2025年福建省福安市中考數(shù)學(xué)考前沖刺練習(xí)(綜合卷)附答案詳解_第1頁
2025年福建省福安市中考數(shù)學(xué)考前沖刺練習(xí)(綜合卷)附答案詳解_第2頁
2025年福建省福安市中考數(shù)學(xué)考前沖刺練習(xí)(綜合卷)附答案詳解_第3頁
2025年福建省福安市中考數(shù)學(xué)考前沖刺練習(xí)(綜合卷)附答案詳解_第4頁
2025年福建省福安市中考數(shù)學(xué)考前沖刺練習(xí)(綜合卷)附答案詳解_第5頁
已閱讀5頁,還剩23頁未讀 繼續(xù)免費閱讀

付費下載

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

福建省福安市中考數(shù)學(xué)考前沖刺練習(xí)考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題25分)一、單選題(5小題,每小題2分,共計10分)1、在平面直角坐標(biāo)系中,將二次函數(shù)的圖像向左平移2個單位長度,再向上平移1個單位長度,所得拋物線對應(yīng)的函數(shù)表達式為(

)A. B. C. D.2、以原點O為圓心的圓交x軸于A、B兩點,交y軸的正半軸于點C,D為第一象限內(nèi)⊙O上的一點,若∠DAB=25°,則∠OCD=(

).A.50° B.40° C.70° D.30°3、如圖是由5個相同的小正方體搭成的幾何體,它的左視圖是().A. B. C. D.4、如圖,幾何體的左視圖是()A. B. C. D.5、下列事件為隨機事件的是()A.四個人分成三組,恰有一組有兩個人 B.購買一張福利彩票,恰好中獎C.在一個只裝有白球的盒子里摸出了紅球 D.?dāng)S一次骰子,向上一面的點數(shù)小于7二、多選題(5小題,每小題3分,共計15分)1、如圖,在中,,,點D,E分別為,上的點,且.將繞點A逆時針旋轉(zhuǎn)至點B,A,E在同一條直線上,連接,.下列結(jié)論正確的是(

)A. B. C. D.旋轉(zhuǎn)角為2、下列說法不正確的是()A.相切兩圓的連心線經(jīng)過切點 B.長度相等的兩條弧是等弧C.平分弦的直徑垂直于弦 D.相等的圓心角所對的弦相等3、下面一元二次方程的解法中,不正確的是(

)A.(x-3)(x-5)=10×2,∴x-3=10,x-5=2,∴x1=13,x2=7B.(2-5x)+(5x-2)2=0,∴(5x-2)(5x-3)=0,∴x1=,x2=C.(x+2)2+4x=0,∴x1=2,x2=-2D.x2=x兩邊同除以x,得x=14、請觀察下列美麗的圖案,你認為既是軸對稱圖形,又是中心對稱圖形的是()A. B. C. D.5、如圖,為的直徑延長線上的一點,與相切,切點為,是上一點,連接.已知,則下列結(jié)論正確的為(

)A.與相切 B.四邊形是菱形C. D.第Ⅱ卷(非選擇題75分)三、填空題(5小題,每小題3分,共計15分)1、不透明袋子中裝有10個球,其中有3個黃球、5個紅球、2個黑球,這些球除顏色外無其他差別.從袋子中隨機取出1個球,則它是黃球的概率是_______.2、把一個正六邊形繞其中心旋轉(zhuǎn),至少旋轉(zhuǎn)________度,可以與自身重合.3、一個盒子中裝有標(biāo)號為,,,的四個小球,這些球除標(biāo)號外都相同,從中隨機摸出兩個小球,則摸出的小球標(biāo)號之和大于的概率為______.4、如果一條拋物線與軸有兩個交點,那么以該拋物線的頂點和這兩個交點為頂點的三角形稱為這條拋物線的“特征三角形”.已知的“特征三角形”是等腰直角三角形,那么的值為_________.5、五張背面完全相同的卡片上分別寫有、、-31、、0.101001001…(相鄰兩個1間依次多1個0)五個實數(shù),如果將卡片字面朝下隨意放在桌子上,任意取一張,抽到有理數(shù)的概率是______.四、簡答題(2小題,每小題10分,共計20分)1、已知:.(1)求代數(shù)式的值;(2)如果,求的值.2、如圖所示,直線y=x+2與坐標(biāo)軸交于A、B兩點,與反比例函數(shù)y=(x>0)交于點C,已知AC=2AB.(1)求反比例函數(shù)解析式;(2)若在點C的右側(cè)有一平行于y軸的直線,分別交一次函數(shù)圖象與反比例函數(shù)圖象于D、E兩點,若CD=CE,求點D坐標(biāo).五、解答題(4小題,每小題10分,共計40分)1、在一個不透明的盒子中裝有四個只有顏色不同的小球,其中兩個紅球,一個黃球,一個藍球.(1)攪勻后從中任意摸出1個球,恰好是紅球的概率為_______;恰好是黃球的概率為________.(2)攪勻后從中任意摸出1個球,記錄下顏色后放回袋子中并攪勻,再從中任意摸出1個球,用列表法或樹形圖的方法,求兩次都是紅球的概率.2、如圖,ABC是⊙O的內(nèi)接三角形,,,連接AO并延長交⊙O于點D,過點C作⊙O的切線,與BA的延長線相交于點E.(1)求證:AD∥EC;(2)若AD=6,求線段AE的長.3、如圖,兩個圓都以點O為圓心,大圓的弦交小圓于兩點.求證:.4、在平面直角坐標(biāo)系xOy中,給出如下定義:若點P在圖形M上,點Q在圖形N上,稱線段PQ長度的最小值為圖形M,N的“近距離”,記為d(M,N),特別地,若圖形M,N有公共點,規(guī)定d(M,N)=0.已知:如圖,點A(,0),B(0,).(1)如果⊙O的半徑為2,那么d(A,⊙O)=,d(B,⊙O)=.(2)如果⊙O的半徑為r,且d(⊙O,線段AB)=0,求r的取值范圍;(3)如果C(m,0)是x軸上的動點,⊙C的半徑為1,使d(⊙C,線段AB)<1,直接寫出m的取值范圍.-參考答案-一、單選題1、B【解析】【分析】先求出平移后拋物線的頂點坐標(biāo),進而即可得到答案.【詳解】解:∵的頂點坐標(biāo)為(0,0)∴將二次函數(shù)的圖像向左平移2個單位長度,再向上平移1個單位長度,所得拋物線的頂點坐標(biāo)為(-2,1),∴所得拋物線對應(yīng)的函數(shù)表達式為,故選B【考點】本題主要考查二次函數(shù)的平移規(guī)律,找出平移后二次函數(shù)圖像的頂點坐標(biāo)或掌握“左加右減,上加下減”,是解題的關(guān)鍵.2、C【解析】【分析】根據(jù)圓周角定理求出∠DOB,根據(jù)等腰三角形性質(zhì)求出∠OCD=∠ODC,根據(jù)三角形內(nèi)角和定理求出即可.【詳解】解:連接OD,∵∠DAB=25°,∴∠BOD=2∠DAB=50°,∴∠COD=90°-50°=40°,∵OC=OD,∴∠OCD=∠ODC=(180°-∠COD)=70°,故選:C.【考點】本題考查了圓周角定理,等腰三角形性質(zhì),三角形內(nèi)角和定理的應(yīng)用,主要考查學(xué)生的推理能力,題目比較典型,難度適中.3、B【分析】找到從左面看所得到的圖形即可,注意所有的看到的棱都應(yīng)表現(xiàn)在左視圖中.【詳解】從左面看,第一層有2個正方形,第二層左側(cè)有1個正方形.故選:B.【點睛】本題考查了三視圖的知識,熟知左視圖是從物體的左面看得到的視圖是解答本題的關(guān)鍵.4、D【分析】根據(jù)從左邊看得到的圖形是左視圖,可得答案.【詳解】根據(jù)左視圖的定義可知,這個幾何體的左視圖是選項D,故選:D.【點睛】本題考查簡單組合體的三視圖,解題的關(guān)鍵是理解三視圖的定義.5、B【分析】根據(jù)事件發(fā)生的可能性大小判斷.【詳解】解:A、四個人分成三組,恰有一組有兩個人,是必然事件,不合題意;B、購買一張福利彩票,恰好中獎,是隨機事件,符合題意;C、在一個只裝有白球的盒子里摸出了紅球,是不可能事件,不合題意;D、擲一次骰子,向上一面的點數(shù)小于7,是必然事件,不合題意;故選:B.【點睛】本題考查的是必然事件、不可能事件、隨機事件的概念,必然事件指在一定條件下,一定發(fā)生的事件.不可能事件是指在一定條件下,一定不發(fā)生的事件,不確定事件即隨機事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件.二、多選題1、ABC【解析】【分析】由AB=AC,∠B=30°,得出∠B=∠C=30°,∠BAC=120°,得出將△ADE繞點A逆時針旋轉(zhuǎn)至點B、A、E在同一條直線上,可得旋轉(zhuǎn)角為60°,故D錯誤;由DE∥BC,易證AD=AE,得出BD=EC,故C正確;BE=AE+AB=AD+AC,故B正確;證明∠DAC=∠EAC,由AD=AE,得出DE⊥AC,故A正確;即可得出結(jié)果.【詳解】解:∵AB=AC,∠B=30°,∴∠B=∠C=30°,∠BAC=120°,∴將△ADE繞點A逆時針旋轉(zhuǎn)至點B、A、E在同一條直線上,則旋轉(zhuǎn)角為:180°120°=60°,故D錯誤;∵DE∥BC,∴∠ADE=∠B,∠AED=∠C,∴∠ADE=∠AED,∴AD=AE,∴BD=EC,故C正確;BE=AE+AB=AD+AC,故B正確;∵∠BAC=∠DAE=120°,∴∠EAC=180°-∠BAC=180°-120°=60°,∠DAC=120°-∠EAC=120°-60°=60°,∴∠DAC=∠EAC,∵AD=AE,∴DE⊥AC,故A正確;故選:ABC.【考點】本題考查了旋轉(zhuǎn)的性質(zhì)、等腰三角形的判定與性質(zhì)、平行線的性質(zhì)等知識;熟練掌握旋轉(zhuǎn)的性質(zhì)與等腰三角形的性質(zhì)是解題的關(guān)鍵.2、BCD【解析】【分析】要找出正確命題,可運用相關(guān)基礎(chǔ)知識分析找出正確選項,也可以通過舉反例排除不正確選項,從而得出正確選項.(1)等弧指的是在同圓或等圓中,能夠完全重合的弧.長度相等的兩條弧,不一定能夠完全重合;(2)此弦不能是直徑;(3)相等的圓心角所對的弦相等指的是在同圓或等圓中.【詳解】解:A、根據(jù)圓的軸對稱性可知此命題正確,不符合題意;B、等弧指的是在同圓或等圓中,能夠完全重合的弧.而此命題沒有強調(diào)在同圓或等圓中,所以長度相等的兩條弧,不一定能夠完全重合,此命題錯誤,符合題意;B、此弦不能是直徑,命題錯誤,符合題意;C、相等的圓心角指的是在同圓或等圓中,此命題錯誤,符合題意;故選:BCD.【考點】本題考查的是兩圓的位置關(guān)系、圓周角定理以及垂徑定理,熟知平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧是解答此題的關(guān)鍵.3、ACD【解析】【分析】各方程求出解,即可作出判斷.【詳解】解:A、方程整理得:x2-8x-5=0,這里a=1,b=-8,c=-5,∵△=64+20=84,∴,故選項A符合題意;B、提取公因式得:(2-5x)(1+2-5x)=0,解得:x1=,x2=,故選項B不符合題意;C、方程整理得:x2+8x+4=0,解得:,故選項C符合題意;D、方程整理得:x2-x=0,即x(x-1)=0,解得:x1=0,x2=1,故選項D符合題意,故選:ACD.【考點】此題考查了解一元二次方程-因式分解法,熟練掌握因式分解的方法是解本題的關(guān)鍵.4、AB【解析】【分析】根據(jù)軸對稱圖形(如果一個圖形沿一條直線折疊,直線兩旁的部分能夠互相重合)和中心對稱圖形(把一個圖形繞某一點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠與原來的圖形重合)的定義進行判斷.【詳解】A選項:可以找到多條對稱軸,是軸對稱圖形;繞某一點旋轉(zhuǎn)180°,旋轉(zhuǎn)后的圖形能夠與原來的圖形重合,是中心對稱圖形,所以符合題意;B選項:可以找到多條對稱軸,是軸對稱圖形;繞某一點旋轉(zhuǎn)180°,旋轉(zhuǎn)后的圖形能夠與原來的圖形重合,是中心對稱圖形,所以符合題意;C選項:可以找到多條對稱軸,是軸對稱圖形;繞某一點旋轉(zhuǎn)180°,旋轉(zhuǎn)后的圖形不能夠與原來的圖形重合,不是中心對稱圖形,所以不符合題意;D選項:可以找到多條對稱軸,是軸對稱圖形;繞某一點旋轉(zhuǎn)180°,旋轉(zhuǎn)后的圖形不能夠與原來的圖形重合,不是中心對稱圖形,所以不符合題意.故選:AB.【考點】考查中心對稱圖形和軸對稱圖形的概念,解題關(guān)鍵是熟記其概念:把一個圖形繞某一點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠與原來的圖形重合,那么這個圖形就叫做中心對稱圖形;如果一個圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形叫做軸對稱圖形.5、ABCD【解析】【分析】A、利用切線的性質(zhì)得出∠PCO=90°,進而得出△PCO≌△PDO(SSS),即可得出∠PCO=∠PDO=90°,得出答案即可;B、利用A項所求得出:∠CPB=∠BPD,進而求出△CPB≌△DPB(SAS),即可得出答案;C、利用全等三角形的判定得出△PCO≌△BCA(ASA),進而得出答案;D、利用四邊形PCBD是菱形,∠CPO=30°,則DP=DB,則∠DPB=∠DBP=30°,求出即可.【詳解】A、連接CO,DO,∵PC與⊙O相切,切點為C,∴∠PCO=90°,在△PCO和△PDO中,,∴△PCO≌△PDO(SSS),∴∠PCO=∠PDO=90°,∴PD與⊙O相切,故A正確;B、由A項得:∠CPB=∠BPD,在△CPB和△DPB中,,∴△CPB≌△DPB(SAS),∴BC=BD,∴PC=PD=BC=BD,∴四邊形PCBD是菱形,故B正確;C、連接AC,∵PC=CB,∴∠CPB=∠CBP,∵AB是⊙O直徑,∴∠ACB=90°,在△PCO和△BCA中,,∴△PCO≌△BCA(ASA),∴PO=AB,故C正確;D、∵四邊形PCBD是菱形,∠CPO=30°,∴DP=DB,則∠DPB=∠DBP=30°,∴∠PDB=120°,故D正確;故選:ABCD.【考點】此題主要考查了切線的判定與性質(zhì)和全等三角形的判定與性質(zhì)以及菱形的判定與性質(zhì)等知識,熟練利用全等三角形的判定與性質(zhì)是解題關(guān)鍵.三、填空題1、【解析】【分析】用黃球的個數(shù)除以總球的個數(shù)即可得出取出黃球的概率.【詳解】解:∵不透明的袋子中裝有10個球,其中有3個黃球、5個紅球、2個黑球,∴從袋子中隨機取出1個球,則它是黃球的概率為;故答案為:.【考點】此題考查了概率公式,明確概率的意義是解答問題的關(guān)鍵,用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.2、60【分析】正六邊形連接各個頂點和中心,這些連線會將360°分成6分,每份60°因此至少旋轉(zhuǎn)60°,正六邊形就能與自身重合.【詳解】360°÷6=60°故答案為:60【點睛】本題考查中心對稱圖形的性質(zhì),根據(jù)圖形特征找到最少旋轉(zhuǎn)度數(shù)是本題關(guān)鍵.3、【分析】根據(jù)題意畫出樹狀圖得出所有等可能的情況數(shù),找出符合條件的情況數(shù),然后根據(jù)概率公式即可得出答案.【詳解】解:根據(jù)題意畫圖如下:共有12種等可能的情況數(shù),其中摸出的小球標(biāo)號之和大于5的有4種,則摸出的小球標(biāo)號之和大于5的概率為.故答案為:.【點睛】本題考查的是用列表法或樹狀圖法求概率.列表法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;解題時要注意此題是放回試驗還是不放回試驗.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.4、2【解析】【分析】首先求出的頂點坐標(biāo)和與x軸兩個交點坐標(biāo),然后根據(jù)“特征三角形”是等腰直角三角形列方程求解即可.【詳解】解:∵∴,代入得:∴拋物線的頂點坐標(biāo)為∵當(dāng)時,即,解得:,∴拋物線與x軸兩個交點坐標(biāo)為和∵的“特征三角形”是等腰直角三角形,∴,即解得:.故答案為:2.【考點】此題考查了二次函數(shù)與x軸的交點問題,等腰直角三角形的性質(zhì),解題的關(guān)鍵是求出的頂點坐標(biāo)和與x軸兩個交點坐標(biāo).5、##0.4【解析】【分析】根據(jù)題意可知有理數(shù)有-31、,共2個,根據(jù)概率公式即可求解【詳解】解:在、、-31、、0.101001001…(相鄰兩個1間依次多1個0)五個實數(shù)中,-31、是有理數(shù),∴任意取一張,抽到有理數(shù)的概率是故答案為:【考點】本題考查了實數(shù)的分類,根據(jù)概率公式求概率,理解題意是解題的關(guān)鍵.四、簡答題1、(1)1;(2)【解析】【分析】(1)設(shè)a=2k,b=3k,c=5k,代入代數(shù)式,即可求出答案;(2)把a、b、c的值代入,求出即可.【詳解】∵∴設(shè)a=2k,b=3k,c=5k,(1);(2)∵∴6k-3k+5k=24,∴k=3,∴a=2×3=6,b=3×3=9,c=5×3=15.【考點】本題考查了比例的性質(zhì)的應(yīng)用,主要考查學(xué)生的計算能力.2、(1)y=;(2)D(6,8).【解析】【分析】(1)作CM⊥y軸于M,如圖,利用直線解析式確定A(0,2),B(﹣2,0),再根據(jù)平行線分線段成比例定理求出MC=4,AM=4,則C(4,6),然后把C點坐標(biāo)代入y=中求出k得到反比例函數(shù)解析式;(2)MC交直線DE于N,如圖,證明△CND為等腰直角三角形得到CN=DN,再利用CD=CE得到CN=NE=DN,設(shè)CN=t,則N(4+t,6),D(4+t,6+t),E(4+t,6﹣t),然后把E(4+t,6﹣t)代入y=得(4+t)(6﹣t)=24,最后解方程求出t得到D點坐標(biāo).【詳解】解:(1)作CM⊥y軸于M,如圖,當(dāng)x=0時,y=x+2=2,則A(0,2),當(dāng)y=0時,x+2=0,解得x=﹣2,則B(﹣2,0),∵MC∥OB,∴===2,∴MC=2OB=4,AM=2OA=4,∴C(4,6),把C(4,6)代入y=得k=4×6=24,∴反比例函數(shù)解析式為y=;(2)MC交直線DE于N,如圖,∵MC=MA,∴△MAC為等腰直角三角形,∴∠ACM=45°,∴∠DCN=45°,∴△CND為等腰直角三角形,∴CN=DN,∵CD=CE,∴CN=NE=DN,設(shè)CN=t,則N(4+t,6),D(4+t,6+t),E(4+t,6﹣t),把E(4+t,6﹣t)代入y=得(4+t)(6﹣t)=24,解得t1=0(舍去),t2=2,∴D(6,8).【考點】本題是反比例函數(shù)與一次函數(shù)的綜合題,涉及到待定系數(shù)法求函數(shù)解析式、平行線分線段成比例定理、等腰三角形的性質(zhì),有一定的難度五、解答題1、(1);(2)兩次都是紅球的概率為【分析】(1)根據(jù)列舉法將所有可能列出,然后找出符合條件的可能,計算即可得;(2)四個球簡寫為“紅1,紅2,黃,藍”,利用列表法列出所有出現(xiàn)的可能,從中找到符合條件的結(jié)果數(shù),再根據(jù)概率公式計算可.(1)解:攪勻后從中任意摸出1個球,有四種可能:紅球、紅球、黃球、藍球,其中是紅球的可能有兩種,∴,其中是黃球的可能有一種,∴,故答案為:;;(2)四個球簡寫為“紅1,紅2,黃,藍”,列表法為:紅1紅2黃藍紅1(紅1,紅1)(紅1,紅2)(紅1,黃)(紅1,藍)紅2(紅2,紅1)(紅2,紅2)(紅2,黃)(紅2,藍)黃(黃,紅1)(黃,紅2)(黃,黃)(黃,藍)藍(藍,紅1)(藍,紅2)(藍,黃)(藍,藍)共有16種等可能的結(jié)果數(shù),其中兩次都是紅球的有4種結(jié)果,所以兩次都是紅球的概率為:.【點睛】題目主要考查利用列表法或樹狀圖法求概率,理解題意,熟練掌握列表法或樹狀圖法是解題關(guān)鍵.2、(1)見解析;(2)6【分析】(1)連接OC,根據(jù)CE是⊙O的切線,可得∠OCE=,根據(jù)圓周角定理,可得∠AOC=,從而得到∠AOC+∠OCE=,即可求證;(2)過點A作AF⊥EC交EC于點F,由∠AOC=,OA=OC,可得∠OAC=,從而得到∠BAD=,再由AD∥EC,可得,然后證得四邊形OAFC是正方形,可得,從而得到AF=3,再由直角三角形的性質(zhì),即可求解.【詳解】證明:(1)連接OC,∵CE是⊙O的切線,∴∠OCE=,∵∠ABC=,∴∠AOC=2∠ABC=,∵∠AOC+∠OCE=,∴AD∥EC;(2)解:過點A作AF⊥EC交EC于點F,∵∠AOC=,OA=OC,∴∠OAC=,∵∠BAC=,∴∠BAD=,∵AD∥EC,∴,∵∠OCE=,∠AOC=,∠AFC=90°,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論