難點(diǎn)解析-人教版8年級數(shù)學(xué)下冊《平行四邊形》專項(xiàng)練習(xí)試題_第1頁
難點(diǎn)解析-人教版8年級數(shù)學(xué)下冊《平行四邊形》專項(xiàng)練習(xí)試題_第2頁
難點(diǎn)解析-人教版8年級數(shù)學(xué)下冊《平行四邊形》專項(xiàng)練習(xí)試題_第3頁
難點(diǎn)解析-人教版8年級數(shù)學(xué)下冊《平行四邊形》專項(xiàng)練習(xí)試題_第4頁
難點(diǎn)解析-人教版8年級數(shù)學(xué)下冊《平行四邊形》專項(xiàng)練習(xí)試題_第5頁
已閱讀5頁,還剩28頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

人教版8年級數(shù)學(xué)下冊《平行四邊形》專項(xiàng)練習(xí)考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題30分)一、單選題(10小題,每小題3分,共計(jì)30分)1、菱形ABCD的對角線AC,BD相交于點(diǎn)O,E,F(xiàn)分別是AD,CD邊上的中點(diǎn),連接EF.若EF=,BD=2,則菱形ABCD的面積為()A.2 B. C.6 D.82、如圖,平行四邊形ABCD的周長為36,對角線AC,BD相交于點(diǎn)O,點(diǎn)E是CD的中點(diǎn),BD=12,則△DOE的周長是()A.12 B.15 C.18 D.243、如圖,正方形ABCO和正方形DEFO的頂點(diǎn)A、E、O在同一直線上,且EF=,AB=3,給出下列結(jié)論:①∠COD=45°;②AE=3+;③CF=AD=;④S△COF+S△EOF=.期中正確的個數(shù)為()A.1個 B.2個 C.3個 D.4個4、如圖,把矩形紙片沿對角線折疊,若重疊部分為,那么下列說法錯誤的是()A.是等腰三角形 B.和全等C.折疊后得到的圖形是軸對稱圖形 D.折疊后和相等5、平行四邊形中,,則的度數(shù)是()A. B. C. D.6、如圖,菱形OABC在平面直角坐標(biāo)系中的位置如圖所示,∠AOC=45°,OA=,則點(diǎn)C的坐標(biāo)為()A.(,1) B.(1,1) C.(1,) D.(+1,1)7、菱形ABCD的周長是8cm,∠ABC=60°,那么這個菱形的對角線BD的長是()A.cm B.2cm C.1cm D.2cm8、下列說法正確的是()A.平行四邊形的對角線互相平分且相等 B.矩形的對角線相等且互相平分C.菱形的對角線互相垂直且相等 D.正方形的對角線是正方形的對稱軸9、如圖,在矩形ABCD中,AB=1,BC=2,將其折疊,使AB邊落在對角線AC上,得到折痕AE,則點(diǎn)E到點(diǎn)B的距離為()A. B. C. D.10、下面四個命題:①直角三角形的兩邊長為3,4,則第三邊長為5;②,③對角線相等且互相垂直的四邊形是正方形;④若四邊形中,ADBC,且,則四邊形是平行四邊形.其中正確的命題的個數(shù)為()A.0 B.1 C.2 D.3第Ⅱ卷(非選擇題70分)二、填空題(10小題,每小題4分,共計(jì)40分)1、如圖,在平行四邊形ABCD中,,E、F分別在CD和BC的延長線上,,,則______.2、如圖,四邊形和四邊形都是邊長為4的正方形,點(diǎn)是正方形對角線的交點(diǎn),正方形繞點(diǎn)旋轉(zhuǎn)過程中分別交,于點(diǎn),,則四邊形的面積為______.3、如圖,在一張矩形紙片ABCD中,AB=30cm,將紙片對折后展開得到折痕EF.點(diǎn)P為BC邊上任意一點(diǎn),若將紙片沿著DP折疊,使點(diǎn)C恰好落在線段EF的三等分點(diǎn)上,則BC的長等于_________cm.4、正方形ABCD的邊長為4,則圖中陰影部分的面積為___.5、如圖,在正方形ABCD中,點(diǎn)O在內(nèi),,則的度數(shù)為______.6、如圖,在等腰△OAB中,OA=OB=2,∠OAB=90°,以AB為邊向右側(cè)作等腰Rt△ABC,則OC的長為__________________.7、已知一直角三角形的兩直角邊長分別為6和8,則斜邊上中線的長度是_____.8、已知Rt△ABC的周長是24,斜邊上的中線長是5,則S△ABC=_____.9、如圖,正方形紙片ABCD的邊長為12,E是邊CD上一點(diǎn),連接AE.折疊該紙片,使點(diǎn)A落在AE上的G點(diǎn),并使折痕經(jīng)過點(diǎn)B,得到折痕BF,點(diǎn)F在AD上.若,則GE的長為__________.10、如圖,在直角三角形ABC中,∠B=90°,點(diǎn)D是AC邊上的一點(diǎn),連接BD,把△CBD沿著BD翻折,點(diǎn)C落在AB邊上的點(diǎn)E處,得到△EBD,連接CE交BD于點(diǎn)F,BG為△EBD的中線.若BC=4,△EBG的面積為3,則CD的長為____________三、解答題(5小題,每小題6分,共計(jì)30分)1、如圖,在△ABC中,點(diǎn)D,E分別是AC,AB的中點(diǎn),點(diǎn)F是CB延長線上的一點(diǎn),且CF=3BF,連接DB,EF.(1)求證:四邊形DEFB是平行四邊形;(2)若∠ACB=90°,AC=12cm,DE=4cm,求四邊形DEFB的周長.2、如圖,ABCD是平行四邊形,AD=4,AB=5,點(diǎn)A的坐標(biāo)為(-2,0),求點(diǎn)B、C、D的坐標(biāo).3、如圖,將長方形ABCD沿著對角線BD折疊,使點(diǎn)C落在C′處,BC′交AD于點(diǎn)E.(1)試判斷△BDE的形狀,并說明理由;(2)若AB=6,BC=18,求△BDE的面積.4、如圖,在四邊形ABCD中,ABDC,AB=AD,對角線AC,BD交于點(diǎn)O,AC平分∠BAD,過點(diǎn)C作CE⊥AB交AB的延長線于點(diǎn)E,連接OE.(1)求證:四邊形ABCD是菱形;(2)若AB=,BD=2,求OE的長.5、如圖,正方形網(wǎng)格中每個小正方形的邊長都是1,每個小正方形的頂點(diǎn)叫做格點(diǎn).試畫出一個頂點(diǎn)都在格點(diǎn)上,且面積為10的正方形.-參考答案-一、單選題1、A【解析】【分析】根據(jù)中位線定理可得對角線AC的長,再由菱形面積等于對角線乘積的一半可得答案.【詳解】解:∵E,F(xiàn)分別是AD,CD邊上的中點(diǎn),EF=,∴AC=2EF=2,又∵BD=2,∴菱形ABCD的面積S=×AC×BD=×2×2=2,故選:A.【點(diǎn)睛】本題主要考查菱形的性質(zhì)與中位線定理,熟練掌握中位線定理和菱形面積公式是關(guān)鍵.2、B【解析】【分析】根據(jù)平行四邊形的對邊相等和對角線互相平分可得,OB=OD,又因?yàn)镋點(diǎn)是CD的中點(diǎn),可得OE是△BCD的中位線,可得OE=BC,所以易求△DOE的周長.【詳解】解:∵?ABCD的周長為36,∴2(BC+CD)=36,則BC+CD=18.∵四邊形ABCD是平行四邊形,對角線AC,BD相交于點(diǎn)O,BD=12,∴OD=OB=BD=6.又∵點(diǎn)E是CD的中點(diǎn),∴OE是△BCD的中位線,DE=CD,∴OE=BC,∴△DOE的周長=OD+OE+DE=BD+(BC+CD)=6+9=15,故選:B.【點(diǎn)睛】本題考查了三角形中位線定理、平行四邊形的性質(zhì).解題時,利用了“平行四邊形對角線互相平分”、“平行四邊形的對邊相等”的性質(zhì).3、B【解析】【分析】根據(jù)∠COD=180°﹣∠AOC﹣∠DOE得到∠COD=45°,根據(jù)已知條件求出OE=2,得到AE=AO+OE=2+3=5,作DH⊥AB于H,作FG⊥CO交CO的延長線于G,根據(jù)勾股定理即可得到BD,根據(jù)三角形面積的關(guān)系計(jì)算即可;【詳解】①∵∠AOC=90°,∠DOE=45°,∴∠COD=180°﹣∠AOC﹣∠DOE=45°,故①正確;②∵EF,∴OE=2,∵AO=AB=3,∴AE=AO+OE=2+3=5,故②錯誤;③作DH⊥AB于H,作FG⊥CO交CO的延長線于G,則FG=1,CF,BH=3﹣1=2,DH=3+1=4,BD,故③錯誤;④△COF的面積S△COF3×1,△EOF的面積S△EOF=()2=1S△COF+S△EOF=故④正確;正確的是①④;故選:B.【點(diǎn)睛】本題主要考查了正方形的性質(zhì),勾股定理,準(zhǔn)確計(jì)算是解題的關(guān)鍵.4、D【解析】【分析】根據(jù)題意結(jié)合圖形可以證明EB=ED,進(jìn)而證明△ABE≌△CDE;此時可以判斷選項(xiàng)A、B、D是成立的,問題即可解決.【詳解】解:由題意得:△BCD≌△BFD,∴DC=DF,∠C=∠F=90°;∠CBD=∠FBD,又∵四邊形ABCD為矩形,∴∠A=∠F=90°,DE∥BF,AB=DF,∴∠EDB=∠FBD,DC=AB,∴∠EDB=∠CBD,∴EB=ED,△EBD為等腰三角形;在△ABE與△CDE中,∵,∴△ABE≌△CDE(HL);又∵△EBD為等腰三角形,∴折疊后得到的圖形是軸對稱圖形;綜上所述,選項(xiàng)A、B、C成立,∴不能證明D是正確的,故說法錯誤的是D,故選:D.【點(diǎn)睛】本題主要考查了翻折變換及其應(yīng)用問題;解題的關(guān)鍵是靈活運(yùn)用翻折變換的性質(zhì),找出圖中隱含的等量關(guān)系;借助矩形的性質(zhì)、全等三角形的判定等幾何知識來分析、判斷、推理或解答.5、B【解析】【分析】根據(jù)平行四邊形對角相等,即可求出的度數(shù).【詳解】解:如圖所示,∵四邊形是平行四邊形,∴,∴,∴.故:B.【點(diǎn)睛】本題考查了平行四邊形的性質(zhì),解題的關(guān)鍵是掌握平行四邊形的性質(zhì).6、B【解析】【分析】作CD⊥x軸,根據(jù)菱形的性質(zhì)得到OC=OA=,在Rt△OCD中,根據(jù)勾股定理求出OD的值,即可得到C點(diǎn)的坐標(biāo).【詳解】:作CD⊥x軸于點(diǎn)D,則∠CDO=90°,∵四邊形OABC是菱形,OA=,∴OC=OA=,又∵∠AOC=45°,∴∠OCD=90°-∠AOC=90°-45°=45°,∴∠DOC=∠OCD,∴CD=OD,在Rt△OCD中,OC=,CD2+OD2=OC2,∴2OD2=OC2=2,∴OD2=1,∴OD=CD=1(負(fù)值舍去),則點(diǎn)C的坐標(biāo)為(1,1),故選:B.【點(diǎn)睛】此題考查了菱形的性質(zhì)、等腰直角三角形的性質(zhì)以及勾股定理,根據(jù)勾股定理和等腰直角三角形的性質(zhì)求出OD=CD=1是解決問題的關(guān)鍵.7、B【解析】【分析】由菱形的性質(zhì)得AB=BC=2(cm),OA=OC,OB=OD,AC⊥BD,再證△ABC是等邊三角形,得AC=AB=2(cm),則OA=1(cm),然后由勾股定理求出OB=(cm),即可求解.【詳解】解:∵菱形ABCD的周長為8cm,∴AB=BC=2(cm),OA=OC,OB=OD,AC⊥BD,∵∠ABC=60°,∴△ABC是等邊三角形,∴AC=AB=2cm,∴OA=1(cm),在Rt△AOB中,由勾股定理得:OB===(cm),∴BD=2OB=2(cm),故選:B.【點(diǎn)睛】此題考查了菱形的性質(zhì),勾股定理,等邊三角形的性質(zhì)和判定,解題的關(guān)鍵是熟練掌握菱形的性質(zhì),勾股定理,等邊三角形的性質(zhì)和判定方法.8、B【解析】【分析】根據(jù)平行四邊形、矩形、菱形、正方形的性質(zhì)定理判斷即可.【詳解】解:平行四邊形的對角線互相平分,不一定相等,A錯誤;矩形的對角線相等且互相平分,B正確;菱形的對角線互相垂直,不一定相等,C錯誤;正方形的對角線所在的直線是正方形的對稱軸,D錯誤;故選:B.【點(diǎn)睛】本題考查了命題的真假判斷,掌握平行四邊形、矩形、菱形、正方形的性質(zhì)是解題的關(guān)鍵.9、C【解析】【分析】由于AE是折痕,可得到AB=AF,BE=EF,再求解設(shè)BE=x,在Rt△EFC中利用勾股定理列出方程,通過解方程可得答案.【詳解】解:矩形ABCD,設(shè)BE=x,∵AE為折痕,∴AB=AF=1,BE=EF=x,∠AFE=∠B=90°,Rt△ABC中,∴Rt△EFC中,,EC=2-x,∴,解得:,則點(diǎn)E到點(diǎn)B的距離為:.故選:C.【點(diǎn)睛】本題考查了勾股定理和矩形與折疊問題;二次根式的乘法運(yùn)算,利用對折得到,再利用勾股定理列方程是解本題的關(guān)鍵.10、B【解析】【分析】①直角三角形兩直角邊長為3,4,斜邊長為5;②x的取值范圍不同;③對角線相等且互相垂直平分的四邊形是正方形;④熟記平行四邊形的判定定理進(jìn)行證明.【詳解】解:①3,4沒說是直角邊的長還是斜邊的長,故第三邊答案不唯一,故①錯誤.②等式左邊的值小于0,等式右邊的值大于或等于0,故②錯誤.③必須加上平分這個條件,否則不會是正方形,故③錯誤.④延長CB至E,使BE=AB,延長AD至F,使DF=DC,則四邊形ECFA是平行四邊形,∴∠E=∠F,由∠ABC=2∠E,∠ADC=2∠F,知∠ABC=∠ADC,又AD∥BC,故∠ABC+∠BAD=180°,即∠ADC+∠BAD=180°,∴AB∥CD,四邊形ABCD是平行四邊形.故④正確.故選:B.【點(diǎn)睛】本題考查判斷命題正誤的能力以及掌握勾股定理,正方形的判定定理,平行四邊形的判定定理以及化簡代數(shù)式注意取值范圍等.二、填空題1、8【解析】【分析】證明四邊形ABDE是平行四邊形,得到DE=CD=,,過點(diǎn)E作EH⊥BF于H,證得CH=EH,利用勾股定理求出EH,再根據(jù)30度角的性質(zhì)求出EF.【詳解】解:∵四邊形ABCD是平行四邊形,∴,AB=CD,∵,∴四邊形ABDE是平行四邊形,∴DE=CD=,,過點(diǎn)E作EH⊥BF于H,∵,∴∠ECH=,∴CH=EH,∵,,∴CH=EH=4,∵∠EHF=90°,,∴EF=2EH=8,故答案為:8.【點(diǎn)睛】此題考查了平行四邊形的判定及性質(zhì),勾股定理,直角三角形30度角的性質(zhì),熟記各知識點(diǎn)并應(yīng)用解決問題是解題的關(guān)鍵.2、4【解析】【分析】過點(diǎn)O作OG⊥AB,垂足為G,過點(diǎn)O作OH⊥BC,垂足為H,把四邊形的面積轉(zhuǎn)化為正方形OGBH的面積,等于正方形ABCD面積的.【詳解】如圖,過點(diǎn)O作OG⊥AB,垂足為G,過點(diǎn)O作OH⊥BC,垂足為H,∵四邊形ABCD的對角線交點(diǎn)為O,∴OA=OC,∠ABC=90°,AB=BC,∴OG∥BC,OH∥AB,∴四邊形OGBH是矩形,OG=OH=,∠GOH=90°,∴=4,∵∠FOH+∠FOG=90°,∠EOG+∠FOG=90°,∴∠FOH=∠EOG,∵∠OGE=∠OHF=90°,OG=OH,∴△OGE≌△OHF,∴,∴,∴=4,故答案為:4.【點(diǎn)睛】本題考查了正方形的性質(zhì),三角形的全等與性質(zhì),補(bǔ)形法計(jì)算面積,熟練掌握正方形的性質(zhì),靈活運(yùn)用補(bǔ)形法計(jì)算面積是解題的關(guān)鍵.3、或【解析】【分析】分為將紙片沿縱向?qū)φ?,和沿橫向?qū)φ蹆煞N情況,利用折疊的性質(zhì),以及勾股定理解答即可【詳解】如圖:當(dāng)將紙片沿縱向?qū)φ鄹鶕?jù)題意可得:為的三等分點(diǎn)在中有如圖:當(dāng)將紙片沿橫向?qū)φ鄹鶕?jù)題意得:,在中有為的三等分點(diǎn)故答案為:或【點(diǎn)睛】本題考查了矩形的性質(zhì),折疊的性質(zhì),以及勾股定理解直角三角形,解題關(guān)鍵是分兩種情況作出折痕,考慮問題應(yīng)全面,不應(yīng)丟解.4、8【解析】【分析】根據(jù)正方形的軸對稱的性質(zhì)可得陰影部分的面積等于正方形的面積的一半,然后列式進(jìn)行計(jì)算即可得解.【詳解】解:×4×4=8.故答案為:8.【點(diǎn)睛】本題考查正方形的性質(zhì),軸對稱的性質(zhì),將陰影面積轉(zhuǎn)化為三角形面積是解題的關(guān)鍵,學(xué)會于轉(zhuǎn)化的思想思考問題.5、135°【解析】【分析】先根據(jù)正方形的性質(zhì)得到∠OAC+∠OAD=45°,再由∠OAC=∠ODA,推出∠ODA+∠OAD=45°,即可利用三角形內(nèi)角和定理求解.【詳解】解:∵四邊形ABCD是正方形,∴∠CAD=45°,∴∠OAC+∠OAD=45°,又∵∠OAC=∠ODA,∴∠ODA+∠OAD=45°,∴∠AOD=180°-∠ODA-∠OAD=135°,故答案為:135°.【點(diǎn)睛】本題主要考查了正方形的性質(zhì),三角形內(nèi)角和定理,解題的關(guān)鍵在于能夠熟練掌握正方形的性質(zhì).6、2或2##或【解析】【分析】如圖1,以AB為斜邊作等腰Rt△ABC,根據(jù)等腰直角三角形的性質(zhì)得到∠OAB=∠ABO=45°,∠CAB=∠CBA=45°,∠ACB=90°,推出四邊形AOBC是正方形,根據(jù)勾股定理得到OC=AB;如圖2,以AB為直角邊作等腰Rt△ABC,求得∠ABC=45°,根據(jù)等腰直角三角形的性質(zhì)得到∠ABO=45°,根據(jù)勾股定理得到BC,于是得到結(jié)論.【詳解】解:如圖1,以AB為斜邊作等腰Rt△ABC,∵OA=OB=2,∠OAB=90°,∴∠OAB=∠ABO=45°,∵△ABC是等腰直角三角形,∴∠CAB=∠CBA=45°,∠ACB=90°,∴∠AOB=∠OAC=∠ACB=∠CBO=90°,∴四邊形AOBC是正方形,∴OC=AB==2;如圖2,以AB為直角邊作等腰Rt△ABC,∴∠ABC=45°,∵OA=OB=2,∠OAB=90°,∴∠ABO=45°,AB=2,∴∠CBO=90°,∵△ABC是等腰直角三角形,∴BC==4,∴OC=,當(dāng)以AB、BC為直角邊作等腰直角三角形時,與圖2的解法相同;綜上所述,OC的長為2或2,故答案為:2或2.【點(diǎn)睛】本題考查了勾股定理,等腰直角三角形以及正方形的判定,正確的作出圖形,進(jìn)行分類討論是解題的關(guān)鍵.7、5【解析】【分析】直角三角形中,斜邊長為斜邊中線長的2倍,所以求斜邊上中線的長求斜邊長即可.【詳解】解:在直角三角形中,兩直角邊長分別為6和8,則斜邊長==10,∴斜邊中線長為×10=5,故答案為5.【點(diǎn)睛】本題考查了直角三角形斜邊上的中線等于斜邊的一半,勾股定理,根據(jù)勾股定理求得斜邊長是解題的關(guān)鍵.8、24【解析】【分析】先根據(jù)直角三角形的性質(zhì)求解,再利用周長求解,兩邊平方結(jié)合勾股定理可得,利用三角形面積公式求解即可.【詳解】解:如圖Rt△ABC,∠C=90°,點(diǎn)D為AB中點(diǎn),為RtABC斜邊上的中線,,,,,,,由,,∴S△ABC=.故答案為:24.【點(diǎn)睛】本題考查的是直角三角形斜邊上的中線的性質(zhì),勾股定理的應(yīng)用,完全平方公式,三角形面積公式,掌握以上知識是解題的關(guān)鍵.9、##【解析】【分析】由折疊及軸對稱的性質(zhì)可知,△ABF≌△GBF,BF垂直平分AG,先證△ABF≌△DAE,推出AF的長,再利用勾股定理求出BF的長,最后在Rt△ABF中利用面積法可求出AH的長,可進(jìn)一步求出AG的長,GE的長.【詳解】解:∵四邊形ABCD為正方形,∴AB=AD=12,∠BAD=∠D=90°,由折疊及軸對稱的性質(zhì)可知,△ABF≌△GBF,BF垂直平分AG,∴BF⊥AE,AH=GH,∴∠BAH+∠ABH=90°,又∵∠FAH+∠BAH=90°,∴∠ABH=∠FAH,∴△ABF≌△DAE(ASA),∴AF=DE=5,在Rt△ABF中,BF==13,S△ABF=AB?AF=BF?AH,∴12×5=13AH,∴AH=,∴AG=2AH=,∵AE=BF=13,∴GE=AE-AG=13-=,故答案為:.【點(diǎn)睛】本題考查了正方形的性質(zhì),軸對稱的性質(zhì),全等三角形的判定與性質(zhì),勾股定理,面積法求線段的長度等,解題關(guān)鍵是能夠靈活運(yùn)用正方形的性質(zhì)和軸對稱的性質(zhì).10、【解析】【分析】由折疊的性質(zhì)可得,,,,由勾股定理可得,,根據(jù)題意可得,,求得的長度,即可求解.【詳解】解:由折疊的性質(zhì)可得,,,,∴為等腰直角三角形,為的中點(diǎn),∴由勾股定理可得,∴∵BG為△EBD的中線,△EBG的面積為3∴,解得∴由勾股定理得:故答案為:【點(diǎn)睛】此題考查了折疊的性質(zhì),勾股定理以及直角三角形的性質(zhì),解題的關(guān)鍵是靈活利用相關(guān)性質(zhì)進(jìn)行求解.三、解答題1、(1)見解析;(2)平行四邊形DEFB的周長=【分析】(1)證DE是△ABC的中位線,得DE∥BC,BC=2DE,再證DE=BF,即可得出四邊形DEFB是平行四邊形;(2)由(1)得:BC=2DE=8(cm),BF=DE=4cm,四邊形DEFB是平行四邊形,得BD=EF,再由勾股定理求出BD=10(cm),即可求解.【詳解】(1)證明:∵點(diǎn)D,E分別是AC,AB的中點(diǎn),∴DE是△ABC的中位線,∴DE//BC,BC=2DE,∵CF=3BF,∴BC=2BF,∴DE=BF,∴四邊形DEFB是平行四邊形;(2)解:由(1)得:BC=2DE=8(cm),BF=DE=4cm,四邊形DEFB是平行四邊形,∴BD=EF,∵D是AC的中點(diǎn),AC=12cm,∴CD=AC=6(cm),∵∠ACB=90°,∴BD==10(cm),∴平行四邊形DEFB的周長=2(DE+BD)=2(4+10)=28(cm).【點(diǎn)睛】本題考查了平行四邊形的判定與性質(zhì)、三角形中位線定理、勾股定理等知識;熟練掌握三角形中位線定理,證明四邊形DEFB為平行四邊形是解題的關(guān)鍵.2、、、【分析】根據(jù),即可求得點(diǎn),勾股定理求得即可求得點(diǎn),再根據(jù)平行四邊形的性質(zhì)可得點(diǎn)坐標(biāo).【詳解】解:ABCD是平行四邊形,∴軸,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論