2026屆湖南省長(zhǎng)沙青雅麗發(fā)中學(xué)數(shù)學(xué)九上期末考試模擬試題含解析_第1頁(yè)
2026屆湖南省長(zhǎng)沙青雅麗發(fā)中學(xué)數(shù)學(xué)九上期末考試模擬試題含解析_第2頁(yè)
2026屆湖南省長(zhǎng)沙青雅麗發(fā)中學(xué)數(shù)學(xué)九上期末考試模擬試題含解析_第3頁(yè)
2026屆湖南省長(zhǎng)沙青雅麗發(fā)中學(xué)數(shù)學(xué)九上期末考試模擬試題含解析_第4頁(yè)
2026屆湖南省長(zhǎng)沙青雅麗發(fā)中學(xué)數(shù)學(xué)九上期末考試模擬試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩16頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2026屆湖南省長(zhǎng)沙青雅麗發(fā)中學(xué)數(shù)學(xué)九上期末考試模擬試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)。回答非選擇題時(shí),將答案寫在答題卡上,寫在本試卷上無(wú)效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.如圖,將線段AB先向右平移5個(gè)單位,再將所得線段繞原點(diǎn)按順時(shí)針?lè)较蛐D(zhuǎn)90°,得到線段AB,則點(diǎn)B的對(duì)應(yīng)點(diǎn)B′的坐標(biāo)是()A.(-4,1) B.(-1,2) C.(4,-1) D.(1,-2)2.正方形網(wǎng)格中,∠AOB如圖放置,則cos∠AOB的值為(

)A. B. C.

D.3.如圖,矩形OABC的頂點(diǎn)A、C分別在x軸、y軸的正半軸上,點(diǎn)M是邊BC上一動(dòng)點(diǎn)(不與B、C重合).過(guò)點(diǎn)M的雙曲線(x>0)交AB于點(diǎn)N,連接OM、ON.下列結(jié)論:①△OCM與△OAN的面積相等;②矩形OABC的面積為2k;③線段BM與BN的長(zhǎng)度始終相等;④若BM=CM,則有AN=BN.其中一定正確的是()A.①④ B.①② C.②④ D.①③④4.太陽(yáng)與地球之間的平均距離約為150000000km,用科學(xué)記數(shù)法表示這一數(shù)據(jù)為()A.1.5×108km B.15×107km C.0.15×109km D.1.5×109km5.關(guān)于的一元二次方程有兩個(gè)相等的實(shí)數(shù)根,則的值為()A. B. C. D.6.下列汽車標(biāo)志中,是中心對(duì)稱圖形的有()個(gè).A.1 B.2 C.3 D.47.如圖,等腰直角三角形的頂點(diǎn)A、C分別在直線a、b上,若a∥b,∠1=30°,則∠2的度數(shù)為()A.30° B.15° C.10° D.20°8.方程x=x(x-1)的根是()A.x=0 B.x=2 C.x1=0,x2=1 D.x1=0,x2=29.如圖是小明一天看到的一根電線桿的影子的俯視圖,按時(shí)間先后順序排列正確的是()A.①②③④ B.④③②① C.④③①② D.②③④①10.下列方程中,是一元二次方程的是()A. B.C. D.二、填空題(每小題3分,共24分)11.古希臘數(shù)學(xué)家把數(shù)1,3,6,10,15,21,…叫做三角形數(shù),它有一定的規(guī)律性,若把第一個(gè)三角形數(shù)記為x1,第二個(gè)三角形數(shù)記為x2,…第n個(gè)三角形數(shù)記為xn,則xn+xn+1=.12.我們將等腰三角形腰長(zhǎng)與底邊長(zhǎng)的差的絕對(duì)值稱為該三角形的“邊長(zhǎng)正度值”,若等腰三角形腰長(zhǎng)為5,“邊長(zhǎng)正度值”為3,那么這個(gè)等腰三角形底角的余弦值等于__________.13.已知一次函數(shù)y1=x+m的圖象如圖所示,反比例函數(shù)y2=,當(dāng)x>0時(shí),y2隨x的增大而_____(填“增大”或“減小”).14.已知:如圖,在中,于點(diǎn),為的中點(diǎn),若,,則的長(zhǎng)是_______.15.計(jì)算:__________.16.若有一組數(shù)據(jù)為8、4、5、2、1,則這組數(shù)據(jù)的中位數(shù)為__________.17.75°的圓心角所對(duì)的弧長(zhǎng)是2.5cm,則此弧所在圓的半徑是_____cm.18.如圖,在四邊形ABCD中,,E、F、G分別是AB、CD、AC的中點(diǎn),若,,則等于______________.三、解答題(共66分)19.(10分)如圖,△ABC的高AD與中線BE相交于點(diǎn)F,過(guò)點(diǎn)C作BE的平行線、過(guò)點(diǎn)F作AB的平行線,兩平行線相交于點(diǎn)G,連接BG.(1)若AE=2.5,CD=3,BD=2,求AB的長(zhǎng);(2)若∠CBE=30°,求證:CG=AD+EF.20.(6分)如圖,在與中,,且.求證:.21.(6分)如圖,已知是的一條弦,請(qǐng)用尺規(guī)作圖法找出的中點(diǎn).(保留作圖痕跡,不寫作法)22.(8分)如圖,已知一次函數(shù)與反比例函數(shù)的圖象交于、兩點(diǎn).(1)求一次函數(shù)與反比例函數(shù)的表達(dá)式;(2)求的面積;23.(8分)如圖,拋物線過(guò)點(diǎn),,直線交拋物線于點(diǎn),點(diǎn)的橫坐標(biāo)為,點(diǎn)是線段上的動(dòng)點(diǎn).(1)求直線及拋物線的解析式;(2)過(guò)點(diǎn)的直線垂直于軸,交拋物線于點(diǎn),求線段的長(zhǎng)度與的關(guān)系式,為何值時(shí),最長(zhǎng)?(3)是否存在點(diǎn)使為等腰三角形,若存在請(qǐng)直接寫出點(diǎn)的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.24.(8分)如圖,一電線桿AB的影子分別落在了地上和墻上.同一時(shí)刻,小明豎起1米高的直桿MN,量得其影長(zhǎng)MF為0.5米,量得電線桿AB落在地上的影子BD長(zhǎng)3米,落在墻上的影子CD的高為2米.你能利用小明測(cè)量的數(shù)據(jù)算出電線桿AB的高嗎?25.(10分)如圖,已知AD?AC=AB?AE,∠DAE=∠BAC.求證:△DAB∽△EAC.26.(10分)如圖,已知在平面直角坐標(biāo)系xOy中,直線y=x+與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,點(diǎn)F是點(diǎn)B關(guān)于x軸的對(duì)稱點(diǎn),拋物線y=x2+bx+c經(jīng)過(guò)點(diǎn)A和點(diǎn)F,與直線AB交于點(diǎn)C.(1)求b和c的值;(2)點(diǎn)P是直線AC下方的拋物線上的一動(dòng)點(diǎn),連結(jié)PA,PB.求△PAB的最大面積及點(diǎn)P到直線AC的最大距離;(3)點(diǎn)Q是拋物線上一點(diǎn),點(diǎn)D在坐標(biāo)軸上,在(2)的條件下,是否存在以A,P,D,Q為頂點(diǎn)且AP為邊的平行四邊形,若存在,直接寫出點(diǎn)Q的坐標(biāo);若不存在,說(shuō)明理由.

參考答案一、選擇題(每小題3分,共30分)1、D【解析】在平面直角坐標(biāo)系內(nèi),把一個(gè)圖形各個(gè)點(diǎn)的橫坐標(biāo)都加上(或減去)一個(gè)整數(shù)a,相應(yīng)的新圖形就是把原圖形向右(或向左)平移a個(gè)單位長(zhǎng)度;如果把它各個(gè)點(diǎn)的縱坐標(biāo)都加(或減去)一個(gè)整數(shù)a,相應(yīng)的新圖形就是把原圖形向上(或向下)平移a個(gè)單位長(zhǎng)度;圖形或點(diǎn)旋轉(zhuǎn)之后要結(jié)合旋轉(zhuǎn)的角度和圖形的特殊性質(zhì)來(lái)求出旋轉(zhuǎn)后的點(diǎn)的坐標(biāo).常見(jiàn)的是旋轉(zhuǎn)特殊角度如:30°,45°,60°,90°,180°.【詳解】將線段AB先向右平移5個(gè)單位,點(diǎn)B(2,1),連接OB,順時(shí)針旋轉(zhuǎn)90°,則B'對(duì)應(yīng)坐標(biāo)為(1,-2),故選D.本題考查了圖形的平移與旋轉(zhuǎn),熟練運(yùn)用平移與旋轉(zhuǎn)的性質(zhì)是解題的關(guān)鍵.2、B【詳解】解:連接AD,CD,設(shè)正方形網(wǎng)格的邊長(zhǎng)是1,則根據(jù)勾股定理可以得到:OD=AD=,OC=AC=,∠OCD=90°.則cos∠AOB=.故選B.3、A【分析】根據(jù)k的幾何意義對(duì)①②作出判斷,根據(jù)題意對(duì)②作出判斷,設(shè)點(diǎn)M的坐標(biāo)(m,),點(diǎn)N的坐標(biāo)(n,),從而得出B點(diǎn)的坐標(biāo),對(duì)③④作出判斷即可【詳解】解:根據(jù)k的幾何意義可得:△OCM的面積=△OAN的面積=,故①正確;∵矩形OABC的頂點(diǎn)A、C分別在x軸、y軸的正半軸上,沒(méi)有其它條件,∴矩形OABC的面積不一定為2k,故②不正確∵設(shè)點(diǎn)M的坐標(biāo)(m,),點(diǎn)N的坐標(biāo)(n,),則B(n,),∴BM=n-m,BN=∴BM不一定等于BN,故③不正確;若BM=CM,則n=2m,∴AN=,BN=,∴AN=BN,故④正確;故選:A考查反比例函數(shù)k的幾何意義以及反比例函數(shù)圖像上點(diǎn)的特征,矩形的性質(zhì),掌握矩形的性質(zhì)和反比例函數(shù)k的幾何意義是解決問(wèn)題的前提.4、A【解析】科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值是易錯(cuò)點(diǎn),由于150000000有9位,所以可以確定n=9-1=1.【詳解】150000000km=1.5×101km.故選:A.此題考查科學(xué)記數(shù)法表示較大的數(shù)的方法,準(zhǔn)確確定a與n值是關(guān)鍵.5、A【分析】根據(jù)方程有兩個(gè)相等的實(shí)數(shù)根列方程求解即可.【詳解】由題意得?=0,∴4-4k=0,解得k=1,故選:A.此題考查了一元二次方程的根的情況求未知數(shù)的值,正確掌握一元二次方程的根的三種情況:方程有兩個(gè)不相等的實(shí)數(shù)根時(shí)?>0,方程有兩個(gè)相等的實(shí)數(shù)根時(shí)?=0,方程沒(méi)有實(shí)數(shù)根時(shí)?<0.6、B【分析】根據(jù)中心對(duì)稱圖形的概念逐一進(jìn)行分析即可得.【詳解】第一個(gè)圖形是中心對(duì)稱圖形;第二個(gè)圖形不是中心對(duì)稱圖形;第三個(gè)圖形是中心對(duì)稱圖形;第四個(gè)圖形不是中心對(duì)稱圖形,故選B.本題考查了中心對(duì)稱圖形,熟知中心對(duì)稱圖形是指一個(gè)圖形繞某一個(gè)點(diǎn)旋轉(zhuǎn)180度后能與自身完全重合的圖形是解題的關(guān)鍵.7、B【解析】分析:由等腰直角三角形的性質(zhì)和平行線的性質(zhì)求出∠ACD=60°,即可得出∠2的度數(shù).詳解:如圖所示:∵△ABC是等腰直角三角形,∴∠BAC=90°,∠ACB=45°,∴∠1+∠BAC=30°+90°=120°,∵a∥b,∴∠ACD=180°-120°=60°,∴∠2=∠ACD-∠ACB=60°-45°=15°;故選B.點(diǎn)睛:本題考查了平行線的性質(zhì)、等腰直角三角形的性質(zhì);熟練掌握等腰直角三角形的性質(zhì),由平行線的性質(zhì)求出∠ACD的度數(shù)是解決問(wèn)題的關(guān)鍵.8、D【詳解】解:先移項(xiàng),再把方程左邊分解得到x(x﹣1﹣1)=0,原方程化為x=0或x﹣1﹣1=0,解得:x1=0;x2=2故選D.本題考查因式分解法解一元二次方程,掌握因式分解的技巧進(jìn)行計(jì)算是解題關(guān)鍵.9、C【分析】太陽(yáng)光線下的影子是平行投影,就北半球而言,從早到晚物體影子的指向是:西-西北-北-東北-東,于是即可得到答案.【詳解】根據(jù)平行投影的規(guī)律以及電線桿從早到晚影子的指向規(guī)律,可知:俯視圖的順序?yàn)椋孩堍邰佗?,故選C.本題主要考查平行投影的規(guī)律,掌握“就北半球而言,從早到晚物體影子的指向是:西-西北-北-東北-東”,是解題的關(guān)鍵.10、C【分析】根據(jù)一元二次方程的定義求解,一元二次方程必須滿足兩個(gè)條件:①未知數(shù)的最高次數(shù)是2;②二次項(xiàng)系數(shù)不為1.由這兩個(gè)條件得到相應(yīng)的關(guān)系式,再求解即可.【詳解】A、是分式方程,故A不符合題意;

B、是二元二次方程,故B不符合題意;

C、是一元二次方程,故C符合題意;

D、是二元二次方程,故D不符合題意;

故選:C.本題利用了一元二次方程的概念.只有一個(gè)未知數(shù)且未知數(shù)最高次數(shù)為2的整式方程叫做一元二次方程,一般形式是(且a≠1).特別要注意a≠1的條件,這是在做題過(guò)程中容易忽視的知識(shí)點(diǎn).二、填空題(每小題3分,共24分)11、.【分析】根據(jù)三角形數(shù)得到x1=1,x1=3=1+1,x3=6=1+1+3,x4=10=1+1+3+4,x5=15=1+1+3+4+5,即三角形數(shù)為從1到它的順號(hào)數(shù)之間所有整數(shù)的和,即xn=1+1+3+…+n=、xn+1=,然后計(jì)算xn+xn+1可得.【詳解】∵x1=1,

x1═3=1+1,

x3=6=1+1+3,

x4═10=1+1+3+4,

x5═15=1+1+3+4+5,

∴xn=1+1+3+…+n=,xn+1=,

則xn+xn+1=+=(n+1)1,

故答案為:(n+1)1.12、或【解析】將情況分為腰比底邊長(zhǎng)和腰比底邊短兩種情況來(lái)討論,根據(jù)題意求出底邊的長(zhǎng)進(jìn)而求出余弦值即可.【詳解】當(dāng)腰比底邊長(zhǎng)長(zhǎng)時(shí),若等腰三角形的腰長(zhǎng)為5,“邊長(zhǎng)正度值”為3,那么底邊長(zhǎng)為2,所以這個(gè)等邊三角形底角的余弦值為;當(dāng)腰比底邊長(zhǎng)短時(shí),若等腰三角形的腰長(zhǎng)為5,“邊長(zhǎng)正度值”為3,那么底邊長(zhǎng)為8,所以這個(gè)等邊三角形底角的余弦值為.本題主要考查對(duì)新定義的理解能力、角的余弦的意義,熟練掌握角的余弦的意義是解答本題的關(guān)鍵.13、減?。痉治觥扛鶕?jù)一次函數(shù)圖象與y軸交點(diǎn)可得m<2,進(jìn)而可得2-m>0,再根據(jù)反比例函數(shù)圖象的性質(zhì)可得答案.【詳解】根據(jù)一次函數(shù)y1=x+m的圖象可得m<2,∴2﹣m>0,∴反比例函數(shù)y2=的圖象在一,三象限,當(dāng)x>0時(shí),y2隨x的增大而減小,故答案為:減小.此題主要考查了反比例函數(shù)的性質(zhì),以及一次函數(shù)的性質(zhì),關(guān)鍵是正確判斷出m的取值范圍.14、【分析】先根據(jù)直角三角形的性質(zhì)求出AC的長(zhǎng),再根據(jù)勾股定理即可得出結(jié)論.【詳解】解:∵△ABC中,AD⊥BC,∴∠ADC=90°.∵E是AC的中點(diǎn),DE=5,CD=8,∴AC=2DE=1.∴AD2=AC2?CD2=12?82=2.∴AD=3.故答案為:3.本題主要考查了直角三角形的性質(zhì),熟知在直角三角形中,斜邊上的中線等于斜邊的一半是解答此題的關(guān)鍵.15、【分析】本題涉及零指數(shù)冪、負(fù)整數(shù)指數(shù)冪、二次根式化簡(jiǎn)三個(gè)考點(diǎn),在計(jì)算時(shí)需要針對(duì)每個(gè)考點(diǎn)分別進(jìn)行計(jì)算,然后再進(jìn)行加減運(yùn)算即可.【詳解】3-4-1=-2.故答案為:-2.本題考查的是實(shí)數(shù)的運(yùn)算能力,注意要正確掌握運(yùn)算順序及運(yùn)算法則.16、4【分析】根據(jù)中位數(shù)的定義求解即可.【詳解】解:將數(shù)據(jù)8、4、5、2、1按從小到大的順序排列為:1、2、4、5、8,所以這組數(shù)據(jù)的中位數(shù)為4.故答案為:4.本題考查了中位數(shù)的定義,屬于基本題型,解題的關(guān)鍵是熟知中位數(shù)的概念.17、1【分析】由弧長(zhǎng)公式:計(jì)算.【詳解】解:由題意得:圓的半徑.故本題答案為:1.本題考查了弧長(zhǎng)公式.18、36°【分析】根據(jù)三角形中位線定理得到FG∥AD,F(xiàn)G=AD,GE∥BC,GE=BC,根據(jù)等腰三角形的性質(zhì)、三角形內(nèi)角和定理計(jì)算即可.【詳解】解:∵F、G分別是CD、AC的中點(diǎn),∴FG∥AD,F(xiàn)G=AD,∴∠FGC=∠DAC=15°,∵E、G分別是AB、AC的中點(diǎn),∴GE∥BC,GE=BC,∴∠EGC=180°-∠ACB=93°,∴∠EGF=108°,∵AD=BC,∴GF=GE,∴∠FEG=×(180°-108°)=36°;故答案為:36°.本題考查的是三角形中位線定理、等腰三角形的性質(zhì),三角形的中位線平行于第三邊,且等于第三邊的一半.三、解答題(共66分)19、(1);(2)見(jiàn)解析.【分析】(1)BE是△ABC的中線,則AC=5,由勾股定理求出AD的長(zhǎng),再由勾股定理求得AB的長(zhǎng);

(2)過(guò)點(diǎn)E作EM∥FG,作EN∥AD,先得出EN=AD,然后證明EN=BE,從而有AD=BE.再證明△ABE≌△EMC,得出BE=MC,再推導(dǎo)出四邊形EFGM是平行四邊形,得出EF=GM,繼而可得出結(jié)論.【詳解】(1)解:∵BE是△ABC的中線,

∴AE=EC=2.5,∴AC=5,

∵AD是△ABC的高,

∴AD⊥BC,,;(2)證明:如圖,過(guò)點(diǎn)E作EM∥FG,作EN∥AD.∵BE是中線,即E為AC的中點(diǎn),∴EN為△ACD的中位線,∴EN=AD.∵AD是高,∴EN⊥BC,∴∠ENB=90°.∵∠CBE=30°,∴EN=BE.∴AD=BE.∵FG∥AB,EM∥FG,∴EM∥AB,∴∠BAE=∠MEC.∵EB∥CG,∴∠AEB=∠ECM.在△ABE和△EMC中,∵,∴△ABE≌△EMC(ASA),∴BE=MC.∵EM∥FG,BE∥GC,∴四邊形EFGM是平行四邊形,∴EF=GM.∴GC=GM+MC=EF+BE=EF+AD.本題考查了三角形中位線定理、平行線的性質(zhì)、平行四邊形的判定與性質(zhì)、勾股定理、含30°角的直角三角形性質(zhì)以及全等三角形的判定與性質(zhì)等知識(shí),通過(guò)作輔助線構(gòu)建三角形中位線以及構(gòu)造平行四邊形是解題的關(guān)鍵.20、見(jiàn)解析【分析】先證得,利用有兩條對(duì)應(yīng)邊的比相等,且其夾角相等,即可判定兩個(gè)三角形相似.【詳解】∵,∴,即,又,∴.本題考查了相似三角形的判定:①有兩個(gè)對(duì)應(yīng)角相等的三角形相似;②有兩條對(duì)應(yīng)邊的比相等,且其夾角相等,則兩個(gè)三角形相似;③三組對(duì)應(yīng)邊的比相等,則兩個(gè)三角形相似,熟記各種判定相似三角形的方法是解題關(guān)鍵.21、見(jiàn)解析【分析】作線段AB的垂直平分線即可得到AB的中點(diǎn)D.【詳解】如圖,作線段AB的垂直平分線即可得到AB的中點(diǎn)D.此題考查作圖能力,作線段的垂直平分線,掌握畫圖方法是解題的關(guān)鍵.22、(1)y=;(2)12【分析】(1)將點(diǎn)A分別代入一次函數(shù)與反比例函數(shù),即可求出相應(yīng)的解析式;(2)如圖,將△AOB的面積轉(zhuǎn)化為△AOC的面積和△BOC的面積和即可求出.【詳解】(1)解:y=x-b過(guò)A(-5,-1)-1=-5-b;b=-4y=x-+4y=過(guò)A(-5,-1),k=-5×(-1)=5y=(2)如下圖,直線與y軸交于點(diǎn)C,連接AO,BO∵直線解析式為:y=x+4∴C(0,4),CO=4由圖形可知,∴.本題考查一次函數(shù)與反比例函數(shù)的綜合,求△AOB面積的關(guān)鍵是將△AOB的面積轉(zhuǎn)化為△AOC和△BOC的面積和來(lái)求解.23、(1),;(2)當(dāng)時(shí),線段的長(zhǎng)度有最大值,最大值為;(3)存在,,,【分析】(1)由題意,利用待定系數(shù)法,先求出二次函數(shù)的解析式,然后再求出直線AD的解析式;(2)根據(jù)題意,先得到l與m的函數(shù)關(guān)系式,再依據(jù)函數(shù)的最值,可求m為何值時(shí),PQ最長(zhǎng),PQ的最大值也能求出;(3)根據(jù)題意,由為等腰三角形,可分為三種情況進(jìn)行分析:BP=BD或BP=DP或BD=DP,分別求出點(diǎn)P的坐標(biāo),然后求出點(diǎn)Q的坐標(biāo)即可.【詳解】解:(1)將,代入,得,解得:,∴拋物線的解析式為.當(dāng)時(shí),,∴點(diǎn)的坐標(biāo)為,設(shè)直線的解析式為,代入點(diǎn),,得,解得,∴直線的解析式為;(2)∵在線段上,∴,∴點(diǎn)的坐標(biāo)為,∴點(diǎn)的坐標(biāo)為,∴,即,∴當(dāng)時(shí),線段的長(zhǎng)度有最大值,最大值為;(3)存在;理由如下:根據(jù)題意,則∵為等腰三角形,∴可分為三種情況進(jìn)行討論:①當(dāng)BP=BD時(shí),此時(shí)點(diǎn)P恰好是線段AD與y軸的交點(diǎn),如圖:∵,,又∵點(diǎn)P為(0,)∴BD=,BP=,∴BP=BD,∴點(diǎn)Q與點(diǎn)C重合,在,令x=0,則y=;∴點(diǎn)Q為(0,);②當(dāng)BP=DP,作PE⊥BD于點(diǎn)E,∴點(diǎn)E為(,),∵直線BD的斜率為:,∴直線PE的斜率為:,∴直線PE的解析式為:;聯(lián)合直線PE與直線AD,則有,解得:,∴點(diǎn)P的坐標(biāo)為(,),∴點(diǎn)Q的坐標(biāo)為:;③當(dāng)BD=DP,則設(shè)點(diǎn)P為(m,m1),∵,∴,解得:或(舍去),∴點(diǎn)P為(,),∴點(diǎn)Q的坐標(biāo)為:;綜合上述,有,,.本題是二次函數(shù)綜合題,主要考查了待定系數(shù)法求函數(shù)的解析式,二次函數(shù)的性質(zhì),等腰三角形的性質(zhì)等知識(shí),應(yīng)用分類討論思想和數(shù)形結(jié)合思想是解題的關(guān)鍵.24、電線桿AB的高為8米【解析】試題分析:過(guò)C點(diǎn)作CG⊥AB于點(diǎn)G,把直角梯形ABCD分割成一個(gè)直角三角形和一個(gè)矩形,由于太陽(yáng)光線是平行的,就可以構(gòu)造出相似三角形,根據(jù)相似三角形的性質(zhì)解答即可.試題解析:過(guò)C點(diǎn)作CG⊥AB于點(diǎn)G,∴GC=BD=3米,GB=CD=2米,∵∠NMF=∠AGC=90°,NF∥AC,∴∠NFM=∠ACG,∴△NMF∽△AGC,∴,∴AG==6,∴AB=AG+GB=6+2=8(米),故電線桿AB的高為8米25、證明見(jiàn)解析【分析】根據(jù)相似三角形的判定定理即可證明△DAB∽△EAC.【詳解】證明:∵AD?AC=AB?AE,∴,∵∠DA

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論