2025年人教版9年級數(shù)學上冊《圓》必考點解析試卷_第1頁
2025年人教版9年級數(shù)學上冊《圓》必考點解析試卷_第2頁
2025年人教版9年級數(shù)學上冊《圓》必考點解析試卷_第3頁
2025年人教版9年級數(shù)學上冊《圓》必考點解析試卷_第4頁
2025年人教版9年級數(shù)學上冊《圓》必考點解析試卷_第5頁
已閱讀5頁,還剩29頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

人教版9年級數(shù)學上冊《圓》必考點解析考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題30分)一、單選題(10小題,每小題3分,共計30分)1、如圖,正方形的邊長為4,以點為圓心,為半徑畫圓弧得到扇形(陰影部分,點在對角線上).若扇形正好是一個圓錐的側(cè)面展開圖,則該圓錐的底面圓的半徑是(

)A. B.1 C. D.2、如圖,已知在中,是直徑,,則下列結(jié)論不一定成立的是(

)A. B.C. D.到、的距離相等3、如圖,在中,,,,以點為圓心,為半徑的圓與所在直線的位置關(guān)系是(

)A.相交 B.相離 C.相切 D.無法判斷4、“圓材埋壁”是我國古代著名數(shù)學著作《九章算術(shù)》中的一個問題,“今有圓材,埋在壁中,不知大小,以鋸鋸之,深一寸,鋸道長一尺,問徑幾何?”用現(xiàn)在的數(shù)學語言表述是:如圖所示,CD為⊙O的直徑,弦AB⊥CD,垂足為E,CE為1寸,AB為10寸,求直徑CD的長.依題意,CD長為(

)A.寸 B.13寸 C.25寸 D.26寸5、已知點在上.則下列命題為真命題的是(

)A.若半徑平分弦.則四邊形是平行四邊形B.若四邊形是平行四邊形.則C.若.則弦平分半徑D.若弦平分半徑.則半徑平分弦6、以原點O為圓心的圓交x軸于A、B兩點,交y軸的正半軸于點C,D為第一象限內(nèi)⊙O上的一點,若∠DAB=25°,則∠OCD=(

).A.50° B.40° C.70° D.30°7、如圖,正三角形PMN的頂點分別是正六邊形ABCDEF三邊的中點,則三角形PMN與六邊形ABCDEF的面積之比()A.1:2 B.1:3 C.2:3 D.3:88、如圖,⊙O的半徑為5cm,直線l到點O的距離OM=3cm,點A在l上,AM=3.8cm,則點A與⊙O的位置關(guān)系是(

)A.在⊙O內(nèi) B.在⊙O上 C.在⊙O外 D.以上都有可能9、如圖,⊙O是Rt△ABC的外接圓,∠ACB=90°,過點C作⊙O的切線,交AB的延長線于點D.設(shè)∠A=α,∠D=β,則()A.α﹣β B.α+β=90° C.2α+β=90° D.α+2β=90°10、有一個圓的半徑為5,則該圓的弦長不可能是(

)A.1 B.4 C.10 D.11第Ⅱ卷(非選擇題70分)二、填空題(10小題,每小題4分,共計40分)1、如圖,四邊形ABCD內(nèi)接于⊙O,∠A=125°,則∠C的度數(shù)為______.2、如圖,,在射線AC上順次截取,,以為直徑作交射線于、兩點,則線段的長是__________cm.3、如圖,在正六邊形ABCDEF中,分別以C,F(xiàn)為圓心,以邊長為半徑作弧,圖中陰影部分的面積為24π,則正六邊形的邊長為_____.4、如圖,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,點D是AB的中點,以CD為直徑作⊙O,⊙O分別與AC,BC交于點E,F(xiàn),過點F作⊙O的切線FG,交AB于點G,則FG的長為_____.5、數(shù)學課上,老師讓學生用尺規(guī)作圖畫Rt△ABC,使其斜邊AB=c,一條直角邊BC=a.小明的作法如圖所示,你認為小明這種作法中判斷∠ACB是直角的依據(jù)是_____.6、如圖,△ABC是⊙O的內(nèi)接三角形,AB是⊙O的直徑,I是△ABC的內(nèi)心,則∠BIA的度數(shù)是_______°.7、如圖所示的扇形中,,C為上一點,,連接,過C作的垂線交于點D,則圖中陰影部分的面積為_______.8、已知在平面直角坐標系中,點的坐標為是拋物線對稱軸上的一個動點.小明經(jīng)探究發(fā)現(xiàn):當?shù)闹荡_定時,拋物線的對稱軸上能使為直角三角形的點的個數(shù)也隨之確定.若拋物線的對稱軸上存在3個不同的點,使為直角三角形,則的值是____.9、如圖,在⊙O中,的度數(shù)等于250°,半徑OC垂直于弦AB,垂足為D,那么AC的度數(shù)等于________度.10、如圖,⊙O是△ABC的外接圓,∠A=60°,BC=6,則⊙O的半徑是_____.三、解答題(5小題,每小題6分,共計30分)1、如圖,在△ABC中,AB=AC,∠BAC與∠ABC的角平分線相交于點E,AE的延長線交△ABC的外接圓于點D,連接BD.(1)求證:∠BAD=∠DBC;(2)證明:點B、E、C在以點D為圓心的同一個圓上;(3)若AB=5,BC=8,求△ABC內(nèi)心與外心之間的距離.2、下列每個正方形的邊長為2,求下圖中陰影部分的面積.3、如圖,為的直徑,C為上一點,弦的延長線與過點C的切線互相垂直,垂足為D,,連接.(1)求的度數(shù);(2)若,求的長.4、如圖,AB是⊙O的直徑,C是⊙O上一點,D在AB的延長線上,且∠BCD=∠A.(1)求證:CD是⊙O的切線;(2)若⊙O的半徑為3,CD=4,求BD的長.5、已知P為⊙O上一點,過點P作不過圓心的弦PQ,在劣弧PQ和優(yōu)弧PQ上分別有點A、B(不與P、Q重合),連接AP、BP,若∠APQ=∠BPQ(1)如圖1,當∠APQ=45°,AP=1,BP=2時,求⊙O的半徑。(2)如圖2,連接AB,交PQ于點M,點N在線段PM上(不與P、M重合),連接ON、OP,設(shè)∠NOP=α,∠OPN=β,若AB平行于ON,探究α與β的數(shù)量關(guān)系。-參考答案-一、單選題1、D【解析】【分析】根據(jù)題意,扇形ADE中弧DE的長即為圓錐底面圓的周長,即通過計算弧DE的長,再結(jié)合圓的周長公式進行計算即可得解.【詳解】∵正方形的邊長為4∴∵是正方形的對角線∴∴∴圓錐底面周長為,解得∴該圓錐的底面圓的半徑是,故選:D.【考點】本題主要考查了扇形的弧長公式,圓的周長公式,正方形的性質(zhì)以及圓錐的相關(guān)知識點,熟練掌握弧長公式及圓的周長公式是解決本題的關(guān)鍵.2、A【解析】【分析】根據(jù)圓心角、弧、弦之間的關(guān)系即可得出答案.【詳解】在中,弦弦,則其所對圓心角相等,即,所對優(yōu)弧和劣弧分別相等,所以有,故B項和C項結(jié)論正確,∵,AO=DO=BO=CO∴(SSS)可得出點到弦,的距離相等,故D項結(jié)論正確;而由題意不能推出,故A項結(jié)論錯誤.故選:A【考點】此題主要考查圓的基本性質(zhì),解題的關(guān)鍵是熟知圓心角、弧、弦之間的關(guān)系.3、A【解析】【分析】過點C作CD⊥AB于點D,由題意易得AB=5,然后可得,進而根據(jù)直線與圓的位置關(guān)系可求解.【詳解】解:過點C作CD⊥AB于點D,如圖所示:∵,,,∴,根據(jù)等積法可得,∴,∵以點為圓心,為半徑的圓,∴該圓的半徑為,∵,∴圓與AB所在的直線的位置關(guān)系為相交,故選A.【考點】本題主要考查直線與圓的位置關(guān)系,熟練掌握直線與圓的位置關(guān)系是解題的關(guān)鍵.4、D【解析】【分析】連結(jié)AO,根據(jù)垂徑定理可得:,然后設(shè)⊙O半徑為R,則OE=R-1.再由勾股定理,即可求解.【詳解】解:連結(jié)AO,∵CD為直徑,CD⊥AB,∴.設(shè)⊙O半徑為R,則OE=R-1.Rt△AOE中,OA2=AE2+OE2,∴R2=52+(R-1)2,∴

R=13,∴

CD=2R=26(寸).故選:D【考點】本題主要考查了垂徑定理,勾股定理,熟練掌握垂徑定理是解題的關(guān)鍵.5、B【解析】【分析】根據(jù)圓的有關(guān)性質(zhì)、垂徑定理及其推論、特殊平行四邊形的判定與性質(zhì)依次對各項判斷即可.【詳解】A.∵半徑平分弦,∴OB⊥AC,AB=BC,不能判斷四邊形OABC是平行四邊形,假命題;B.∵四邊形是平行四邊形,且OA=OC,∴四邊形是菱形,∴OA=AB=OB,OA∥BC,∴△OAB是等邊三角形,∴∠OAB=60o,∴∠ABC=120o,真命題;C.∵,∴∠AOC=120o,不能判斷出弦平分半徑,假命題;D.只有當弦垂直平分半徑時,半徑平分弦,所以是假命題,故選:B.【考點】本題主要考查命題與證明,涉及垂徑定理及其推論、菱形的判定與性質(zhì)、等邊三角形的判定與性質(zhì)等知識,解答的關(guān)鍵是會利用所學的知識進行推理證明命題的真假.6、C【解析】【分析】根據(jù)圓周角定理求出∠DOB,根據(jù)等腰三角形性質(zhì)求出∠OCD=∠ODC,根據(jù)三角形內(nèi)角和定理求出即可.【詳解】解:連接OD,∵∠DAB=25°,∴∠BOD=2∠DAB=50°,∴∠COD=90°-50°=40°,∵OC=OD,∴∠OCD=∠ODC=(180°-∠COD)=70°,故選:C.【考點】本題考查了圓周角定理,等腰三角形性質(zhì),三角形內(nèi)角和定理的應(yīng)用,主要考查學生的推理能力,題目比較典型,難度適中.7、D【解析】【分析】連接BE,設(shè)正六邊形的邊長為a,首先證明△PMN是等邊三角形,分別求出△PMN,正六邊形ABCDEF的面積即可.【詳解】解:連接BE,設(shè)正六邊形的邊長為a.則AF=a,BE=2a,AF∥BE,∵AP=PB,F(xiàn)N=NE,∴PN=(AF+BE)=1.5a,同理可得PM=MN=1.5a,∴PN=PM=MN,∴△PMN是等邊三角形,∴,故選:D.【考點】本題考查正多邊形與圓,等邊三角形的判定和性質(zhì)等知識,解題的關(guān)鍵是學會利用參數(shù)解決問題,屬于中考??碱}型.8、A【解析】【詳解】如圖,連接OA,則在直角△OMA中,根據(jù)勾股定理得到OA=.∴點A與⊙O的位置關(guān)系是:點A在⊙O內(nèi).故選A.9、C【解析】【分析】連接OC,由∠BOC是△AOC的外角,可得∠BOC=2∠A=2α,由CD是⊙O的切線,可求∠OCD=90°,可得∠D=90°﹣2α=β即可.【詳解】連接OC,如圖,∵⊙O是Rt△ABC的外接圓,∠ACB=90°,∴AB是直徑,∵∠A=α,OA=OC,∠BOC是△AOC的外角,∴∠A=∠ACO,∴∠BOC=∠A+∠ACO=2∠A=2α,∵CD是⊙O的切線,∴OC⊥CD,∴∠OCD=90°,∴∠D=90°﹣∠BOC=90°﹣2α=β,∴2α+β=90°.故選:C.【考點】本題考查圓的半徑相等,三角形外角性質(zhì),切線性質(zhì),直角三角形兩銳角互余性質(zhì),掌握圓的半徑相等,三角形外角性質(zhì),切線性質(zhì),直角三角形兩銳角互余性質(zhì).10、D【解析】【分析】根據(jù)圓的半徑為5,可得到圓的最大弦長為10,即可求解.【詳解】∵半徑為5,∴直徑為10,∴最長弦長為10,則不可能是11.故選:D.【考點】本題主要考查了圓的基本性質(zhì),理解圓的直徑是圓的最長的弦是解題的關(guān)鍵.二、填空題1、55°##55度【解析】【分析】根據(jù)圓內(nèi)接四邊形的性質(zhì)得出∠A+∠C=180°,再求出答案即可.【詳解】解:∵四邊形ABCD內(nèi)接于⊙O,∴∠A+∠C=180°,∵∠A=125°,∴∠C=180°-125°=55°,故答案為:55°.【考點】本題考查了圓內(nèi)接四邊形的性質(zhì)和圓周角定理,能熟記圓內(nèi)接四邊形的對角互補是解此題的關(guān)鍵.2、6【解析】【分析】過點作于,連,根據(jù)垂徑定理得,在中,,,利用含30度的直角三角形三邊的關(guān)系可得到,再利用勾股定理計算出,由得到答案.【詳解】解:過點作于,連,如圖則,在中,,,則,在中,,,則,則.故答案為6.【考點】本題考查了垂徑定理,含30度的直角三角形三邊的關(guān)系以及勾股定理,熟悉相關(guān)性質(zhì)是解題的關(guān)鍵.3、6【解析】【分析】根據(jù)多邊形的內(nèi)角和公式求出扇形的圓心角,然后按扇形面積公式列方程求解計算即可.【詳解】解:∵正六邊形的內(nèi)角是120度,陰影部分的面積為24π,設(shè)正六邊形的邊長為r,∴,解得r=6.(負根舍去)則正六邊形的邊長為6.故答案為:【考點】本題考查的是正多邊形與圓,扇形面積,掌握以上知識是解題的關(guān)鍵.4、.【解析】【分析】先利用勾股定理求出AB=10,進而求出CD=BD=5,再求出CF=4,進而求出DF=3,再判斷出FG⊥BD,利用面積即可得出結(jié)論.【詳解】如圖,在Rt△ABC中,根據(jù)勾股定理得,AB=10,∴點D是AB中點,∴CD=BD=AB=5,連接DF,∵CD是⊙O的直徑,∴∠CFD=90°,∴BF=CF=BC=4,∴DF==3,連接OF,∵OC=OD,CF=BF,∴OF∥AB,∴∠OFC=∠B,∵FG是⊙O的切線,∴∠OFG=90°,∴∠OFC+∠BFG=90°,∴∠BFG+∠B=90°,∴FG⊥AB,∴S△BDF=DF×BF=BD×FG,∴FG=,故答案為.【考點】此題主要考查了直角三角形的性質(zhì),勾股定理,切線的性質(zhì),三角形的中位線定理,三角形的面積公式,判斷出FG⊥AB是解本題的關(guān)鍵.5、直徑所對的圓周角是直角【解析】【分析】根據(jù)圓周角定理即可得出結(jié)論.【詳解】解:根據(jù)“直徑所對的圓周角是直角”得出.故答案為直徑所對的圓周角是直角.【考點】本題考查的是圓周角定理,熟知直徑所對的圓周角是直角是解答此題的關(guān)鍵.6、135【解析】【分析】先根據(jù)直徑所對的圓周角是直角得出,進而求出,再根據(jù)內(nèi)心是三角形內(nèi)角平分線的交點得出,最后利用三角形的內(nèi)角和定理即得.【詳解】∵AB是⊙O的直徑∴∴∵I是△ABC的內(nèi)心∴IA、IB是角平分線∴∴故答案為:135.【考點】本題考查圓周角定理、內(nèi)心、角平分線的定義及三角形內(nèi)角和定理,解題關(guān)鍵是熟知:直徑所對的圓周角為直角;三角形的內(nèi)心是內(nèi)角平分線的交點.7、【解析】【分析】先根據(jù)題目條件計算出OD,CD的長度,判斷為等邊三角形,之后表示出陰影面積的計算公式進行計算即可.【詳解】在中,∴∵∴∵∴為等邊三角形∴故答案為:【考點】本題考查了陰影面積的計算,熟知不規(guī)則陰影面積的計算方法是解題的關(guān)鍵.8、2或【解析】【分析】分,和確定點M的運動范圍,結(jié)合拋物線的對稱軸與,,共有三個不同的交點,確定對稱軸的位置即可得出結(jié)論.【詳解】解:由題意得:O(0,0),A(3,4)∵為直角三角形,則有:①當時,∴點M在與OA垂直的直線上運動(不含點O);如圖,②當時,,∴點M在與OA垂直的直線上運動(不含點A);③當時,,∴點M在與OA為直徑的圓上運動,圓心為點P,∴點P為OA的中點,∴∴半徑r=∵拋物線的對稱軸與x軸垂直由題意得,拋物線的對稱軸與,,共有三個不同的交點,∴拋物線的對稱軸為的兩條切線,而點P到切線,的距離,又∴直線的解析式為:;直線的解析式為:;∴或4∴或-8故答案為:2或-8【考點】本題是二次函數(shù)的綜合題型,其中涉及到的知識點有圓的切線的判定,直角三角形的判定,綜合性較強,有一定難度.運用數(shù)形結(jié)合、分類討論是解題的關(guān)鍵.9、55【解析】【分析】連接OA,OB,由已知可得∠AOB=360°﹣250°=110°,再根據(jù)垂徑定理即可得解.【詳解】連接OA,OB,由已知可得∠AOB=360°﹣250°=110°,∵OC⊥AB,∴,∴∠AOC=∠AOB=55°.故答案為55.【考點】本題主要考查圓心角定理與垂徑定理,解此題的關(guān)鍵在于熟練掌握其知識點.10、6【解析】【分析】作直徑CD,如圖,連接BD,根據(jù)圓周角定理得到∠CBD=90°,∠D=60°,然后利用含30度的直角三角形三邊的關(guān)系求出CD,從而得到⊙O的半徑.【詳解】解:作直徑CD,如圖,連接BD,∵CD為⊙O直徑,∴∠CBD=90°,∵∠D=∠A=60°,∴BD=BC=×6=6,∴CD=2BD=12,∴OC=6,即⊙O的半徑是6.故答案為6.【考點】本題主要考查圓周角的性質(zhì),解決本題的關(guān)鍵是要熟練掌握圓周角的性質(zhì).三、解答題1、(1)見解析(2)見解析(3)【解析】【分析】(1)根據(jù)同弧所對的圓周角相等,可得,再由平分,得,從而證明結(jié)論;(2)由,得,再根據(jù),,得,從而有,即可證明;(3)由題意知為內(nèi)心,為外心,設(shè),,則,可求出的長,再根據(jù)勾股定理求出的長,而,從而得出答案.(1)解:證明:平分,,又,;(2)解:證明:,平分,,連接,,平分,,,,,,,點、、在以點為圓心的同一個圓上;(3)解:如圖:,,,,,,,,在中,,在中,設(shè),,則,即,解得:,即,為直徑,,在中,,,,為角平分線的交點,為內(nèi)心,為內(nèi)心與外心之間的距離,內(nèi)心與外心之間的距離為.【考點】本題是圓的綜合題,主要考查了圓周角定理,三角形的內(nèi)心和外心的性質(zhì),圓的定義,勾股定理等知識,解題的關(guān)鍵是利用(2)中證明結(jié)論是解決問題(3)的關(guān)鍵.2、2.28【解析】【分析】由圖形可知陰影面積=半圓面積-兩個小三角形面積和,根據(jù)公式計算即可.【詳解】πr2÷2-2×2÷2×2=3.14×2×2÷2-4=2.28.【考點】本題考查了圓的面積公式,解題的關(guān)鍵是熟練掌握間接法求陰影部分圖形的面積.3、(1)55°;(2).【解析】【分析】(1)連接OC,如圖,利用切線的性質(zhì)得到OC⊥CD,則判斷OC∥AE,所以∠DAC=∠OCA,然后利用∠OCA=∠OAC得到∠OAB的度數(shù),即可求解;(2)利用(1)的結(jié)論先求得∠AEO∠EAO70°,再平行線的性質(zhì)求得∠COE=70°,然后利用弧長公式求解即可.【詳解】解:(1)連接OC,如圖,∵CD是⊙O的切線,∴OC⊥CD,∵AE⊥CD,∴OC∥AE,∴∠DAC=∠OCA,∵OA=OC,∠CAD=35°,∴∠OAC=∠OCA=∠CAD=35°,∵AB為⊙O的直徑,∴∠ACB=90°,∴∠B=90°-∠OAC=55°;(2)連接OE,OC,如圖,由(1)得∠EAO=∠OAC+∠CAD=70°,∵OA=OE,∴∠AEO∠EAO70°,∵OC∥AE,∴∠COE=∠AEO=70°,∴AB=2,則OC=OE=1,∴的長為.【考點】本題考查了切線的性質(zhì),圓周角定理,弧長公式等知識,解題的關(guān)鍵是學會添加常用輔助線.4、

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論