解析卷-人教版8年級數學下冊《平行四邊形》專項測評試題(解析版)_第1頁
解析卷-人教版8年級數學下冊《平行四邊形》專項測評試題(解析版)_第2頁
解析卷-人教版8年級數學下冊《平行四邊形》專項測評試題(解析版)_第3頁
解析卷-人教版8年級數學下冊《平行四邊形》專項測評試題(解析版)_第4頁
解析卷-人教版8年級數學下冊《平行四邊形》專項測評試題(解析版)_第5頁
已閱讀5頁,還剩30頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

人教版8年級數學下冊《平行四邊形》專項測評考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題30分)一、單選題(10小題,每小題3分,共計30分)1、如圖,正方形ABCO和正方形DEFO的頂點A、E、O在同一直線上,且EF=,AB=3,給出下列結論:①∠COD=45°;②AE=3+;③CF=AD=;④S△COF+S△EOF=.期中正確的個數為()A.1個 B.2個 C.3個 D.4個2、下列命題正確的是()A.對角線相等的四邊形是平行四邊形 B.對角線相等的四邊形是矩形C.對角線互相垂直的平行四邊形是菱形 D.對角線互相垂直且相等的四邊形是正方形3、在□ABCD中,AC=24,BD=38,AB=m,則m的取值范圍是()A.24<m<39 B.14<m<62 C.7<m<31 D.7<m<124、在菱形ABCD中,兩條對角線AC=10,BD=24,則此菱形的邊長為()A.14 B.25 C.26 D.135、若一個直角三角形的周長為,斜邊上的中線長為1,則此直角三角形的面積為()A. B. C. D.6、如圖菱形ABCD,對角線AC,BD相交于點O,若BD=8,AC=6,則AB的長是()A.5 B.6 C.8 D.107、如圖,長方形紙片ABCD中,AB=3cm,AD=9cm,將此長方形紙片折疊,使點D與點B重合,點C落在點H的位置,折痕為EF,則△ABE的面積為()A.6cm2 B.8cm2 C.10cm2 D.12cm28、如圖,已知四邊形ABCD和四邊形BCEF均為平行四邊形,∠D=60°,連接AF,并延長交BE于點P,若AP⊥BE,AB=3,BC=2,AF=1,則BE的長為()A.5 B.2 C.2 D.39、如圖,將矩形紙片按如圖所示的方式折疊,得到菱形,若,則的長為()A.2 B. C.4 D.10、如圖,矩形ABCD的面積為1cm2,對角線交于點O;以AB、AO為鄰邊作平行四邊形AOC1B,對角線交于點O1;以AB、AO1為鄰邊作平行四邊形AO1C2B,…;依此類推,則平行四邊形AO2014C2015B的面積為()cmA.

B.

C.

D.第Ⅱ卷(非選擇題70分)二、填空題(10小題,每小題4分,共計40分)1、如圖,在直角三角形ABC中,∠B=90°,點D是AC邊上的一點,連接BD,把△CBD沿著BD翻折,點C落在AB邊上的點E處,得到△EBD,連接CE交BD于點F,BG為△EBD的中線.若BC=4,△EBG的面積為3,則CD的長為____________2、菱形的對角線之比為3:4,且面積為24,則它的對角線分別為________.3、如圖,四邊形AOBC是正方形,曲線CP1P2P3???叫做“正方形的漸開線”,其中弧CP1,弧P1P2,弧P2P3,弧P3P4的圓心依次按點A,O,B,C循環(huán),點A的坐標為(2,0),按此規(guī)律進行下去,則點P2021的坐標為_____.4、如圖,M,N分別是矩形ABCD的邊AD,AB上的點,將矩形ABCD沿MN折疊,使點A恰好落在邊BC上的點E處,連接MC,若AB=8,AD=16,BE=4,則MC的長為________.5、如圖,在長方形ABCD中,.在DC上找一點E,沿直線AE把折疊,使D點恰好落在BC上,設這一點為F,若的面積是54,則的面積=______________.6、如圖,在中,,,,為上的兩個動點,且,則的最小值是________.7、正方形ABCD的邊長為4,則圖中陰影部分的面積為___.8、在平行四邊形ABCD中,BF平分∠ABC,交AD于點F,CE平分∠BCD,交AD于點E,AB=6,EF=2,則BC的長為_____.9、如圖,在矩形ABCD中,對角線AC,BD相交于O,EF過點O分別交AB,CD于E,F,已知AB=8cm,AD=5cm,那么圖中陰影部分面積為_____cm2.10、如圖,在?ABCD中,BC=3,CD=4,點E是CD邊上的中點,將△BCE沿BE翻折得△BGE,連接AE,A、G、E在同一直線上,則AG=______,點G到AB的距離為______.三、解答題(5小題,每小題6分,共計30分)1、如圖,四邊形ABCD是平行四邊形,E,F是對角線AC的三等分點,連接BE,DF.證明BE=DF.2、如圖,四邊形ABCD是平行四邊形,延長DA,BC,使得AE=CF,連接BE,DF.(1)求證:△ABE≌△CDF;(2)連接BD,若∠1=32°,∠ADB=22°,請直接寫出當∠ABE=°時,四邊形BFDE是菱形.3、(1)如圖a,矩形ABCD的對角線AC、BD交于點O,過點D作DP∥OC,且DP=OC,連接CP,判斷四邊形CODP的形狀并說明理由.

(2)如圖b,如果題目中的矩形變?yōu)榱庑危Y論應變?yōu)槭裁??說明理由.(3)如圖c,如果題目中的矩形變?yōu)檎叫?,結論又應變?yōu)槭裁??說明理由.4、已知如圖,在中,點是邊上一點,連接,點是上一動點,連接.(1)如圖1,當時,連接,延長交于點,求證:;(2)如圖2,以為直角邊作等腰,連接,若,當點在運動過程中,求周長的最小值.

5、如圖,△ABC中,點D是邊AC的中點,過D作直線PQ∥BC,∠BCA的平分線交直線PQ于點E,點G是△ABC的邊BC延長線上的點,∠ACG的平分線交直線PQ于點F.求證:四邊形AECF是矩形.-參考答案-一、單選題1、B【解析】【分析】根據∠COD=180°﹣∠AOC﹣∠DOE得到∠COD=45°,根據已知條件求出OE=2,得到AE=AO+OE=2+3=5,作DH⊥AB于H,作FG⊥CO交CO的延長線于G,根據勾股定理即可得到BD,根據三角形面積的關系計算即可;【詳解】①∵∠AOC=90°,∠DOE=45°,∴∠COD=180°﹣∠AOC﹣∠DOE=45°,故①正確;②∵EF,∴OE=2,∵AO=AB=3,∴AE=AO+OE=2+3=5,故②錯誤;③作DH⊥AB于H,作FG⊥CO交CO的延長線于G,則FG=1,CF,BH=3﹣1=2,DH=3+1=4,BD,故③錯誤;④△COF的面積S△COF3×1,△EOF的面積S△EOF=()2=1S△COF+S△EOF=故④正確;正確的是①④;故選:B.【點睛】本題主要考查了正方形的性質,勾股定理,準確計算是解題的關鍵.2、C【解析】【分析】根據平行四邊形、矩形、菱形以及正方形的判定方法,對選項逐個判斷即可.【詳解】解:A、對角線互相平分的四邊形是平行四邊形,選項錯誤,不符合題意;B、對角線相等平行四邊形是矩形,選項錯誤,不符合題意;C、對角線互相垂直的平行四邊形是菱形,選項正確,符合題意;D、對角線互相垂直且相等的平行四邊形是正方形,選項錯誤,不符合題意;故選C【點睛】此題考查了平行四邊形、矩形、菱形以及正方形的判定,掌握它們的判定方法是解題的關鍵.3、C【解析】【分析】作出平行四邊形,根據平行四邊形的性質可得,,然后在中,利用三角形三邊的關系即可確定m的取值范圍.【詳解】解:如圖所示:∵四邊形ABCD為平行四邊形,∴,,在中,,∴,即,故選:C.【點睛】題目主要考查平行四邊形的性質及三角形三邊的關系,熟練掌握平行四邊形的性質及三角形三邊關系是解題關鍵.4、D【解析】【分析】由菱形的性質和勾股定理即可求得AB的長.【詳解】解:∵四邊形ABCD是菱形,AC=10,BD=24,∴AB=BC=CD=AD,AC⊥BD,OB=OD=BD=12,OA=OC=AC=5,在Rt△ABO中,AB==13,故選:D.【點睛】本題考查了菱形的性質、勾股定理等知識,熟練掌握菱形的性質,由勾股定理求出AB=13是解題的關鍵.5、B【解析】【分析】根據直角三角形斜邊上中線的性質,可得斜邊為2,然后利用兩直角邊之間的關系以及勾股定理求出兩直角邊之積,從而確定面積.【詳解】解:根據直角三角形斜邊上中線的性質可知,斜邊上的中線等于斜邊的一半,得AC=2BD=2.∵一個直角三角形的周長為3+,∴AB+BC=3+-2=1+.等式兩邊平方得(AB+BC)2=(1+)2,即AB2+BC2+2AB?BC=4+2,∵AB2+BC2=AC2=4,∴2AB?BC=2,AB?BC=,即三角形的面積為×AB?BC=.故選:B.【點睛】本題考查直角三角形斜邊上的中線,勾股定理,三角形的面積等知識點的理解和掌握,巧妙求出AC?BC的值是解此題的關鍵,值得學習應用.6、A【解析】【分析】由菱形的性質可得OA=OC=3,OB=OD=4,AO⊥BO,由勾股定理求出AB.【詳解】解:∵四邊形ABCD是菱形,AC=6,BD=8,∴OA=OC=3,OB=OD=4,AO⊥BO,在Rt△AOB中,由勾股定理得:,故選:A.【點睛】本題考查了菱形的性質、勾股定理等知識;熟練掌握菱形對角線互相垂直且平分的性質是解題的關鍵.7、A【解析】【分析】根據折疊的條件可得:,在中,利用勾股定理就可以求解.【詳解】將此長方形折疊,使點與點重合,,,根據勾股定理得:,解得:..故選:A.【點睛】本題考查了利用勾股定理解直角三角形,掌握直角三角形兩直角邊的平方和等于斜邊的平方是解題的關鍵.8、D【解析】【分析】過點D作DH⊥BC,交BC的延長線于點H,連接BD,DE,先證∠DHC=90o,再證四邊形ADEF是平行四邊形,最后利用勾股定理得出結果.【詳解】過點D作DH⊥BC,交BC的延長線于點H,連接BD,DE,∵四邊形ABCD是平行四邊形,AB=3,∠ADC=60o,∴CD=AB=3,∠DCH=∠ABC=∠ADC=60o,∵DH⊥BC,∴∠DHC=90o,∴∠ADC+∠CDH=90°,∴∠CDH=30°,在Rt△DCH中,CH=CD=,DH=,∴,∵四邊形BCEF是平行四邊形,∴AD=BC=EF,AD∥EF,∴四邊形ADEF是平行四邊形,∴AF∥DE,AF=DE=1,∵AF⊥BE,∴DE⊥BE,∴,∴,故選D.【點睛】本題考查了平行四邊形的判定與性質,勾股定理,解題的關鍵是熟練運用這些性質解決問題.9、D【解析】【分析】根據菱形及矩形的性質可得到∠BAC的度數,從而根據直角三角形的性質求得BC的長.【詳解】解:∵四邊形AECF為菱形,∴∠FCO=∠ECO,EC=AE,由折疊的性質可知,∠ECO=∠BCE,又∠FCO+∠ECO+∠BCE=90°,∴∠FCO=∠ECO=∠BCE=30°,在Rt△EBC中,EC=2EB,又∵EC=AE,AB=AE+EB=6,∴EB=2,EC=4,∴Rt△BCE中,,故選:D.【點睛】本題主要考查了菱形的性質以及矩形的性質,解決問題的關鍵是根據折疊以及菱形的性質發(fā)現特殊角,根據30°的直角三角形中各邊之間的關系求得BC的長.10、C【解析】【分析】根據“同底等高”的原則可知平行四邊形AOC1B底邊AB上的高等于BC的,則有平行四邊形AOC1B的面積,平行四邊形AOC2B的邊AB上的高等于平行四邊形AOC1B底邊AB上的高的,則有平行四邊形ABC3O2的面積,…;由此規(guī)律可進行求解.【詳解】解:∵O1為矩形ABCD的對角線的交點,∴平行四邊形AOC1B底邊AB上的高等于BC的,∴平行四邊形AOC1B的面積=×1=,∵平行四邊形AO1C2B的對角線交于點O2,∴平行四邊形AOC2B的邊AB上的高等于平行四邊形AOC1B底邊AB上的高的,∴平行四邊形ABC3O2的面積=××1=,…,依此類推,平行四邊形ABC2014O2015的面積=cm2.故答案為:C.【點睛】本題主要考查矩形的性質與平行四邊形的性質,熟練掌握矩形的性質與平行四邊形的性質是解題的關鍵.二、填空題1、【解析】【分析】由折疊的性質可得,,,,由勾股定理可得,,根據題意可得,,求得的長度,即可求解.【詳解】解:由折疊的性質可得,,,,∴為等腰直角三角形,為的中點,∴由勾股定理可得,∴∵BG為△EBD的中線,△EBG的面積為3∴,解得∴由勾股定理得:故答案為:【點睛】此題考查了折疊的性質,勾股定理以及直角三角形的性質,解題的關鍵是靈活利用相關性質進行求解.2、6和8##8和6【解析】【分析】根據比例設兩條對角線分別為3x、4x,再根據菱形的面積等于兩對角線乘積的一半列式求出x的值即可.【詳解】解:設兩條對角線分別為3x、4x,根據題意得,×3x?4x=24,解得x=2(負值舍去),∴菱形的兩對角線的長分別為,.故答案為:6和8.【點睛】本題考查了菱形的面積,主要利用了菱形的對角線互相垂直平分的性質,菱形的面積的求法,需熟記.3、(4044,0)【解析】【分析】由題意可知:正方形的邊長為2,分別求得,可發(fā)現點的位置是四個一循環(huán),每旋轉一次半徑增加2,找到規(guī)律,即求得點P2021在x軸正半軸,進而求得OP的長度,即可求得點的坐標.【詳解】由題意可知:正方形的邊長為2,∵A(2,0),B(0,2),C(2,2),P1(4,0),P2(0,﹣4),P3(﹣6,2),P4(2,10),P5(12,0),P6(0,﹣12)…可發(fā)現點的位置是四個一循環(huán),每旋轉一次半徑增加2,2021÷4=505…1,故點P2021在x軸正半軸,OP的長度為2021×2+2=4044,即:P2021的坐標是(4044,0),故答案為:(4044,0).【點睛】本題考查了平面直角坐標系點的坐標規(guī)律,正方形的性質,找到點的位置是四個一循環(huán),每旋轉一次半徑增加2的規(guī)律是解題的關鍵.4、10【解析】【分析】過E作EF⊥AD于F,根據矩形ABCD沿MN折疊,使點A恰好落在邊BC上的點E處,得出△ANM≌△ENM,可得AM=EM,根據矩形ABCD,得出∠B=∠A=∠D=90°,再證四邊形ABEF為矩形,得出AF=BE=4,FE=AB=8,設AM=EM=m,FM=m-4,根據勾股定理,即,解方程m=10即可.【詳解】解:過E作EF⊥AD于F,∵矩形ABCD沿MN折疊,使點A恰好落在邊BC上的點E處,∴△ANM≌△ENM,∴AM=EM,∵矩形ABCD,∴∠B=∠A=∠D=90°,∵FE⊥AD,∴∠AFE=∠B=∠A=90°,∴四邊形ABEF為矩形,∴AF=BE=4,FE=AB=8,設AM=EM=m,FM=m-4在Rt△FEM中,根據勾股定理,即,解得m=10,∴MD=AD-AM=16-10=6,在Rt△MDC中,∴MC=.故答案為10.【點睛】本題考查折疊軸對稱性質,矩形判定與性質,勾股定理,掌握折疊軸對稱性質,矩形判定與性質,勾股定理是解題關鍵.5、6【解析】【分析】根據三角形的面積求出BF,利用勾股定理列式求出AF,再根據翻折變換的性質可得AD=AF,然后求出CF,設DE=x,表示出EF、EC,然后在Rt△CEF中,利用勾股定理列方程求解和三角形的面積公式解答即可.【詳解】解:∵四邊形ABCD是矩形∴AB=CD=9,BC=AD∵?AB?BF=54,∴BF=12.在Rt△ABF中,AB=9,BF=12,由勾股定理得,.∴BC=AD=AF=15,∴CF=BC-BF=15-12=3.設DE=x,則CE=9-x,EF=DE=x.則x2=(9-x)2+32,解得,x=5.∴DE=5.∴EC=DC-DE=9-5=4.∴△FCE的面積=×4×3=6.【點睛】本題考查了翻折變換的性質,矩形的性質,三角形的面積,勾股定理,熟記各性質并利用勾股定理列出方程是解題的關鍵.6、【解析】【分析】過點A作AD//BC,且AD=MN,連接MD,則四邊形ADMN是平行四邊形,作點A關于BC的對稱點A′,連接AA′交BC于點O,連接A′M,三點D、M、A′共線時,最小為A′D的長,利用勾股定理求A′D的長度即可解決問題.【詳解】解:過點A作AD//BC,且AD=MN,連接MD,則四邊形ADMN是平行四邊形,∴MD=AN,AD=MN,作點A關于BC的對稱點A′,連接AA′交BC于點O,連接A′M,則AM=A′M,∴AM+AN=A′M+DM,∴三點D、M、A′共線時,A′M+DM最小為A′D的長,∵AD//BC,AO⊥BC,∴∠DA=90°,∵,,,∴BC=BO=CO=AO=,∴,在Rt△AD中,由勾股定理得:D=∴的最小是值為:,故答案為:【點睛】本題主要考查了等腰三角形的性質,平行四邊形的判定與性質,勾股定理等知識,構造平行四邊形將AN轉化為DM是解題的關鍵.7、8【解析】【分析】根據正方形的軸對稱的性質可得陰影部分的面積等于正方形的面積的一半,然后列式進行計算即可得解.【詳解】解:×4×4=8.故答案為:8.【點睛】本題考查正方形的性質,軸對稱的性質,將陰影面積轉化為三角形面積是解題的關鍵,學會于轉化的思想思考問題.8、10或14##14或10【解析】【分析】利用BF平分∠ABC,CE平分∠BCD,以及平行關系,分別求出、,通過和是否相交,分兩類情況討論,最后通過邊之間的關系,求出的長即可.【詳解】解:四邊形ABCD是平行四邊形,,,,,,BF平分∠ABC,CE平分∠BCD,,,,,由等角對等邊可知:,,情況1:當與相交時,如下圖所示:,,,情況2:當與不相交時,如下圖所示:,,故答案為:10或14.【點睛】本題主要是考查了平行四邊形的性質,熟練運用平行關系+角平分線證邊相等,是解決本題的關鍵,還要注意根據和是否相交,本題分兩類情況,如果沒考慮仔細,會漏掉一種情況.9、10【解析】【分析】利用矩形性質,求證,將陰影部分的面積轉為的面積,最后利用中線平分三角形的面積,求出的面積,即可得到陰影部分的面積.【詳解】解:四邊形為矩形,,,,,在與中,,陰影部分的面積最后轉化為了的面積,中,,平分,陰影部分的面積:,故答案為:10.【點睛】本題主要是考查了矩形的性質以全等三角形的判定與性質以及中線平分三角形面積,熟練利用矩形性質,證明三角形全等,將陰影部分面積轉化為其他圖形的面積,這是解決本題的關鍵.10、2##【解析】【分析】根據折疊性質和平行四邊形的性質可以證明△ABG≌△EAD,可得AG=DE=2,然后利用勾股定理可得求出AF的長,進而可得GF的值.【詳解】解:如圖,GF⊥AB于點F,∵點E是CD邊上的中點,∴CE=DE=2,由折疊可知:∠BGE=∠C,BC=BG=3,CE=GE=2,在?ABCD中,BC=AD=3,BC∥AD,∴∠D+∠C=180°,BG=AD,∵∠BGE+∠AGB=180°,∴∠AGB=∠D,∵AB∥CD,∴∠BAG=∠AED,在△ABG和△EAD中,,∴△ABG≌△EAD(AAS),∴AG=DE=2,∴AB=AE=AG+GE=4,∵GF⊥AB于點F,∴∠AFG=∠BFG=90°,在Rt△AFG和△BFG中,根據勾股定理,得AG2-AF2=BG2-BF2,即22-AF2=32-(4-AF)2,解得AF=,∴GF2=AG2-AF2=4-=,∴GF=,故答案為2,.【點睛】本題考查了折疊的性質、平行四邊形的性質、勾股定理等知識,證明△ABG≌△EAD是解題的關鍵.三、解答題1、見詳解【分析】由題意易得AB=CD,AB∥CD,AE=CF,則有∠BAE=∠DCF,進而問題可求證.【詳解】證明:∵四邊形ABCD是平行四邊形,∴AB=CD,AB∥CD,∴∠BAE=∠DCF,∵E,F是對角線AC的三等分點,∴AE=CF,在△ABE和△CDF中,,∴△ABE≌△CDF(SAS),∴BE=DF.【點睛】本題主要考查平行四邊形的性質及全等三角形的性質與判定,熟練掌握平行四邊形的性質及全等三角形的性質與判定是解題的關鍵.2、(1)見解析;(2)12【分析】(1)由“SAS”可證△ABE≌△CDF;

(2)通過證明BE=DE,可得結論.【詳解】證明:(1)∵四邊形ABCD是平行四邊形,

∴AB=CD,∠BAD=∠BCD,

∴∠1=∠DCF,

在△ABE和△CDF中,,

∴△ABE≌△CDF(SAS);

(2)當∠ABE=10°時,四邊形BFDE是菱形,

理由如下:∵△ABE≌△CDF,

∴BE=DF,AE=CF,∵四邊形ABCD是平行四邊形,

∴AD=BC,

∴AD+AE=BC+CF,

∴BF=DE,

∴四邊形BFDE是平行四邊形,

∵∠1=32°,∠ADB=22°,

∴∠ABD=∠1-∠ADB=10°,

∵∠ABE=12°,

∴∠DBE=22°,

∴∠DBE=∠ADB=22°,

∴BE=DE,

∴平行四邊形BFDE是菱形,

故答案為:12.【點睛】本題考查了菱形的判定,平行四邊形的判定和性質,全等三角形的判定和性質,掌握菱形的判定是解題的關鍵.3、(1)四邊形CODP是菱形,理由見解析;(2)四邊形CODP是矩形,理由見解析;(3)四邊形CODP是正方形,理由見解析【分析】(1)先證明四邊形CODP是平行四邊形,再由矩形的性質可得OD=OC,即可證明平行四邊形OCDP是菱形;(2)先證明四邊形CODP是平行四邊形,再由菱形的性質可得∠DOC=90°,即可證明平行四邊形OCDP是矩形;(3)先證明四邊形CODP是平行四邊形,再由正方形的性質可得BD⊥AC,DO=OC,即可證明平行四邊形OCDP是正方形;【詳解】解:(1)四邊形CODP是菱形,理由如下:∵DP∥OC,且DP=OC,∴四邊形CODP是平行四邊形,又∵四邊形ABCD是矩形,∴OD=OC,∴平行四邊形OCDP是菱形;(2)四邊形CODP是矩形,理由如下:∵DP∥OC,且DP=OC,∴四邊形CODP是平行四邊形,又∵四邊形ABCD是菱形,∴BD⊥AC,∴∠DOC=90°,∴平行四邊形OCDP是矩形;(3)四邊形CODP是正方形,理由如下:∵DP∥OC,且DP=OC,∴四邊形CODP是平行四邊形,又∵四邊形ABCD是正方形,∴BD⊥AC,DO=OC,∴∠DOC=90°,平行四邊形CODP是菱形,∴菱形OCDP是正方形.【點睛】本題主要考查了矩形的性質與判定,菱形的性質與判定,正方形的性質與判定,解題的關鍵在于能夠熟練掌握特殊平行四邊形的性質與判定條件.4、(1)證明見解析;(2)【分析】(1)通過證明△CEK≌△BEF及△KED≌△FED即可證明;(2)延長CE到點P,使EP=CE,先證明點G在過點P且與CE垂直的直線PN上運動,再作點E關于點P的對稱點Q,連接BQ交PN于點G,此時△BEG的周長最小,求出此時GE+GB+BE的值即可.【詳解】證明:(1)∵四邊形ABCD是平行四邊形,∴,∴∠K=∠ABE,∵BF⊥AB,∴∠ABF=90°,∴∠ABE=90°﹣∠EBF=∠BFE,∴∠K=∠BFE,∵BE=CE,∴△CEK≌△BEF(AAS),∴CK=BF,EK=EF,∵,∴∠KED=

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論