斷,選項(xiàng)不符合題意;故選:B.【考點(diǎn)】本題考查三角形全等的判定,根據(jù)SSS、SAS、ASA、AAS判斷三角形全等,找出三角形全等的條件是解答本題的關(guān)鍵.5、B【解析】【分析】證明,,根據(jù)全等三角形對(duì)應(yīng)邊相等,得到,,由解得,繼而解得,最后由解答.【詳解】解:,,,,,,故選:B.【考點(diǎn)】本題考查全等三角形的判定與性質(zhì)、線段的和差等知識(shí),是重要考點(diǎn),掌握相關(guān)知識(shí)是解題關(guān)鍵.二、填空題1、7【解析】【詳解】由MN∥PQ,AB⊥PQ,可知∠DAE=∠EBC=90°,可判定△ADE≌△BCE,從而得出AE=BC,則AB=AE+BE=AD+BC=7.故答案為:7.點(diǎn)睛:本題考查了直角三角形全等的判定和性質(zhì)以及平行線的性質(zhì),是基礎(chǔ)知識(shí),比較簡(jiǎn)單.2、

【解析】【分析】由AC平分∠DAB,∠1=∠2,可得出∠CAB=∠2,由內(nèi)錯(cuò)角相等可以得出兩直線平行.【詳解】解:∵AC平分∠DAB,∴∠1=∠CAB.又∵∠1=∠2,∴∠CAB=∠2,∴ABDC(內(nèi)錯(cuò)角相等,兩直線平行).故答案為:∠CAB,∠CAB,DC.【考點(diǎn)】本題考查了平行線的判定定理以及角平分線的定義,解題的關(guān)鍵是找出∠CAB=∠2.解決該類題型只需牢牢掌握平行線的判定定理即可.3、2cm【解析】【分析】過(guò)點(diǎn)D作,垂足為點(diǎn)F,根據(jù)BD是∠ABC的角平分線,得DE=DF,根據(jù)等高的三角形的面積之比等于其底邊長(zhǎng)之比,得△BDC與△BDA的面積之比,再求出△BDA的面積,進(jìn)而求出DE.【詳解】解:如圖,過(guò)點(diǎn)D作,垂足為點(diǎn)F,∵BD是∠ABC的角平分線,,∴DE=DF,∵的面積是,∴,即,∴DE=2cm.故答案為:2cm.【考點(diǎn)】本題考查了三角形的問(wèn)題,掌握角平分線的性質(zhì)、等高的三角形的面積之比等于其底邊長(zhǎng)之比是解題的關(guān)鍵.4、①③.【解析】【分析】先求出BE=CF,根據(jù)平行線的性質(zhì)得出∠AEB=∠DFC,再根據(jù)全等三角形的判定定理推出即可.【詳解】∵BF=CE,∴BF+EF=CE+EF,即BE=CF,①在△ABE和△DCF中,,∴△ABE≌△DCF(SSS),故①正確;②∵AE∥DF,∴∠AEB=∠DFC,根據(jù)AB=CD,BE=CF和∠AEB=∠DFC不能推出△ABE≌△DCF,故②錯(cuò)誤;③∵AB∥CD,∴∠B=∠C,在△ABE和△DCF中,,∴△ABE≌△DCF(SAS),故③正確;④根據(jù)AB=CD,BE=CF和∠A=∠D不能推出△ABE≌△DCF,故④錯(cuò)誤.故答案為:①③.【考點(diǎn)】本題考查了全等三角形的判定問(wèn)題,掌握全等三角形的性質(zhì)以及判定定理是解題的關(guān)鍵.5、4.【解析】【分析】過(guò)點(diǎn)D作DM⊥OB,垂足為M,則DM=DE=2,在Rt△OEF中,利用三角形內(nèi)角和定理可求出∠DFM=30°,在Rt△DMF中,由30°角所對(duì)的直角邊等于斜邊的一半可求出DF的長(zhǎng),此題得解.【詳解】過(guò)點(diǎn)D作DM⊥OB,垂足為M,如圖所示.∵OC是∠AOB的平分線,∴DM=DE=2.在Rt△OEF中,∠OEF=90°,∠EOF=60°,∴∠OFE=30°,即∠DFM=30°.在Rt△DMF中,∠DMF=90°,∠DFM=30°,∴DF=2DM=4.故答案為4.【考點(diǎn)】本題考查了角平分線的性質(zhì)、三角形內(nèi)角和定理以及含30度角的直角三角形,利用角平分線的性質(zhì)及30°角所對(duì)的直角邊等于斜邊的一半,求出DF的長(zhǎng)是解題的關(guān)鍵.三、解答題1、(1)證明見(jiàn)解析;(2)證明見(jiàn)解析.【解析】【分析】(1)先根據(jù)角的和差可得,再根據(jù)三角形全等的判定定理即可得證;(2)先根據(jù)三角形全等的性質(zhì)可得,再根據(jù)對(duì)頂角相等可得,然后根據(jù)三角形的內(nèi)角和定理、等量代換即可得證.【詳解】(1),,即,在和中,,;(2)由(1)已證:,,由對(duì)頂角相等得:,又,.【考點(diǎn)】本題考查了三角形全等的判定定理與性質(zhì)、對(duì)頂角相等、三角形的內(nèi)角和定理等知識(shí)點(diǎn),熟練掌握三角形全等的判定定理與性質(zhì)是解題關(guān)鍵.2、(1)見(jiàn)解析;(2)25°,25°;(3)55°【解析】【分析】(1)由余角的性質(zhì)可得∠B=∠ACD,由角平分線的性質(zhì)和外角的性質(zhì)可得結(jié)論;(2)由三角形內(nèi)角和定理可求∠GAF=130°,由角平分線的性質(zhì)可求∠GAF=65°,由余角的性質(zhì)可求解;(3)由平角的性質(zhì)和角平分線的性質(zhì)可求∠EAN=90°,由外角的性質(zhì)可求解.(1)證明:∵∠ACB=90°,CD是高,∴∠B+∠CAB=90°,∠ACD+∠CAB=90°,∴∠B=∠ACD,∵AE是角平分線,∴∠CAF=∠DAF,∵∠CFE=∠CAF+∠ACD∠CEF=∠DAF+∠B,∴∠CEF=∠CFE;(2)解:∵∠B=40°,∠ACB=90°,∴∠GAB=∠B+∠ACB=40°+90°=130°,∵AF為∠BAG的角平分線,∴∠GAF=∠DAF130°=65°,∵CD為AB邊上的高,∴∠ADF=∠ACE=90°,∴∠CFE=90°﹣∠GAF=90°﹣65°=25°,又∵∠CAE=∠GAF=65°,∠ACB=90°,∴∠CEF=90°﹣∠CAE=90°﹣65°=25°;(3)證明:∵C、A、G三點(diǎn)共線,AE、AN為角平分線,∴∠EAN=90°,又∵∠GAN=∠CAM,∴∠M+∠CEF=90°,∵∠CEF=∠EAB+∠B,∠CFE=∠EAC+∠ACD,∠ACD=∠B,∴∠CEF=∠CFE,∴∠M+∠CFE=90°.∴∠CFE=90°﹣∠M=90°﹣35°=55°.【考點(diǎn)】本題考查了三角形的外角性質(zhì),三角形的內(nèi)角和定理,余角的性質(zhì)等知識(shí),靈活運(yùn)用這些性質(zhì)解決問(wèn)題是解題的關(guān)鍵.3、見(jiàn)解析【解析】【分析】利用“邊角邊”證明△AOD和△BOC全等,根據(jù)全等三角形對(duì)應(yīng)角相等可得∠ADO=∠BCO,根據(jù)等邊對(duì)等角可得∠ODC=∠OCD,然后相減整理即可得證.【詳解】證明:在△AOD和△BOC中,,

∴△AOD≌△BOC(SAS),∴∠ADO=∠BCO,∵OC=OD,∴∠ODC=∠OCD,∴∠ADO﹣∠ODC=∠BCO﹣∠OCD,即∠ADC=∠BCD.【考點(diǎn)】本題考點(diǎn):全等三角形的判定與性質(zhì).4、(1)①

4,②見(jiàn)解析;(2)6≤≤12【解析】【分析】(1)①根據(jù)三角形的面積公式計(jì)算即可;②先根據(jù)AAS證得△ABF≌△BCM,得出BF=MC,AF=BM,再利用AAS證得△AFD≌△CHD,得出AF=CH,即可得出結(jié)論;(2)連接CM,先利用SAS得出△≌△CBM,得出,再根據(jù)等底同高的三角形的面積相等得出,再利用三角形的面積公式得出EC的長(zhǎng),從而利用三角形的三邊關(guān)系得出的取值范圍;【詳解】解:(1)①∵,,,∴,②∵,,∴∠AFB=∠BMC=∠FMC=90°,∴∠ABF+∠BAF=90°,∵,∴∠ABF+∠CBM=90°,∴∠BAF=∠CBM,∵,∴△ABF≌△BCM,∴BF=MC,AF=BM,∵∠AFB=∠FMC=90°,∴AF//CM,∴∠FAC=∠HCD,∵為中點(diǎn),∴AD=CD,∵∠FDA=∠HDC,∴△AFD≌△CHD,∴AF=CH,∴BM=CH,∵BF=CM∴BF-BM=CM-CH∴.(2)連接CM,∵,,∴∠ABC=∠=90°,∴∠BA=∠CBM,∵,,∴△≌△CBM,∴,∵,,∴∠ABC+∠BAE=180°,∴AE//BC,∴,∵,,∴,∴EC=9在△ECM中,,則9-3≤CM≤9+3,∴6≤CM≤12,∴6≤≤12,【考點(diǎn)】本題考查了全等三角形的判定和性質(zhì)以及三角形的三

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論