版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
北師大版9年級(jí)數(shù)學(xué)上冊期末試卷考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題24分)一、單選題(6小題,每小題2分,共計(jì)12分)1、已知兩個(gè)直角三角形的三邊長分別為3,4,和6,8,,且這兩個(gè)直角三角形不相似,則的值為(
)A.或 B.15 C. D.2、在某籃球邀請賽中,參賽的每兩個(gè)隊(duì)之間都要比賽一場,共比賽36場,設(shè)有x個(gè)隊(duì)參賽,根據(jù)題意,可列方程為()A. B.C. D.3、關(guān)于x的方程x(x﹣1)=3(x﹣1),下列解法完全正確的是()ABCD兩邊同時(shí)除以(x﹣1)得,x=3整理得,x2﹣4x=﹣3∵a=1,b=﹣4,c=﹣3,b2﹣4ac=28∴x==2±整理得,x2﹣4x=﹣3配方得,x2﹣4x+2=﹣1∴(x﹣2)2=﹣1∴x﹣2=±1∴x1=1,x2=3移項(xiàng)得,(x﹣3)(x﹣1)=0∴x﹣3=0或x﹣1=0∴x1=1,x2=3A.A B.B C.C D.D4、如圖,平行四邊形ABCD的對角線AC,BD相交于點(diǎn)O,添加下列條件仍不能判斷四邊形ABCD是矩形的是(
)A.AB+BC=AC B.AB=AD C.OA=OD D.∠ABC+∠ADC=180°5、如圖,一農(nóng)戶要建一個(gè)矩形花圃,花圃的一邊利用長為12m的住房墻,另外三邊用25m長的籬笆圍成,為方便進(jìn)出,在垂直于住房墻的一邊留一個(gè)1m寬的門,花圃面積為80m2,設(shè)與墻垂直的一邊長為xm,則可以列出關(guān)于x的方程是()A.x(26﹣2x)=80 B.x(24﹣2x)=80C.(x﹣1)(26﹣2x)=80 D.(x-1)(25﹣2x)=806、如圖,矩形ABCD中,AD=2,AB=,對角線AC上有一點(diǎn)G(異于A,C),連接DG,將△AGD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°得到△AEF,則BF的長為(
)A. B.2 C. D.2二、多選題(6小題,每小題2分,共計(jì)12分)1、如圖,在四邊形ABCD中,∠B=∠C,AB=3,CD=2,BC=6,點(diǎn)P是邊BC上的動(dòng)點(diǎn),若△ABP與△CDP相似,則BP=(
)A.3.6 B.C. D.2.42、如圖,點(diǎn)P在函數(shù)(x>0,k>2,k為常數(shù))的圖象上,PC⊥x軸交的圖象于點(diǎn)A,PD⊥y軸于點(diǎn)D,交,當(dāng)點(diǎn)P在(x>0,k>2,k為常數(shù))的圖象上運(yùn)動(dòng)時(shí)(
)A.ODB與OCA的面積相等 B.四邊形PAOB的面積不會(huì)發(fā)生變化C.PA與PB始終相等 D.3、如圖,△ABC中,DE∥BC,BE與CD交于點(diǎn)O,AO與DE、BC交于N、M,則下列式子中正確的是(
)A. B. C. D.4、如圖,四邊形ABCD為菱形,BFAC,DF交AC的延長線于點(diǎn)E,交BF于點(diǎn)5、如圖,正方形ABCD中,CE平分∠ACB,點(diǎn)F在邊AD上,且AF=BE.連接BF交CE于點(diǎn)G,交AC于點(diǎn)M,點(diǎn)P是線段CE上的動(dòng)點(diǎn),點(diǎn)N是線段CM上的動(dòng)點(diǎn),連接PM,PN.下列四個(gè)結(jié)論一定成立的是(
)A.CE⊥BF B.BE=AM C.AE+FM=AB D.PM+PN≥AC6、平行四邊形ABCD的對角線相交于點(diǎn)O,分別添加下列條件使得四邊形ABCD是矩形的條件有(
)是菱形的條件有(
)A.∠ABC=90° B.AC⊥BD C.AB=BC D.AC平分∠BAD E.AO=DO第Ⅱ卷(非選擇題76分)三、填空題(8小題,每小題2分,共計(jì)16分)1、如圖,在Rt△ABC中,∠C=90°,AC=8cm,BC=2cm,點(diǎn)P在邊AC上,以2cm/s的速度從點(diǎn)A向點(diǎn)C移動(dòng),點(diǎn)Q在邊CB上,以1cm/s的速度從點(diǎn)C向點(diǎn)B移動(dòng).點(diǎn)P、Q同時(shí)出發(fā),且當(dāng)一點(diǎn)移動(dòng)到終點(diǎn)時(shí),另一點(diǎn)也隨之停止,連接PQ,當(dāng)△PQC的面積為3cm2時(shí),P、Q運(yùn)動(dòng)的時(shí)間是_____秒.2、在每個(gè)小正方形的邊長為1的網(wǎng)格圖形中,每個(gè)小正方形的頂點(diǎn)稱為格點(diǎn),頂點(diǎn)都是格點(diǎn)的三角形稱為格點(diǎn)三角形.如圖,已知Rt△ABC是6×6網(wǎng)格圖形中的格點(diǎn)三角形,則該圖中所有與Rt△ABC相似的格點(diǎn)三角形中.面積最大的三角形的斜邊長是_____.3、設(shè)分別為一元二次方程的兩個(gè)實(shí)數(shù)根,則____.4、如圖,在矩形ABCD中,AB=6,BC=8,點(diǎn)E、F分別是邊AB、BC上的動(dòng)點(diǎn),且EF=4,點(diǎn)G是EF的中點(diǎn),AG、CG,則四邊形AGCD面積的最小值為_______.5、如圖,在長方形中,,在上存在一點(diǎn)、沿直線把折疊,使點(diǎn)恰好落在邊上的點(diǎn)處,若,那么的長為________.6、如圖,將矩形的四個(gè)角向內(nèi)折起,恰好拼成一個(gè)無縫隙重疊的四邊形,若,,則邊的長是____.7、如圖,△ABC與△是位似圖形,點(diǎn)是位似中心,若,,則=________.8、舉出一個(gè)生活中應(yīng)用反比例函數(shù)的例子:______.四、解答題(6小題,每小題10分,共計(jì)60分)1、某商店如果將進(jìn)價(jià)8元的商品按每件10元出售,那么每天可銷售200件,現(xiàn)采用提高售價(jià),減少進(jìn)貨量的方法增加利潤,如果這種商品的售價(jià)每漲1元,那么每天的進(jìn)貨量就會(huì)減少20件,要想每天獲得640元的利潤,則每件商品的售價(jià)定為多少元最為合適?2、解方程(1)(x+1)2﹣64=0(2)x2﹣4x+1=0(3)x2+2x-2=0(配方法)(4)x2-2x-8=03、如圖,四邊形ABCD是菱形,邊長為10cm,對角線AC,BD交于點(diǎn)O,∠BAD=60°.(1)求對角線AC,BD的長;(2)求菱形的面積.4、如圖,∠1=∠2=∠3,試找出圖中兩對相似三角形,并說明為什么?5、如圖,Rt△ABO的頂點(diǎn)A是反比例函數(shù)的圖象與一次函數(shù)的圖象在第二象限的交點(diǎn),AB⊥x軸于點(diǎn)B,且.(1)求反比例函數(shù)和一次函數(shù)的解析式;(2)求一次函數(shù)與反比例函數(shù)圖象的兩個(gè)交點(diǎn)A,C的坐標(biāo).6、如圖,一次函數(shù)y=ax+b(a、b為常數(shù),且a>0)與反比例函數(shù)y=(k為常數(shù),且k≠0)的圖象相交于點(diǎn)A(3,4),與x軸交于點(diǎn)C.(1)求反比例函數(shù)的解析式;(2)點(diǎn)P在x軸上,且P的坐標(biāo)為(7,0),ACP的面積為20,求一次函數(shù)的解析式.-參考答案-一、單選題1、A【解析】【分析】判斷未知邊m、n是直角三角形的直角邊還是斜邊,再根據(jù)勾股定理計(jì)算出m、n的值,最后根據(jù)題目中兩個(gè)三角形不相似,對應(yīng)邊的比值不同進(jìn)行判斷.【詳解】解:在第一個(gè)直接三角形中,若m是直角邊,則,若m是斜邊,則;在第二個(gè)直接三角形中,若n是直角邊,則,若n是斜邊,則;又因?yàn)閮蓚€(gè)直角三角形不相似,故m=5和n=10,m=和n=不能同時(shí)取,即當(dāng)m=5,,,當(dāng),n=10,,故選:A.【考點(diǎn)】本題主要考查了勾股定理以及相似三角形的性質(zhì),在直角三角形中對未知邊是直角邊還是斜邊進(jìn)行不同情況的討論是解題的關(guān)鍵.2、A【解析】【分析】共有x個(gè)隊(duì)參加比賽,則每隊(duì)參加(x-1)場比賽,但2隊(duì)之間只有1場比賽,根據(jù)共安排36場比賽,列方程即可.【詳解】解:設(shè)有x個(gè)隊(duì)參賽,根據(jù)題意,可列方程為:x(x﹣1)=36,故選A.【考點(diǎn)】此題考查由實(shí)際問題抽象出一元二次方程,解題關(guān)鍵在于得到比賽總場數(shù)的等量關(guān)系.3、D【解析】【分析】A.不能兩邊同時(shí)除以(x﹣1),會(huì)漏根;B.化為一般式,利用公式法解答;C.利用配方法解答;D.利用因式分解法解答【詳解】解:A.不能兩邊同時(shí)除以(x﹣1),會(huì)漏根,故A錯(cuò)誤;B.化為一般式,a=l,b=﹣4,c=3,故B錯(cuò)誤;C.利用配方法解答,整理得,x2﹣4x=﹣3,配方得,x2﹣4x+22=1,故C錯(cuò)誤;D.利用因式分解法解答,完全正確,故選:D【考點(diǎn)】本題考查解一元二次方程,涉及公式法、配方法、因式分解法等知識(shí),是重要考點(diǎn),掌握相關(guān)知識(shí)是解題關(guān)鍵.4、B【解析】【分析】由勾股定理的逆定理證得∠ABC=90°,根據(jù)有一個(gè)角是直角的平行四邊形是矩形可判斷A;根據(jù)有一組鄰邊相等的平行四邊形是菱形可判斷B;根據(jù)對角線相等的平行四邊形是矩形可判斷C;根據(jù)有一個(gè)角是直角的平行四邊形是矩形可判斷D.【詳解】解:A.∵AB2+BC2=AC2,∴∠ABC=90°,∴?ABCD為矩形,故本選項(xiàng)不符合題意;B.∵AB=AD,∴?ABCD為菱形,故本選項(xiàng)符合題意;C.∵四邊形ABCD是平行四邊形,∴OA=OC,OB=OD,∵OA=OD,∴AC=BD,∴?ABCD是矩形,故本選項(xiàng)不符合題意;D.∵四邊形ABCD是平行四邊形,∴∠ABC=∠ADC,∵∠ABC+∠ADC=180°,∴∠ABC=∠ADC=90°,∴?ABCD為矩形,故本選項(xiàng)不符合題意;故選:B.【考點(diǎn)】本題考查了矩形的判定定理,勾股定理的逆定理,平行四邊形的性質(zhì),熟練掌握矩形的判定方法是解決問題的關(guān)鍵.5、A【解析】【分析】設(shè)與墻垂直的一邊長為xm,則與墻平行的一邊長為(26-2x)m,然后根據(jù)花圃面積為80m2列關(guān)于x的一元一次方程即可.【詳解】解:設(shè)與墻垂直的一邊長為xm,則與墻平行的一邊長為(26-2x)m由題意得:x(26-2x)=80.故答案為A.【考點(diǎn)】本題考查了根據(jù)題意列一元二次方程,理解題意、設(shè)出未知數(shù)、表示出相關(guān)的量、找到等量關(guān)系列方程是解答本題的關(guān)鍵.6、A【解析】【分析】過點(diǎn)F作FH⊥BA交BA的延長線于點(diǎn)H,則∠FHA=90°,△AGD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°得到△AEF,得∠FAD=60°,AF=AD=2,又由四邊形ABCD是矩形,∠BAD=90°,得到∠FAH=30°,在Rt△AFH中,F(xiàn)H=AF=1,由勾股定理得AH=,得到BH=AH+AB=2,再由勾股定理得BF=.【詳解】解:如圖,過點(diǎn)F作FH⊥BA交BA的延長線于點(diǎn)H,則∠FHA=90°,∵△AGD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°得到△AEF∴∠FAD=60°,AF=AD=2,∵四邊形ABCD是矩形∴∠BAD=90°∴∠BAF=∠FAD+∠BAD=150°∴∠FAH=180°-∠BAF=30°在Rt△AFH中,F(xiàn)H=AF=1由勾股定理得AH=在Rt△BFH中,F(xiàn)H=1,BH=AH+AB=2由勾股定理得BF=故BF的長.故選:A【考點(diǎn)】本題考查了圖形的旋轉(zhuǎn),矩形的性質(zhì),含30度角的直角三角形的性質(zhì),勾股定理等知識(shí),解決此題的關(guān)鍵在于作出正確的輔助線.二、多選題1、ABC【解析】【分析】根據(jù)相似求出相似比,根據(jù)相似比分類討論計(jì)算出結(jié)果即可.【詳解】解:∠B=∠C,根據(jù)題意:或,則:或,則:或,故答案為:或,故選:ABC.【考點(diǎn)】本題考查相似三角形得的性質(zhì)與應(yīng)用,能夠熟練掌握相似三角形的性質(zhì)是解決本題的關(guān)鍵.2、AB【解析】【分析】由反比例函數(shù)k的幾何意義可判斷出各個(gè)結(jié)論的正誤.【詳解】解:A.∵點(diǎn)A,B在函數(shù)的圖象上,∴,故選項(xiàng)A正確;B.∵矩形OCPD、三角形ODB、三角形OCA為定值,則四邊形PAOB的面積不會(huì)發(fā)生變化;故此選項(xiàng)正確.C.PA與PB不一定相等,只有當(dāng)四邊形OCPD是正方形時(shí)滿足PA=PB,故此選項(xiàng)不正確;D.∵A、B在上,∴S△AOC=S△BOE,∴?OC?AC=?OD?BD,∴OC?AC=OD?BD,∵OC=PD,OD=PC,∴PD?AC=DB?PC,∴.故此選項(xiàng)不正確.故選AB【考點(diǎn)】此題是反比例函數(shù)綜合題,主要考查了反比例函數(shù)(k≠0)中k的幾何意義,即過雙曲線上任意一點(diǎn)引x軸、y軸垂線,所得矩形面積為|k|,是經(jīng)??疾榈囊粋€(gè)知識(shí)點(diǎn);這里體現(xiàn)了數(shù)形結(jié)合的思想,做此類題一定要正確理解k的幾何意義.3、ABC【解析】【分析】由,可得三角形相似,再根據(jù)相似三角形對應(yīng)邊成比例即可求解.【詳解】解:,,,,,,,所以、、正確,符合題意;,,,,所以錯(cuò)誤,不符合題意.故選:ABC.【考點(diǎn)】本題考查了相似三角形的判定與性質(zhì),解題的關(guān)鍵是注意平行于三角形的一邊的直線與其他兩邊相交,所構(gòu)成的三角形與原三角形相似;相似三角形對應(yīng)邊成比例.注意數(shù)形結(jié)合思想的應(yīng)用.4、ABD【解析】【分析】根據(jù)菱形的性質(zhì)、全等三角形的判定與性質(zhì)、中線的性質(zhì)即可依次判斷.【詳解】解:∵四邊形ABCD為菱形,∴AB=AD,∠BAE=∠DAE,∵AE=AE,∴△ABE≌△ADE(SAS);∴BE=DE,∠AEB=∠AED,∵CE=CE,∴△CBE≌△CDE(SAS),A正確;∵BFAC,∴∠FBE=∠AEB,∠AED=∠F,∴∠FBE=∠F,∴BE=EF,∴DE=FE,B正確;連接BD交AC于O,∵AO=CO,∵CE:AC=1:2,∴AO=CO=CE,設(shè)S△BCE=m,∴S△ABC=S△ADC=2m,S△BOE=S△DOE=2m,∴S四邊形ABDC=4m,S△BDE=4m,∵E點(diǎn)是DF中點(diǎn)∴S△BEF=S△BDE=4m,∴S△BEF=S四邊形ABCD,故D正確;∵AE與DE不相等,故AE與BE不相等故C錯(cuò)誤;故選:ABD.【考點(diǎn)】本題考查了全等三角形的判定和性質(zhì),菱形的性質(zhì),平行線的性質(zhì),三角形的面積的計(jì)算,正確的識(shí)別圖形是解題的關(guān)鍵.5、ABD【解析】【分析】由SAS可證△BAF≌△CBE,進(jìn)而可證EG⊥BG,即CE⊥BF,故A正確;根據(jù)ASA可證△BCG≌△MCG,知∠CBG=∠CMG,因?yàn)椤螩BG=∠AFM,∠AMF=∠CMG,可得∠AFM=∠AMF,即AM=AF,可證BE=AM,故B正確;因AB=AE+BE=AE+AM,故C不正確;當(dāng)PN⊥MC時(shí),PM+PN=BP+PN=BN最短,此時(shí)BN為△ABC底邊AC上的高,則BN的長度為PM+PN的最小值,根據(jù)正方形的性質(zhì)知,BN==BD=AC,因此PM+PN≥AC,故D正確.【詳解】解:∵四邊形ABCD是正方形∴AB=BC,∠BAF=∠CBE=90°在△BAF和△CBE中∴△BAF≌△CBE(SAS)∴∠BAF=∠ECB∵∠CBE=90°∴∠BEC+∠BCE=90°∴∠BEC+∠FBA=90°∴∠BGE=180°-(∠BEC+∠FBA)=90°∴EG⊥BG,即CE⊥BF,故A正確;∵CE平分∠ACB∴∠BCE=∠MCG∵CE⊥BF∴∠MGC=∠BGC=90°在△BCG和△MCG中∴△BCG≌△MCG(ASA)∴∠CBG=∠CMG∵正方形ABCD∴AD∥BC∴∠CBG=∠AFM∵∠AMF=∠CMG∴∠AFM=∠AMF∴AM=AF∵AF=BE∴BE=AM,故B正確;∵AB=AE+BE,BE=AM∴AE+AM=AB,故C不正確;連接BP,如圖,∵△BCG≌△MVG∴BG=GM∵CE⊥BF∴CG垂直平分BM∴MP=BP當(dāng)PN⊥MC時(shí),PM+PN=BP+PN=BN最短,此時(shí)BN為△ABC底邊AC上的高,則BN的長度為PM+PN的最小值,根據(jù)正方形的性質(zhì)知,BN==BD=AC∴PM+PN≥AC,故D正確綜上所述,一定成立的是ABD,故選:ABD.【考點(diǎn)】本題考查了全等三角形的判定與性質(zhì),正方形的性質(zhì),線段的垂直平分線,解題的關(guān)鍵是熟練掌握全等三角形的判定與性質(zhì).6、AEBCD【解析】【分析】因?yàn)樗倪呅蜛BCD是平行四邊形,要成為矩形加上一個(gè)角為直角或?qū)蔷€相等即可;要使其成為菱形,加上一組鄰邊相等或?qū)蔷€垂直均可.【詳解】A選項(xiàng):∵∠ABC=90°,四邊形ABCD是平行四邊形,∴四邊形ABCD是矩形.(有一個(gè)角是直角的平行四邊形是矩形)B選項(xiàng):∵AC⊥BD,四邊形ABCD是平行四邊形,∴四邊形ABCD是菱形.(對角線互相垂直的平行四邊形是菱形)C選項(xiàng):∵AB=BC,四邊形ABCD是平行四邊形,∴四邊形ABCD是菱形.(鄰邊相等的平行四邊形是菱形)D選項(xiàng):如圖:∵四邊形ABCD是平行四邊形,∴AD∥BC,∴∠DAC=∠ACB,∵AC平分∠BAD,∴∠DAC=∠BAC,∴∠BAC=∠ACB,∴AB=BC,∴?ABCD是菱形;E選項(xiàng):∵AO=DO,四邊形ABCD是平行四邊形,∴AC=BD,∴四邊形ABCD是矩形.(對角線互相平分且相等的平行四邊形是矩形)故選:AE,BCD.【考點(diǎn)】考查了菱形和矩形的判定,解題關(guān)鍵是掌握平行四邊形的性質(zhì)和菱形、矩形的判定方法.三、填空題1、1【解析】【分析】設(shè)P、Q運(yùn)動(dòng)的時(shí)間是秒,根據(jù)已知條件得到cm,cm,則cm,根據(jù)三角形面積公式列出方程,解方程即可求解.【詳解】解:設(shè)P、Q運(yùn)動(dòng)的時(shí)間是秒,則cm,cm,cm∵△PQC的面積為3cm2,∴,即,解得或(不合題意,舍去),∴當(dāng)△PQC的面積為3cm2時(shí),P、Q運(yùn)動(dòng)的時(shí)間是1秒.故答案為:1【考點(diǎn)】本題考查了一元二次方程應(yīng)用——?jiǎng)狱c(diǎn)問題,三角形的面積,正確的理解題意是解題的關(guān)鍵.2、5【解析】【分析】根據(jù)相似三角形的性質(zhì)確定兩直角邊的比值為1:2,以及6×6網(wǎng)格圖形中,最長線段為6,進(jìn)行嘗試,可確定、、為邊的這樣一組三角形滿足條件.【詳解】解:∵在Rt△ABC中,AC=1,BC=2,∴AB=,AC:BC=1:2,∴與Rt△ABC相似的格點(diǎn)三角形的兩直角邊的比值為1:2,若該三角形最短邊長為4,則另一直角邊長為8,但在6×6網(wǎng)格圖形中,最長線段為6,但此時(shí)畫出的直角三角形為等腰直角三角形,從而畫不出端點(diǎn)都在格點(diǎn)且長為8的線段,故最短直角邊長應(yīng)小于4,在圖中嘗試,可畫出DE=,EF=2,DF=5的三角形,∵===,∴△ABC∽△DEF,∴∠DEF=∠C=90°,∴此時(shí)△DEF的面積為:×2÷2=10,△DEF為面積最大的三角形,其斜邊長為:5.故答案為:5.【考點(diǎn)】本題考查了作圖-應(yīng)用與設(shè)計(jì)、相似三角形的判定和性質(zhì)、勾股定理等知識(shí),解題的關(guān)鍵是學(xué)會(huì)利用數(shù)形結(jié)合的思想解決問題,屬于中考填空題中的壓軸題.3、2020【解析】【分析】根據(jù)一元二次方程的解結(jié)合根與系數(shù)的關(guān)系即可得出m2+2m=2022,m+n=?2,將其代入m2+3m+n=m2+2m+(m+n)中即可求出結(jié)論.【詳解】解:∵m,n分別為一元二次方程x2+2x?2022=0的兩個(gè)實(shí)數(shù)根,∴m2+2m=2022,m+n=?2,∴m2+3m+n=m2+2m+(m+n)=2022+(?2)=2020.故答案為:2020.【考點(diǎn)】本題考查了根與系數(shù)的關(guān)系以及一元二次方程的解,根據(jù)一元二次方程的解結(jié)合根與系數(shù)的關(guān)系得出m2+2m=2022,m+n=?2是解題的關(guān)鍵.4、38【解析】【分析】根據(jù)題目要求,要使四邊形AGCD的面積最小,因?yàn)榈拿娣e固定,只需使的面積最小即可,即的高最小即可,又在中,,則BG=2,高的最小值為點(diǎn)B到AC的距離減去BG的長度,則可求解.【詳解】依題意,在中,為EF的中點(diǎn),,,點(diǎn)G在以B為圓心,2為半徑的圓與長方形重合的弧上運(yùn)動(dòng),,要使四邊形AGCD的面積最小,則B所在直線垂直線段AC,又,點(diǎn)B到AC的距離為,此時(shí)點(diǎn)G到AC的距離為,故的最小面積為,,故答案為:38.【考點(diǎn)】本題考查了動(dòng)點(diǎn)問題中四邊形的最小面積問題,利用勾股定理,直角三角形中線的性質(zhì),三角形等積法求高等性質(zhì)定理進(jìn)行求解,對于相關(guān)性質(zhì)定理的熟練運(yùn)用是解題的關(guān)鍵.5、【解析】【分析】由折疊的性質(zhì),得DE=EF,AD=AF,然后求出AF=AD=10,則求出FC的長度,再根據(jù)勾股定理建立方程,即可求出答案.【詳解】解:∵四邊形是長方形,由折疊的性質(zhì),,∵,又,在中,;故答案為:.【考點(diǎn)】本題考查了:①折疊的性質(zhì):折疊是一種對稱變換,它屬于軸對稱,根據(jù)軸對稱的性質(zhì),折疊前后圖形的形狀和大小不變,位置變化,對應(yīng)邊和對應(yīng)角相等;②矩形的性質(zhì),勾股定理求解.6、【解析】【分析】由折疊的性質(zhì)和矩形的性質(zhì)可得∠HEF=90°,EA=EB=3,證明△HNG≌△FME,求出HF,設(shè)AH=x,在△AEH,△BEF和△EFH中,利用勾股定理列出方程,求出x,即可得到EH.【詳解】解:∵四邊形ABCD是矩形,∴∠A=∠B=∠D=90°,由折疊可知:△EAH≌△EMH,△HNG≌△HDG,△FBE≌△FME,∴EA=EM,AH=MH,HD=HN,EB=EM,F(xiàn)B=FM,∠AEH=∠MEH,∠BEF=∠MEF,∠BME=∠B=90°,∠HNG=∠D=90°,∴EA=EB=AB=3,∵∠AEH+∠MEH+∠BEF+∠MEF=180°,∴2∠MEH+2∠MEF=180°,∴∠HEF=90°,同理可知:∠EHG=∠EFG=∠HGF=90°,∴四邊形EHGF是矩形,∴HG∥FE,HG=FE,∴∠GHN=∠EFM,在△HNG和△FME中,,∴△HNG≌△FME(AAS),∴HN=FM,∴HD=FM,∴HF=HM+FM=AH+HD=AD=10,設(shè)AH=x,則HD=FM=FB=10-x,∵,,,∴,即,解得:x=1或x=9(舍),∴AH=1,∴,故答案為:.【考點(diǎn)】本題考查了翻折變換,矩形的性質(zhì),勾股定理,全等三角形的判定和性質(zhì),利用勾股定理列出方程是本題的關(guān)鍵.7、16【解析】【分析】題干已知△ABC與△是位似圖形,利用面積相似比進(jìn)行分析求解.【詳解】解:△ABC與△是位似圖形,得到,利用相似圖形,面積比即是對應(yīng)線段比的平方比得到,由,得到=16.【考點(diǎn)】本題考查位似圖形,利用相似圖形的面積比即是對應(yīng)線段比的平方比,從而分析求解.8、路程s一定,速度v與時(shí)間t之間的關(guān)系(答案不唯一).【解析】【分析】利用反比例函數(shù)的定義并結(jié)合生活中的實(shí)例來解答此題即可【詳解】根據(jù)路程=速度時(shí)間,速度v則可以用反比例函數(shù)來表示.故答案可以為路程s一定,速度v與時(shí)間t之間的關(guān)系(答案不唯一).【考點(diǎn)】本題主要考查了反比例函數(shù)的定義形式如(k為常數(shù),)的函數(shù)稱為反比例函數(shù).其中x是自變量,y是函數(shù),自變量x的取值范圍是不等于0的一切實(shí)數(shù).四、解答題1、每件商品的售價(jià)定為16元最為合適.【解析】【分析】設(shè)每件商品的售價(jià)定為x元,則每件商品的銷售利潤為(x-8)元,每天的進(jìn)貨量為200-20(x-10)=(400-20x)件,利用每天銷售這種商品的利潤=每件的銷售利潤×日銷售量(日進(jìn)貨量),即可得出關(guān)于x的一元二次方程,解之即可得出x的值,再結(jié)合“現(xiàn)采用提高售價(jià),減少進(jìn)貨量的方法增加利潤”,即可得出每件商品的售價(jià)定為16元最為合適..【詳解】解:設(shè)每件商品的售價(jià)定為x元,則每件商品的銷售利潤為(x-8)元,每天的進(jìn)貨量為200-20(x-10)=(400-20x)件,依題意得:(x-8)(400-20x)=640,整理得:x2-28x+192=0,解得:x1=12,x2=16.又∵現(xiàn)采用提高售價(jià),減少進(jìn)貨量的方法增加利潤,∴x=16.答:每件商品的售價(jià)定為16元最為合適.【考點(diǎn)】本題考查了一元二次方程的應(yīng)用,找準(zhǔn)等量關(guān)系,正確列出一元二次方程是解題的關(guān)鍵.2、(1)x1=7,x2=-9;(2)x1=2+,x2=2-;(3)x1=-1+,x2=-1-;(4)x1=-2,x2=4【解析】【分析】(1)方程移項(xiàng)后,運(yùn)用直接開平方法求解即可;(2)根據(jù)配方法解一元二次方程的步驟依次計(jì)算即可;(3)根據(jù)配方法解一元二次方程的步驟依次計(jì)算即可;(4)根據(jù)因式分解法求解即可.【詳解】解:(1)(x+1)2=64x+1=±8∴x1=7,x2=-9(2)x2﹣4x=-1x2﹣4x+4=-1+4(x-2)2=3x-2=±∴x1=2+,x2=2-(3)x2+2x=2x2+2x+1=2+1(x+1)2=3x+1=±∴x1=-1+,x2=-1-(4)(x+2)(x-4)=0x+2=0或x-4=0∴x1=-2,x2=4【考點(diǎn)】本題考查一元二次方程的求解,選擇適合的方法是解題關(guān)鍵.3、(1)BD=10cm,AC=cm(2)菱形的面積為cm2【解析】【分析】(1)利用已知條件易求BD的長,再由勾股定理可求出AO的長,進(jìn)而可求對角線AC的長;(2)利用菱形的面積等于其對角線積的一半,即可求得面積.(1)解:在菱形ABCD中,AB=AD=10cm,∠BAD=60°,∴△ABD是等邊三角形,∴BD=10cm.由菱形的性質(zhì)知AC⊥BD,BO=DO,OA=OC,∴BO=BD=5cm,在Rt△AOB中,AO==cm,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 試劑盒生產(chǎn)留樣管理制度
- 生產(chǎn)現(xiàn)場檢驗(yàn)員巡檢制度
- 生產(chǎn)線下培訓(xùn)班管理制度
- 肉類生產(chǎn)加工制度及流程
- 造紙廠生產(chǎn)值班制度范本
- 手袋廠生產(chǎn)車間管理制度
- 生產(chǎn)型企業(yè)采購管理制度
- 采油隊(duì)清潔文明生產(chǎn)制度
- 獼猴桃生產(chǎn)基地管理制度
- 法定代表人安全生產(chǎn)制度
- 電力設(shè)施圍欄施工方案
- 學(xué)習(xí)《教師法》和《嚴(yán)禁教師違規(guī)收受學(xué)生及家長禮品禮金等行為的規(guī)定》心得體會(huì)
- 2023年廣西區(qū)考公務(wù)員錄用考試《行測》真題及答案解析
- GB/T 23444-2024金屬及金屬復(fù)合材料吊頂板
- 應(yīng)用麻醉鎮(zhèn)痛技術(shù)施行負(fù)壓吸宮術(shù)技術(shù)規(guī)范
- 國家電網(wǎng)公司招聘高校畢業(yè)生應(yīng)聘登記表
- 見證取樣手冊(智能建筑分部)
- DZ∕T 0353-2020 地球化學(xué)詳查規(guī)范(正式版)
- 醫(yī)療衛(wèi)生輿情課件
- 2023-2024學(xué)年宜賓市高一數(shù)學(xué)上學(xué)期期末質(zhì)量監(jiān)測試卷附答案解析
- 實(shí)用的標(biāo)準(zhǔn)氧化還原電位表
評論
0/150
提交評論